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Abstract
Multi-instance point cloud registration is the problem of recovering the poses of all instances of a model point cloud in a scene
point cloud. A traditional solution first extracts correspondences and then clusters the correspondences into different instances.
We propose an efficient and robust method which clusters the correspondences in an iterative manner. In each iteration, our
method first computes the spatial compatibility matrix between the correspondences, and detects its main cluster. The main
cluster indicates a potential occurrence of an instance, and we estimate the pose of this instance with the correspondences in
the main cluster. Afterwards, the correspondences are removed to further register new instances in the following iterations.
With this simplistic design, our method can adaptively determine the number of instances, achieving significant improvements
on both efficiency and accuracy.

CCS Concepts
• Computing methodologies → Matching; Scene understanding;

1. Introduction

Multi-instance point cloud registration aims at estimating the poses
of all instances of a model point cloud within a scene point cloud,
which plays an important role in augmented reality, robotic ma-
nipulation, and autonomous driving. Compared to pairwise regis-
tration which recovers the relative pose between two point clouds
from different viewpoints, multi-instance registration is more chal-
lenging due to the unknown number of instances in the scene.

A traditional solution is to first generate putative correspon-
dences by feature matching [CPK19, QYW∗22] and then recover
the poses of multiple instances by multi-model fitting algorithms.
Multi-model fitting methods usually follow a hypothesize-and-
verify paradigm [MF14], which first samples a large number of hy-
potheses and then selects the valid hypotheses among them. How-
ever, this class of methods suffers from low accuracy under high
outlier ratio and low efficiency due to numerous hypotheses.

Recent clustering-based methods directly divide the putative cor-
respondences into different clusters, where each cluster is recov-
ered as a model instance. ECC [TZ22] employs a hierarchical
clustering algorithm to group the correspondences into multiple
subsets, and each subset is used to recover the pose of a model
instance. Nevertheless, the complexity of hierarchical clustering
reaches O(N3) in the worst case, where N is the number of cor-
respondences, leading to low efficiency if there are many putative
correspondences. PointCLM [YLJ∗22] adopts a neural network to
embed the correspondences into the feature space and then applies
spectral clustering based on feature similarity and spatial consis-

tency [LH05, BLZ∗21] to recognize new instances in an iterative
fashion. It determines the number of clusters by the position of the
maximum drop in the eigenvalues, and RANSAC is used to es-
timate the pose of each cluster. However, the time complexity of
spectral clustering is also O(N3), which prevents PointCLM from
handling a large number of correspondences. To maintain applica-
ble registration speed, these methods usually downsample the in-
put correspondences to a relatively small subset. Nevertheless, in
multi-instance cases, the distribution of inliers in the scene point
cloud is non-uniform and downsampling may result in losing some
instances. As shown in Fig. 1 (right), randomly downsampling the
correspondences from 6000 to 1000 significantly reduces the reg-
istered instances.

In this work, we propose an efficient and accurate multi-instance
registration method which clusters the putative correspondences in
an iterative manner. Our key idea is to register one instance at a time
until there are no more instances in the scene. Inspired by [LH05],
the main cluster of the spatial compatibility matrix between the cor-
respondences indicates the potential occurrence of an instance. To
this end, we iteratively detect a main cluster and cluster its corre-
spondences as an instance. In each iteration, we use the second-
order spatial consistency [CSYT22] to construct a correspondence
compatibility matrix. We then compute the association of each cor-
respondence with the main cluster of the matrix and generate a
set of seed correspondences according the association scores. The
seeds further generate a set of pose hypotheses, where we select
the best pose as a new instance. At last, the correspondences be-
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Figure 1: Left: The pipeline of our method. It takes point correspondences as input and constructs their similarity matrix, which is used
to extract the main cluster. Then, the pose is estimated on the main cluster and the next iteration takes the remaining correspondences
as input after deleting the matched correspondences with the pose. Right: Visualization of registration results under different numbers of
correspondences. The black rectangle indicates the difference in registration results between 1000 and 6000 correspondences.

