
EUROGRAPHICS 2015/ B. Bickel and T. Ritschel Short Paper

Improving k-buffer methods via Occupancy Maps

Andreas A. Vasilakis † and Georgios Papaioannou

Dept. of Informatics, Athens University of Economics & Business, Greece

2.1x

stencil-routed k-bufferk+-buffer

layers error

29.5%

0.6%6%6

63.7%

98.3%

Figure 1: (Left) k+-buffer [VF14] is highly boosted by exploiting our fragment culling extension, when rendering the Hairball
model (180 max layers, k = 8). Notice the massive increase of fragments discarded, visualized as heatmap, of our mechanism
(bottom) compared to its predecessor (top). (Right) Observe the significant quality enhancement (see error heatmaps) of the
original stencil-routed k-buffer [BM08] (top) when culling tests are enabled (bottom), as compared with the ground truth.

Abstract

In this work, we investigate an efficient approach to treat fragment racing when computing k-nearest fragments.
Based on the observation that knowing the depth position of the k-th fragment we can optimally find the k-closest
fragments, we introduce a novel fragment culling component by employing occupancy maps. Without any software-
redesign, the proposed scheme can easily be attached at any k-buffer pipeline to efficiently perform early-z culling.
Finally, we report on the efficiency, memory space, and robustness of the upgraded k-buffer alternatives providing
comprehensive comparison results.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism—Hidden line/surface removal

1. Introduction

Multi-fragment visibility determination is a standard stage in

developing numerous effects for interactive 3D games and

graphics applications. Order independent transparency for

† abasilak@aueb.gr

deferred [BM08,HBT14] and forward rendering [MCTB11]

can be considered typical examples of such applications that

also comprise benchmark cases for testing multi-fragment

processing frameworks for scenes with high depth complex-

ity (e.g. flow data [GSM∗14] or hair geometry [YYH∗12]).

Traditionally, a family of GPU-accelerated buffers is respon-

sible on treating the problem of storing the out-of-order in-

c© The Eurographics Association 2015.

DOI: 10.2312/egsh.20151017

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/egsh.20151017

A. A. Vasilakis & G. Papaioannou / Improving k-buffer methods via Occupancy Maps

coming fragments generated by the rasterization pipeline

(see Fig. 2). While the GPU-accelerated A-buffer [YHGT10,

VF12] is the dominant structures for holding multiple frag-

ments via variable-length per-pixel structures, several alter-

natives have been proposed to alleviate the cost of excessive

allocation and access of video-memory [MCTB11].

k-buffer [BCL∗07] as well as its stencil-routed ver-

sion [BM08] are widely-accepted A-buffer approximations,

capable of capturing the k-closest fragments to the viewer by

employing fixed-size per-pixel vectors on the GPU. Despite

their reduced memory demands when compared to A-buffer

solutions, both techniques suffer more or less from read-
modify-write hazards (RMWH) caused when the generated

fragments are inserted in arbitrary depth order. To this end,

an abundance of k-buffer variants have been recently intro-

duced aiming at eliminating the disturbing dotted or heavily

speckled surface areas that result from the aforementioned

problem, by performing atomic operations [MCTB13], con-

structing an auxiliary A-buffer [SML11], on the fly sorting

fragment lists [YYH∗12], or pixel synchronization mech-

anisms [Sal13, VF14]. However these modifications come

with the cost of additional computation and memory require-

ments or the requirement of specialized hardware.

While exploiting hardware-accelerated pixel synchroniza-

tion [Sal13, BH14] ensures accurate k-buffer construction,

its performance degrades rapidly due to the heavy fragment

contention of accessing the critical section when rendering

highly-complex scenes. To this end, k+-buffer [VF14] sig-

nificantly alleviates fragment racing by concurrently per-

forming efficient culling checks to discard fragments that

are farther from all currently maintained fragments. Unfor-

tunately, the proposed fragment rejection process has several

limitations. First of all, the process initially requires the in-

sertion of k fragments before it starts performing any culling

tests. Secondly, it depends on the depth order of the incom-

ing fragments, with no impact at the worst case scenario of

fragments arriving in descending order. Last but not least,

the actual fragment elimination is unfortunately performed

inside the pixel shader execution, thus not exploiting the per-

formance gain of hardware-accelerated early-Z culling.

