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Abstract
Hand tracking systems play a crucial role in virtual reality (VR) applications, typically focusing on tracking the hands of the user
who is using the system. Consequently, most existing systems are designed to track a maximum of two hands simultaneously.
However, in certain colocated multi-user VR scenarios, it becomes necessary to track more than two hands simultaneously,
such as to eliminate blind spots in individual tracking systems. In such scenarios, accurately assigning the tracked hands to the
corresponding users using only the hand locations relative to the users becomes essential.
This paper introduces and evaluates various methods for efficiently assigning hands to users in such scenarios. Additionally,
we propose an algorithm that leverages past assignments to enhance the robustness and effectiveness of future assignments.
Our experimental results demonstrate that this algorithm significantly improves upon existing methods. Furthermore, when
combined with an assignment algorithm based on reinforcement learning AI agents, we achieve a remarkable 99% accuracy in
hand assignments. As a result, we present an assignment algorithm specifically tailored for colocated VR scenarios, utilizing
only the hand and user locations within the scene, making it directly applicable in the aforementioned contexts.

CCS Concepts
• Computing methodologies → Virtual reality; Mixed / augmented reality; • Human-centered computing → Systems and
tools for interaction design;

1. Introduction

Multi-user virtual reality (VR) experiences allow multiple users to
engage in the same virtual environment (VE) simultaneously. In
colocated multi-user scenarios, where users share both the VE and
physical space, interactions with the environment and other users
are crucial. Traditionally, these interactions are facilitated using
controllers or hand tracking mechanisms. Optical markerless hand
tracking presents an opportunity to achieve more natural interac-
tions in virtual environments without additional hardware or hand-
worn fabrics, eliminating the need for calibration.
While some commercial VR systems, such as Meta Quest and HTC
Vive Focus, integrate hand tracking as a built-in feature, others,
like LeapMotion, require an additional sensor attached to the head-
mounted display (HMD). However, these systems are primarily de-
signed for single-user scenarios and can only detect two hands at
once, assuming they belong to the user. In colocated VR scenarios,
there is a need to recognize and assign hands to individual users
within the shared physical space. For example, it may be necessary
to relay information about a user’s hands even when they are not
visible, such as when held behind their back.
However, a challenge arises as the recognized hands may not nec-
essarily belong to the user from whom the tracking originated.
Current research addressing this problem focuses either on im-

age tracking [TFC20] [NNHH22] to extract additional information,
such as overlapping tracking boxes or hand color, or is limited to
2-dimensional images [LBC∗14]. To our knowledge, there is cur-
rently no solution available that addresses this assignment problem
in a 3-dimensional virtual environment where only location infor-
mation is available. This is especially difficult for hands in close
proximity. Consequently, the objective of our work is to assign all
virtual hands in 3D space to their respective users solely based on
the location of the tracked hands relative to all present virtual users
and therefore enabling targeted interactions within the virtual envi-
ronment.
In this paper, we present an algorithm that computes the probability
of a virtual hand belonging to a specific user. We also address the
challenging task of accurately assigning hands when they overlap in
the virtual scene. To achieve this, we demonstrate various methods
for computing this probability and compare their effectiveness. Ad-
ditionally, we introduce a history-based algorithm that utilizes pre-
vious assignments and probabilities to adjust future assignments.
Finally, we evaluate our methods within a colocated virtual reality
simulation, considering different user formations involving over-
lapping hand interactions.
Our evaluation focuses on assignment accuracy and the runtime of
seven method combinations to identify the most reliable and ro-

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/egve.20231318 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-0322-9869
https://doi.org/10.2312/egve.20231318