longing to this instance are removed before the next iteration. The
advantages of our method are two-fold. First, instead of determin-
ing the number of clusters before clustering, our method adaptively
determines the number of instances during registration, enhancing
the robustness to the unknown number of instances. Second, our
method bypasses the computationally-expensive clustering algo-
rithms with a simplistic iterative pipeline, thus is more efficient and
can leverage more correspondences to generate more reliable reg-
istrations. Experiments on Scan2CAD benchmark [ADD∗19] have
demonstrated the effectiveness of our method. Our method sur-
passes the state-of-the-art methods [TZ22,YLJ∗22] by 21.23 points
on the F1 score and runs 23× faster with 6000 correspondences.

2. Method

In this work, we consider a model point cloud P ∈ RN×3 and a
scene point cloud Q∈RM×3, where the scene point cloud contains
multiple instances of the model point cloud. Given a set of putative
correspondences C = {(xi,yi)|xi ∈ P,yi ∈ Q} extracted by a point
matching method [CPK19, QYW∗22], our goal is to recover the
poses of the model instances in the scene. Assuming that there are
K instances, the correspondences can be decomposed as C = C0 ∪
C1∪C2∪·· ·∪CK , where C0 is the outlier correspondences and Ck is
the inlier correspondences belonging to the kth instance. The pose
of the kth instance Tk = {Rk, tk} can be solved by:

argmin
Rk ,tk

∑(xi,yi)∈Ck
∥Rk ·xi + tk−yi∥2, (1)

where Rk is a 3D rotation and tk is a 3D translation.

The key to this problem is to cluster the putative correspondences
into separate instances and remove the outliers. This is very chal-
lenging due to the unknown instance number and the ambiguity
of correspondences from different instances. To address this prob-
lem, we leverage spatial consistency between the correspondences

Algorithm 1 Cluster the correspondence set

1: procedure CLUSTER(Correspondence set C)
2: Final_poses← [ ]
3: Max_inliers← 0
4: while LEN(C)> 3 do
5: S← CAL_COMPATIBILITY(C)
6: Con f idence← CAL_LEADING_EIGENVECTOR(S)
7: Seeds← SEED_SELECTION(Con f idence)
8: {Pose, Inliers}← CAL_BEST_POSE(Seeds,C,S)
9: Final_poses.APPEND(Pose)

10: C← REMOVEINLIERS(C, Inliers)
11: if LEN(Inliers)> Max_inliers then
12: Max_inliers← LEN(Inliers)
13: end if
14: if LEN(Inliers)< Max_inliers× τ then
15: break
16: end if
17: end while
18: return Final_poses
19: end procedure

to compute a compatibility matrix and recover the instances by it-
eratively extracting the main cluster of the compatibility matrix. In
each iteration, we treat the main cluster as an instance and recover
its pose with the correspondences in the main cluster. Afterward,
all correspondences that support the recovered pose are removed.
The pipeline of our method is shown in Algorithm 1.

2.1. Spatial Compatibility Matrix

Spatial consistency [BLZ∗21, CSYT22] is an important criterion
to retrieve inlier correspondences in point cloud registration, i.e.,
the respective lengths between two inliers in the two point clouds
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should be close. In multi-instance registration, spatial consistency
holds only for inliers from the same instance, which provides
strong geometric clues for correspondence clustering. Based on
this motivation, we construct the compatibility matrix between
correspondences using the second-order spatial consistency mea-
sure [CSYT22] in each iteration. Specifically, given two correspon-
dences ci = (xi,yi) and c j = (x j,y j), the spatial consistency matrix
H is computed as:

hi j =

{
1, di j ≤ dthr,

0, di j > dthr.
, di j =

∣∣∥xi−x j∥−∥yi−y j∥
∣∣ , (2)

where dthr is the distance threshold. Two correspondences are con-
sidered as incompatible if their length difference exceeds dthr.
Then, we build the final compatibility matrix S as follows:

si j = hi j ·
N

∑
k=1

(hik ·hk j). (3)

Here si j measures the number of correspondences which are com-
patible with both ci and c j. The inlier correspondences belonging to
the same instance tend to have high scores in the S, and the scores
between the inliers from different instances or the outliers are ex-
pected to be small. Therefore, we can utilize the compatibility ma-
trix to divide the correspondences into different clusters.