In this work, we introduce an efficient order-independent

fragment culling mechanism that can be easily used with

any k-buffer framework to alleviate the aforementioned per-

formance bottlenecks, increased memory footprint and ras-

terization artifacts. An additional rendering pass of the

scene’s geometry is initially employed to construct a per-

pixel binary fragment occupancy discretization or occu-
pancy map [LHLW09, SA09]. Then, the nearest depth of

the k-th fragment for each pixel is concurrently computed

by performing bit counting operations and subsequently uti-

lized to perform early-z rejection for the k-buffer construc-

tion process that follows. As a result, fragments, whose

depth is larger than the computed boundary, do not belong

to the potential final result and eventually fail the depth test,

Convex Hull

Occupancy bitmap

Bounding Box

1
m

1
bitmtmi

1
bibi

0
cy by bb

00 1000
pap

1 00 000011 10 11001000 10
annc

00
uppa

01
OccuOccucu

1
OO
0

k = 4

Figure 2: The occupancy bitmap construction process of a
column of a 4-buffer (highlighted with blue at top-right),
when applied to the dragon model. Fragments with depth
larger than the k-th fragment are efficiently discarded.

avoiding their pixel shading execution cost. In essence, this

process maximizes the number of fragments to be rejected

and significantly reduces the total workload. An experimen-

tal evaluation is provided demonstrating the advantages of

our work over the original k-buffer variants in terms of mem-

ory usage, performance cost and image quality.

2. Occupancy-based Fragment Culling

Ideally, when constructing a k-buffer, knowing the exact

depth of the k-th fragment a priori allows us to insert all

fragments with smaller or equal depth in constant time, dis-

carding the rest (farther ones). In this work, we present

an efficient approach for approximating the depth of the

ka-th fragment that is the nearest largest to the k-th one:

ka ≥ k. Inspired by [LHLW09], a 32-bit unsigned inte-

ger 3D fragment occupancy array buffer is utilized to de-

fine a per-pixel bitmap, whose entries indicate the pres-

ence of fragments in each sub-interval. The depth range

of each pixel p is divided into S = 32 · d uniform con-

secutive sub-intervals [p.s j, p.s j+1), where p.s j = p.zn +
j
S (p.z f − p.zn), j = 0,1, . . . ,S− 1 and d > k/32 define the

depth range subdivision. A depth-range map is initially com-

puted, containing for each pixel p the nearest and farthest

fragment depth values from the camera, p.zn and p.z f , re-

spectively [SA09]. However, this additional geometry pass

is highly expensive especially for highly-tessellated scenes,

so a bounding box [LHLW09] or a smaller representation

as a convex hull may be instead chosen to approximate the

geometry (see Fig. 2).

Initially, a clear pass initializes the occupancy buffer to

zero. During the first geometry rasterization (fill pass), the

c© The Eurographics Association 2015.

70

A. A. Vasilakis & G. Papaioannou / Improving k-buffer methods via Occupancy Maps

j-th bit of the occupancy map is set to 1 (p.b j = 1) for

each arriving fragment f falling within the corresponding

sub-interval (p.s j ≤ f .z < p.s j+1) via blending or atomic

operations, depending on the hardware. A full-screen ren-

dering stage follows (count pass) to concurrently count the

number of 1s in the bit-array p.b by adjusting the Brian
Kernighan’s algorithm [Ker88]: count the number of times

p.b & (p.b− 1) is performed in a loop. When the counter

reaches k, the algorithm halts and the current bucket’s depth

is returned to the Z-buffer (O(k) time). Then, the k-buffer

is efficiently constructed (peel pass) by taking advantage of

the early-z culling capabilities of the GPU. Finally, a sort-

ing process [LFS∗14] is employed to reorder the captured

fragments before generating the final image (resolve pass).

Figure 3 illustrates how to modify any k-buffer pipeline in

order to introduce our occupancy-based fragment culling.

Lemma 2.1 Given that more than one fragments are routed

to the same subinterval, the foremost k fragments always

succeeded to pass the culling mechanism.

Proof If n j ≥ 0 is the number of fragments falling into

bucket j, b j = n j > 0 ? 1 : 0 and N = ∑ j n j > k is the

total generated fragments at an arbitrary pixel, then exists an

index i where ∑i
j=0 b j = k. Let’s assume that the statement

is false, thus ∑i
j=0 n j < k ⇔ ∑i

j=0 n j < ∑i
j=0 b j , which does

not hold, since n j ≥ b j,∀ j ≤ i.

depth
range clear

occupancy map

fill countdepth
range clear

occupancy map

fill count
[early-z test]

fragment culling mechanism
[early-z test]

k-buffer method

peel resolve

Rendering: scene geometry full-screen quad convex hull

Figure 3: The modified k-buffer pipeline.

3. Results

We present an experimental analysis of our fragment culling

mechanism extending a set of k-buffer realizations focus-

ing on performance, memory requirements and image qual-

ity under different testing conditions (see also a compara-

tive overview at Table 1). All experiments were conducted

using a 10242 viewport with varying d,k on an NVIDIA

GTX780 Ti with 3 GB of memory. We have also provided

as supplementary material the shader code, including imple-

mentations for older and modern hardware, of the proposed

components in the order shown in Figure 3.