D. Reimer D. Scherzer & H. Kaufmann / Ownership Estimation for Tracked Hands

bust approach for assigning hands in all possible colocated virtual
reality scenarios. We also assess the effectiveness of the history al-
gorithm in improving assignment accuracy. The results reveal two
methods with a correct assignment rate of 99%. One method uti-
lized machine learning for hand assignment, while the other dy-
namically selected between the machine learning approach and a
simpler distance algorithm. This dynamic selection not only im-
proved the assignment runtime but also maintained a high accuracy
rate. This allows for the use of computationally intensive AI meth-
ods when users are close together with overlapping hands while
utilizing a faster algorithm for situations where users are farther
apart. This approach ensures high accuracy with a runtime suitable
for real-time applications. Furthermore, the results demonstrate the
efficacy of the history algorithm, showcasing a significant increase
in assignment correctness by an average of 20%, even at the ex-
pense of slightly longer runtimes.
By providing these results, we offer an algorithm for accurately
assigning hands to virtual users without relying on additional im-
age recognition methods, solely utilizing hand and user locations.
Additionally, we solve the assignment problem that arises when
tracked in the virtual scene are in close proximity, which is also
particularly useful when a user’s hands are obscured.

2. Related Work

2.1. Hand tracking

Several optical markerless hand tracking methods with diverse
technological focuses are available [ZP13] [WMB∗20] [SHS21].
However, these methods are confined to 2D screen space. As our
approach necessitates 3D hand transformations in a virtual envi-
ronment to estimate ownership, we need to explore alternative ap-
proaches.
Frati et al. used the Kinect, a Microsoft tracking camera, along with
a wearable haptic device for hand tracking and rendering [FP11].
Their approach involves body tracking to assign hands to users.
However, this method isn’t suitable for us as our solution doesn’t
demand comprehensive body tracking.
The commercial solution MEgATrack, which is used in Meta Quest
headsets by Han et al. [HLC∗20], utilizes four monochronous cam-
eras to track hands in a 3D space. As the system only tracks two
hands at most, our solution is more appropriate for systems that are
tracking more than two hands in colocated VR setups, where hand
ownership estimation is needed.
Our proposed solution could integrate MediaPipe, which is offer-
ing perception pipelines for object detection in RGB cameras via
machine learning [LTN∗19]. Although Zhang et al.’s hand tracking
within MediaPipe [ZBV∗20] offers accurate 3D joint recognition
for visible hands, it primarily emphasizes hand recognition rather
than associating these hands with virtual users.
Other solutions include those that use RGB input [ZB17, POA17,
SHS21] or cameras with additional depth input [SKR∗15,HZG∗21,
MEN∗18]. For example, Malik et al. use segmentation masks and
mesh files of depth maps for neural network recognition with a pro-
cessing time from depth image to mesh of 3.7ms and joint location
error <15mm [MEN∗18]. Zimmermann et al. published a method
of 3D hand pose estimation based on RGB input, which was tested

on a synthetic dataset for neural network hand recognition, with
performance comparable to existing depth approaches [ZB17].

2.2. Hand interactions in multiuser scenarios

Prior research illustrates hand tracking applications in multiuser
scenarios, emphasizing the importance of correctly assigning
hands to users during interactions. Dohse et al. for example
created a tabletop that uses hand tracking to enable multiuser hand
interactions [DDSP08]. Something similar was investigated by
Del Bimbo et al. They created a computer vision-based system
and algorithms which uses hand recognition to enable multiuser
interactions at a display table [DBLV06].
Multiuser VR scenarios have also been the target of previous
work to investigate virtual interactions. User testing regarding
the impact of interactions in colocated multiuser scenarios for
cultural heritage was conducted by Li et al. They concluded that
social influence has positive effects on performance expectancy
and effort expectancy [LCCS18]. Streuber et al. conducted user
tests in multiuser scenarios and found that lack of haptic and
tactile feedback can be compensated if the user is immersed in the
virtual environment [SC07]. A case study for interaction systems
in multiuser VR was conducted by Gong et al. [GSB∗20]. They
underscore the significance of a robust interaction system in multi-
user scenarios. This highlights the crucial role of accurate hand
assignment in revealing which user is engaged in the interaction
process. This is crucial, particularly in scenarios where recognized
hands need to work closely together, possibly with only one hand
recognition system available, such as in surgical settings.