2.2. Iterative Instance Registration

However, it is still hard to determine the number of clusters due to
the unknown instance number and the existence of outliers, which
prevents the usage of classic clustering algorithms. Our key insight
is that we do not need the number before clustering the correspon-
dences. Instead, we adaptively determine the number of instances
by iteratively extracting main clusters of the compatibility matrix.
As noted in [LH05,BLZ∗21], a main cluster indicates a set of com-
patible inlier correspondences of a potential instance.

In each iteration, we first compute the compatibility matrix S be-
tween the correspondences as described above. We then compute
the leading eigenvector of S as the association of each correspon-
dence with a main cluster or instance [LH05]. The leading eigen-
vector also indicates the confidence of each correspondence being
an inlier of this instance. We follow [BLZ∗21] to use the power
iteration algorithm to compute the leading eigenvector.

Next, we devise a seeding method to solve for the pose of this
instance. Specifically, we select the top-k correspondences with the
highest confidence scores as the initial seeds. Nevertheless, the ini-
tial seeds could cluster together, leading to redundant computation.
To this end, we further apply Non-Maximum Suppression (NMS)
over the confidence score to generate well-distributed seeds. This
process removes the seeds which are within the distance of σr to
other seeds with higher confidence scores. For each seed ci, we find
its k most compatible correspondences C′i and construct the com-
patibility matrix as in Eq. 3. We then compute its leading eigenvec-
tor wi as the weights for the correspondences in C′ and estimate a
pose Ti = {Ri, ti} by solving:

Ri, ti = argmin
R,t

∑(x j ,y j)∈C′
i

wi, j∥R ·x j + t−y j∥
2. (4)

Model Samples Time(s) MR(%) MP(%) MF(%)

PointCLM [YLJ∗22]
1000

0.04 65.59 71.24 68.30
ECC [TZ22] 0.68 83.70 55.63 66.83
Ours 0.23 87.24 70.60 78.04

PointCLM [YLJ∗22]
2000

0.10 78.22 68.28 72.91
ECC [TZ22] 1.36 84.78 62.64 72.05
Ours 0.22 89.88 73.31 80.75

PointCLM [YLJ∗22]
3000

0.30 82.44 52.68 64.29
ECC [TZ22] 2.10 87.45 62.16 72.66
Ours 0.23 91.37 73.95 81.74

PointCLM [YLJ∗22]
4000

0.91 81.67 38.70 52.52
ECC [TZ22] 3.25 88.96 55.54 68.38
Ours 0.24 91.61 75.15 82.57

PointCLM [YLJ∗22]
5000

2.73 79.46 28.93 42.42
ECC [TZ22] 5.06 89.84 49.84 64.11
Ours 0.28 92.17 74.48 82.39

PointCLM [YLJ∗22]
6000

9.58 77.67 24.40 37.14
ECC [TZ22] 7.59 92.23 46.13 61.50
Ours 0.32 92.55 74.79 82.73

Table 1: Evaluation results on Scan2CAD benchmark.

This problem can be solved in closed form by weighted SVD. Fi-
nally, we select the pose which admits the most inlier correspon-
dences over the entire correspondences C among all seeds as the
pose for this instance.

At last, we remove the inliers of this instance from the correspon-
dence set C and use the remaining correspondences for the next it-
eration. The process above repeats until there are fewer than three
correspondences or the number of inliers in the last iteration falls
below Max_inliers · τ. Here Max_inliers is the maximum number
of inliers over all iterations, and τ is the ratio threshold. Since the
main clusters from the outliers tend to be smaller than those from
the inliers, our method could quickly stop if all model instances
have been registered.