Method Perform. Memory Quality

[BCL∗07] ↓ ↑ ×
[BM08] ↓ ↑ ↑
[SML11, YYH∗12] ↑ ↓ √
[MCTB13, Sal13, VF14] ↑ ↑ √

Table 1: Comprehensive comparison of augmented k-buffer
approaches with fragment culling tests.

Performance Analysis. Figure 4 shows how the perfor-

mance exponentially improves when our fragment culling

mechanism with d = 32 is exploited at k+-buffer [VF14]

when rendering three complex multilayer scenes with k =
{4,8,16,32}. Similar boost is observed for the rest varia-

tions [SML11,YYH∗12,MCTB13,Sal13] (omitted for space

reasons). Conversely, stencil-routed k-buffer [BM08] is sig-

nificantly lessened from the additional geometry pass.

0
20
40
60
80

100

4 8 16 32 4 8 16 32 4 8 16 32

Hairball (180) Hotel (150) Ivy (300)

Ti
m

e
(m

s)

[BM08] [BM08]-CL [VF14] [VF14]-CL

Figure 4: Performance evaluation in ms of two representa-
tive k-buffer methods [BM08, VF14] without and with en-
abling our fragment culling on three scenes with high depth
complexity (shown in brackets) and varying k.

Figure 5 illustrates how the performance of Hairball ren-

dering (see Fig. 1) scales when our fragment culling is ex-

ploited in k+-buffer [VF14], under a set of increasing d =
{1, . . . ,64} and fixed k = 8. We initially observe the small

performance gain when the k+-buffer’s fragment culling is

exploited. On the other hand, even with large depth sub-

intervals the modified method is highly accelerated by the

use of our technique. Note that when moving to higher val-

ues of d, computation of the culling layer is slightly in-

creased. Finally, for d = 32, we performed culling testing

inside the shader to show that moving from software- to

hardware-implemented depth testing we achieved a 2× com-

putation improvement.

0
5

10
15
20
25
30
35

[V
F14]*

[V
F14]

1 2 4 8 16 32 32†

our fragment culling enabled with d

Ti
m

e
(m

s)

Occupancy Map Peel

Figure 5: Our mechanism speeds up the k+-buffer [VF14]
even when d remains at low levels. [VF14]* denotes a mod-
ified fragment culling-free k+-buffer and † defines a shader-
based fragment culling execution.

c© The Eurographics Association 2015.

71

A. A. Vasilakis & G. Papaioannou / Improving k-buffer methods via Occupancy Maps

Memory Allocation Analysis. Concerning memory de-

mands, our mechanism requires specifically (d−k+3) ·32-

bit additional per-pixel storage (for d > k), when compared

with the rest of memory-bounded k-buffer variants. Specifi-

cally, this extra memory overhead comes form the allocation

of the near, far and ka-th fragment depth textures and frag-

ment occupancy buffer. A memory-friendly representation

can also be implemented that reuses the fragment occupancy

buffer for storing the color information of the actual k-buffer.

On the other hand, the risk of a potential memory-overflow

is avoided by highly reducing the stored fragments at the un-

bounded fragment linked lists [SML11, YYH∗12]. For ex-

ample, in the test scenario of Figure 1, we saved 67.4MB by

storing only 1.72% extra unnecessary data.

Image Quality Analysis. Figure 1 shows the noticeable im-

age quality improvement in the case of the hairball model,

when fragment culling is enabled in the stencil-routed k-

buffer [BM08]. Most of the visual information loss from

RMWH is naturally recovered due to the reduced fragment

racing. Note that recent k-buffer alternatives produce accu-

rate results.

Limitations. First of all, the fragment rejection accuracy

(and consequently the speed up) of the k-buffer construc-

tion is highly dependent on the occupancy map resolution;

having no impact (which results at slow-down due to the ex-

tra pass) at the worst-case scenario of the front k fragments

falling to the same bucket(s) due to z-fighting [VF13] or

fragment distribution in small depth intervals. Secondly, the

introduced extension is restricted to work for applications

that aim to capture only the k-closest to the viewer fragments

and not the “best” k ones [SML11]. Finally, RMWH of the

original k-buffer [BCL∗07] cannot be completely alleviated.

4. Conclusions

In this work, we have introduced a simple fragment culling

process easily integrated to any k-buffer pipeline. The k-

th fragment, well-approximated via fragment occupancy

maps, defines the depth testing criterion. We expect that the

included comparative experiments with respect to perfor-

mance, memory usage and robustness will provide a useful

guide for effectively addressing multi-fragment rendering on

high-depth-complexity scenes.

Acknowledgments. This research has been co-financed by

the European Union (European Social Fund - ESF) and

Greek national funds through the Operational Program "Ed-

ucation and Lifelong Learning" of the National Strategic

Reference Framework (NSRF) - Research Funding Program:

ARISTEIA II-GLIDE (grant no.3712).