2.3. Hand ownership in 2D and egocentric views

To assign detected hands to users, various existing research stud-
ies have explored hand ownership in egocentric views and hands
detected in 2D space. Narasimhaswamy et al. employed neural
networks to associate hands with bodies by utilizing overlapping
tracking bounding boxes from the image detection, as well as
the locations of heads and hands, to perform hand assignments
[NNHH22]. They show that hand contact estimation can be im-
proved with a hand-body association.
Tsutsui et al. also utilized visual cues provided by image tracking,
such as color, depth, skin texture, and shape, for hand identifica-
tion in egocentric views [TFC20]. However, their approach only
focused on identifying the user’s own hands regardless of their po-
sition, without considering other users and hands in the environ-
ment. Additionally, their approach demonstrates a verification error
rate of 36%, making it impractical for real-world scenarios. Hence,
this approach is not applicable to our scenario.
Tabletop solutions that enable multi-user interaction also require
the correct assignment of interactions to the respective users.
Del Bimbo et al. focused on distinguishing between two overlap-
ping hands using a predictor-based method [DBLV06]. Conversely,
Dohse et al. employed a combination of computer vision for hand
recognition and touch detection to differentiate between hands in
close proximity [DDSP08]. Both works highlighted the signifi-
cance of distinguishing and assigning hands to different users for
interactions in multi-user and close proximity scenarios. However,
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as our focus is on assignment based solely on the location of users
and their hands in the virtual environment, these approaches are not
directly applicable to our solution.
Lee et al. distinguished multiple hands in an egocentric view us-
ing 2D hand locations, although their method didn’t encompass
tracked hands in the 3-dimensional world [LBC∗14]. Lin et al. in-
troduced a technique detecting hand raising in classrooms with a
90% mean Average Precision [LJS18]. Zhou et al. expanded on
this by improving the detection and pose algorithms, achieving an
average recognition precision of 83% by using hand location and
keypoints for hand and hand raiser matching [ZJS18]. Since all
the mentioned research either confines hand assignment to the 2-
dimensional space [LBC∗14] [LJS18] [ZJS18], or relies on addi-
tional tracking information such as color or 2D tracking bound-
aries [NNHH22] [TFC20], they are not applicable to our use case.
Our scenario involves assigning hands in a colocated virtual en-
vironment in 3D space, with limited information available, specifi-
cally the location of the hands and user heads. Therefore, our meth-
ods are based on the existing methods in the 2D domain and extend
them with our own ideas for the 3D domain.

3. Methodology

Our algorithm prioritizes robust hand-to-user assignments, address-
ing challenges in colocated multiuser scenarios. Traditional hand-
tracking systems often assume tracking only the primary user’s
hands due to their two-hand limitation [HLC∗20] [WMB∗20]
[SHS21]. However, in colocated scenarios, each user’s hands must
be assigned to their respective tracking systems.
A naive approach is to assign each virtual hand to its closest user,
but this is error-prone in close user formations with spatially inter-
mixed virtual hands. Our algorithm evaluates various factors, such
as distance and rotation, to compute assignment probabilities for
virtual hands.
Additionally, we maintain a history cache of prior hand-user as-
signments to enhance future accuracy. Leveraging this historical
data, our algorithm predicts virtual hand ownership more reliably,
especially in dynamic colocated settings.

3.1. Methods

We developed four approaches to determine the affiliation of a hand
to a user, each of which computes a probability factor p.

Distance: We calculate the distance of the hand to the user’s
head and assume that the closer the hand is, the more likely it is to
belong to the user. If the distance exceeds a threshold value, we no
longer assume that the hand belongs to the user. To calculate prob-
ability values between 0 and 1, we use a logistic curve, as shown
in Equation 1. We chose a distance range of [0.4m;1.3m] resulting
in a = 10.22 and b = 0.85. Figure 1 shows the resulting logistic
curve. This method was selected based on its simplicity and antici-
pated high accuracy in numerous colocated scenarios, where users
are sufficiently separated from each other.

p = 1− 1
1+ e−a(x−b)

(1)

Rotation: We calculate the angle between the hand and the di-
rection vector between the user’s head and the hand. We assume
that a hand turned away from the user is more likely to belong to
the user than a hand turned towards the user (which would require
an uncomfortable hand position). We calculate p using the logis-
tic curve in Equation 1 with values in the angle range [90°;180°],
which results in the values a = 0.1 and b = 135. The logistic curve
can be seen in Figure 1.