3. Experiments

We implement our algorithm using Pytorch and conduct experi-
ments on the real-world dataset Scan2CAD [ADD∗19], compar-
ing our method with two state-of-the-art methods: ECC [TZ22]
and PointCLM [YLJ∗22]. We employ a fine-tuned FCGF [CPK19]
to extract local features of point clouds and generate 20000 cor-
respondences by feature matching. We use a 0.025m voxel grid
to downsample the point cloud and dthr is set to 0.05, τ is set to
0.35, σr is set to 0.1. In each iteration, we select ten seeds and
sample 40 nearest neighbors as the correspondence subset. Follow-
ing [YLJ∗22, TZ22], we evaluate the performance with mean re-
call (MR), mean precision (MP), and mean F1 Score (MF). For
asymmetric objects, instance is considered successfully registered
when Relative Rotation Error (RRE) and Relative Translation Er-
ror (RTE) are smaller than thresholds (RRE < 15◦,RTE < 0.1m).
For symmetric objects, we use the ADD-S metric to evaluate the
estimated poses (ADD-S < 0.1).

As shown in Tab. 1, our method achieves the best performance in
MR, MP, and MF. Compared to ECC and PointCLM, our method
is not sensitive to the size of input and our method runs 30× faster
than PointCLM, and green23× faster than ECC under 6000 corre-
spondences input. As the number of inputs increases, all methods
detect more instances but the rising inputs also bring more outliers.
Nevertheless, our method’s mean precision remains stable under
more noise and our method rejects more outliers than ECC and
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（a）PointCLM （b）ECC （c）Ours

Figure 2: Qualitative registration results on the Scan2CAD benchmark. In (a-c), the green bounding boxes represent the ground truth poses
in the scene point cloud, and the bounding boxes in other colors represent the predicted pose. The black rectangles indicate the unregistered
instances.

Samples τ Time(s) MR(%) MP(%) MF(%)

1000
0.15

0.41 92.85 42.07 57.91
3000 0.42 95.25 45.35 61.44
5000 0.51 96.35 45.84 62.12

1000
0.25

0.31 89.57 61.82 73.15
3000 0.30 93.40 63.90 75.88
5000 0.35 94.44 64.65 76.75

1000
0.45

0.10 85.33 76.43 80.63
3000 0.11 88.64 79.63 83.89
5000 0.14 88.58 80.15 84.15

1000
0.35

0.23 87.24 70.60 78.04
3000 0.23 91.37 73.95 81.74
5000 0.28 92.17 74.48 82.39

Table 2: Ablation experiments on the hyperparameters τ.

PointCLM. Fig. 2 provides a gallery of the registration results of
our method, ECC, and PointCLM. On the top row, our method suc-
cessfully registers all instances without any incorrect predictions.
ECC and PointCLM successfully register two instances with some
wrong poses. On the bottom row, the number of unregistered in-
stances using our method is fewer than those with ECC and Point-
CLM.

In Tab. 2, we evaluate the sensitivity to the hyperparameter τ

which controls when to stop the algorithm. As shown in the table,
when τ is small, the method tends to detect more instances but in-
corporates more wrong results, and costs more time.

4. Conclusion & Limitation

This paper presents an efficient and accurate method for multi-
instance registration, employing an iterative clustering approach for
putative correspondences. Through estimating one pose based on
the main cluster each time, we improve the robustness of unknown
cluster numbers. The decreasing input for each iteration improves
our efficiency and allows us to handle more correspondences. The
experiments conducted on Scan2CAD demonstrate our accuracy
and efficiency over existing methods. However, our method, along

with others that utilize spatial consistency, encounters a limitation
that the outlier set is not merely random noise, it contains some sub-
sets that satisfy spatial consistency. The unknown number of clus-
ters makes it difficult for us to distinguish whether these subsets
that satisfy spatial consistency are inlier sets or outlier sets. This
problem is caused by local features geometrically less discrimina-
tive, resulting in outlier matches. We aim to address this problem
in future work.
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