References
[BCL∗07] BAVOIL L., CALLAHAN S. P., LEFOHN A., COMBA

J. A. L. D., SILVA C. T.: Multi-fragment effects on the GPU
using the k-buffer. In Proceedings of the 2007 Symposium on In-
teractive 3D Graphics and Games (New York, NY, USA, 2007),
I3D ’07, ACM, pp. 97–104. 2, 3, 4

[BH14] BOLZ Z., HEYER M.: OpenGL extension:
GL_NV_fragment_shader_interlock, 2014. 2

[BM08] BAVOIL L., MYERS K.: Deferred rendering using a sten-
cil routed k-buffer. ShaderX6: Advanced Rendering Techniques
(2008), 189–198. 1, 2, 3, 4

[GSM∗14] GÜNTHER T., SCHULZE M., MARTINEZ ESTURO J.,
RÖSSL C., THEISEL H.: Opacity optimization for surfaces.
Computer Graphics Forum 33, 3 (2014), 11–20. 1

[HBT14] HILLESLAND K. E., BILODEAU B., THIBIEROZ N.:
Deferred shading for order-independent transparency. In Pro-
ceedings of Eurographics 2014 Short Papers (2014), EG ’14, The
Eurographics Association, pp. 49–52. 1

[Ker88] KERNIGHAN B. W.: The C Programming Language,
2nd ed. Prentice Hall Professional Technic. Reference, 1988. 3

[LFS∗14] LINDHOLM S., FALK M., SUNDÈN E., BOCK A.,
YNNERMAN A., ROPINSKI T.: Hybrid data visualization based
on depth complexity histogram analysis. Computer Graphics Fo-
rum (2014). 3

[LHLW09] LIU F., HUANG M.-C., LIU X.-H., WU E.-H.: Effi-
cient depth peeling via bucket sort. In Proceedings of the Confer-
ence on High Performance Graphics 2009 (New York, NY, USA,
2009), HPG ’09, ACM, pp. 51–57. 2

[MCTB11] MAULE M., COMBA J. L., TORCHELSEN R. P.,
BASTOS R.: A survey of raster-based transparency techniques.
Computers & Graphics 35, 6 (2011), 1023 – 1034. 1, 2

[MCTB13] MAULE M., COMBA J. A., TORCHELSEN R., BAS-
TOS R.: Hybrid transparency. In Proceedings of the 2013 Sym-
posium on Interactive 3D Graphics and Games (New York, NY,
USA, 2013), I3D ’13, ACM, pp. 103–118. 2, 3

[SA09] SINTORN E., ASSARSSON U.: Hair self shadowing and
transparency depth ordering using occupancy maps. In Proceed-
ings of the 2009 Symposium on Interactive 3D Graphics and
Games (New York, USA, 2009), I3D ’09, ACM, pp. 67–74. 2

[Sal13] SALVI M.: Advances in real-time rendering in games:
Pixel synchronization: Solving old graphics problems with new
data structures. In ACM SIGGRAPH 2013 Courses (New York,
NY, USA, 2013), SIGGRAPH ’13, ACM. 2, 3

[SML11] SALVI M., MONTGOMERY J., LEFOHN A.: Adaptive
transparency. In Proceedings of the 2011 Symposium on High
Performance Graphics (New York, NY, USA, 2011), HPG ’11,
ACM, pp. 119–126. 2, 3, 4

[VF12] VASILAKIS A. A., FUDOS I.: S-buffer: Sparsity-aware
multi-fragment rendering. In Proceedings of Eurographics 2012
Short Papers (Cagliari, Italy, 2012), EG ’12, pp. 101–104. 2

[VF13] VASILAKIS A. A., FUDOS I.: Depth-fighting aware
methods for multifragment rendering. IEEE Transactions on Vi-
sualization and Computer Graphics 19, 6 (2013), 967–977. 4

[VF14] VASILAKIS A. A., FUDOS I.: k+-buffer: Fragment syn-
chronized k-buffer. In Proceedings of the 18th Meeting of the
ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games (New York, NY, USA, 2014), I3D ’14, ACM, pp. 143–
150. 1, 2, 3

[YHGT10] YANG J. C., HENSLEY J., GRUN H., THIBIEROZ N.:
Real-time concurrent linked list construction on the GPU. Com-
puter Graphics Forum 29, 4 (2010), 1297–1304. 2

[YYH∗12] YU X., YANG J. C., HENSLEY J., HARADA T., YU

J.: A framework for rendering complex scattering effects on hair.
In Proceedings of the 2012 symposium on Interactive 3D Graph-
ics and Games (New York, NY, USA, 2012), I3D ’12, ACM,
pp. 111–118. 1, 2, 3, 4

c© The Eurographics Association 2015.

72