Figure 1: Logistic curve for distance (formula at bottom left)) and
rotation (formula at bottom right) calculations. The X-axis repre-
sents the input position/rotation, while the Y-axis denotes the result-
ing probability. The red lines indicate the selected threshold values.

Prerecorded area: In a preliminary setup, we asked the user to
stretch out their arms and perform defined movements in front, to
the side, and behind their body, resulting in a total of 459 points. A
convex hull is then created from the points at runtime, in which it is
checked whether the user’s hand is in this hull or not. Our focus was
on capturing the essential movements rather than the precise num-
ber of points to ensure comprehensive coverage of all relevant sides
of the body. Such a convex hull can be seen in the supplemental ma-
terial. The fundamental idea is that although this approach is more
complex than using the distance method, it offers a more accurate
representation of the hand’s radius. For instance, it acknowledges
the limitation that hands cannot be positioned as far behind the user
as they can be in front of the user.

Machine Learning: In this approach, we used Unity3D’s ma-
chine learning agents [JBT∗20, CTB∗22] for hand assignment us-
ing reinforcement learning. During training, an agent received in-
put data, including hand and user locations, and received rewards
for correct assignments. To enrich the learning experience, we in-
troduced random user placements within a 2-meter radius, with lo-
cations changing every frame. Additionally, we enforced specific
scenarios with overlapping hands when users were close to train
the agent for challenges. For varying user counts, we created dedi-
cated agents (e.g., one for two users, one for three users) to handle
increased decision complexity. Training involved 1.5 million steps,
and reward progression can be found in the supplemental material,
showing smoothed reward curves.
This training data served as training input for Unity’s ML system,
enabling the creation of an agent capable of runtime hand assign-
ment using the same type of input data (positions, rotations). In the
assignment process, each visible hand in the scene is assigned to
a specific user using its own agent, depending on the number of
concurrent users. Agents were created for 2-5 concurrent users, but
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more concurrent user agents can be easily added. A decision for
hand assignment is made in every render frame. We anticipate that
this method can leverage multiple inputs during the learning pro-
cess to autonomously make real-time decisions. Consequently, we
expect it to offer broader coverage of various colocated situations.

Dynamic: This method combines the other methods to dynam-
ically determine which method to use in the current situation. The
idea is that if all users to be tested are far apart, the distance meth-
ods can give a very reliable indication of the hand’s affiliation.
However, if at least two users are spatially very close to each other,
the assignment is no longer unambiguous, and therefore a method is
used which is more reliable when hands are overlapping. In our test
implementations, we use the combination of "Prerecorded area"
when far away and "Distance" when near, as well as the combi-
nation of "Distance" when far away and "Machine Learning" when
near. We expect the strengths of both methods used to come into
their own depending on the distance. Especially the second combi-
nation is expected to improve the runtime compared to the singular
use of the complex algorithm while maintaining a high correctness.
As threshold distance, we preliminarily determined a near distance
of 0.8m as effective.

3.2. History Algorithm

In a naive mapping of a hand to a user, the probability that a
hand belongs to a particular user is computed independently for
each hand and user in isolation. However, the prior assignment of
a hand could significantly influence future assignments. To tackle
this problem, we’re exploring if integrating historical data can en-
hance hand assignments. The concept is that if a hand was previ-
ously assigned securely to a user, it is probable that it will belong
to that user in subsequent instances. The idea is similar to the ba-
sic idea of dead reckoning, where for example in games previous
player states are used to predict next states to counteract network
latency [Mur11].
In our implementation, we cache the calculated probabilities of
each hand for each user for each frame. We limit the number of
entries to 500 for memory and runtime efficiency, with new entries
replacing the oldest ones. From all cached entries, we compute the
mean probability value and use it for the final probability calcula-
tions. However, we only incorporate the history information if the
value of the history exceeds a certain threshold. Pilot tests indicate
that a threshold of p >= 0.9 is appropriate.
Furthermore, we compute a weighting for the history so that high
prior probabilities are weighted more heavily in the overall com-
putation. As a result, the history probability can be multiplied by a
weighting factor, depending on the previous probabilities. A maxi-
mum wight of 2 was chosen to expedite that the history algorithm’s
return to lower probabilities after consecutive frames with low in-
put raw probabilities, a weighting factor of 2 was selected. The
probability p of the history is calculated using the following for-
mula:

ph =
∑

N
n=0 pn

N
∗ ∑

N
n=0 pn ∗w f

Nmax
=

w f ∗ (∑N
n=0 pn)

2

N ∗Nmax
(2)

where:

N = number of entries in the history
Nmax = maximum number of entries

in the history, set to 500 in our implementation
w f = maximum weight, set to 2 in our implementation

An example visualization, in which different raw probabilities
are given, can be found in Figure 2.

Figure 2: Visualization of the history algorithm from Equation 2.
The input probability is represented within the range of [0:1]. The
history adjustment is applied once the number of entries reaches
N=100. As the number of entries increases to N=200, the input
probability decreases to 0.1, indicating that probabilities in the his-
tory above the threshold of 0.9 remain high, as they had a consis-
tently high probability in the past for accurate assignments.

Therefore, a previous reliable assignment of a hand can also be
critical for future calculations if an assignment is no longer straight-
forward. For instance, in dynamic scenarios where users start far
apart but later converge to interact with the same virtual object,
relying solely on distance for hand assignment becomes less effec-
tive. In such situations, utilizing historical data can assist in making
more accurate hand assignments. This underscores the value of in-
corporating historical information in dynamic contexts.

4. Evaluation

To assess the effectiveness of various hand ownership estimation
methods and examine the impact of the history algorithm, we devel-
oped an evaluation framework that simulates diverse test scenarios
within a colocated VR environment. Each scenario comprises spe-
cific user formations and the choice of user movement or stationary
positioning. The objective of this evaluation is to offer compara-
ble scenarios for different combinations and conduct a quantitative
analysis of the accuracy and runtime performance of the distinct
methods.
We created a simulated environment that maps a colocated VR
application, with 2-5 simulated users as needed. For each user,
hand movements were recorded over a period of 1500 consecu-
tive frames, representing an activity such as assembly work. These
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recordings can then be played back for different test scenarios,
making these scenarios similar in their hand movements and thus
comparable. Each simulated user had different recordings to cover
different tracking scenarios while maintaining repeatability and
comparability.
Each test scenario is defined by the following factors:

• Formation: A predefined formation of how the virtual users are
positioned with respect to each other in the virtual space and at
different distances.

• Method: An assignment method, as described in subsection 3.1.
• History: Whether history is used as in subsection 3.2.

Specifically, we use the methods described in subsection 3.1 in
isolation (Distance (D), Rotation (R), Prerecorded Area (PA), and
Machine Learning (ML)). In addition, we use a combination of
Prerecorded Area and Distance (D-PA-C) to see if this combina-
tion improves the individual results. The selection of the methods
was made in a preliminary evaluation run. Two constellations were
used for the dynamic method: Area Prerecorded as a base method
with Distance as an additional method when users are close to each
other (PA-D-DYN); and Distance as a base method and Machine
Learning when users are close to each other (D-ML-DYN). The
idea is to use a simple algorithm for straightforward scenarios and
switch to a more complex, potentially slower one when necessary,
such as when users are close or hands overlap. This approach aims
to improve average runtime while maintaining good results. There-
fore, a total of 7 method constellations were evaluated.
In the simulation, we assume all virtual hands are detected by a
hand detection system but remain unassigned to users. With ground
truth information about hand ownership, we can compare assign-
ment results. We calculate a correctness ratio, representing the
percentage of accurate assignments during evaluation. A ratio of
1 signifies perfect assignment accuracy, serving as a key metric for
method comparison in our study.
In addition to assessing assignment accuracy, we evaluate the run-
time (in ms) of each method to determine its applicability in a real-
time scenario and the computational time required. In our imple-
mentation, we included a method to measure the execution time of
the assignment process. This system tracks the time taken for exe-
cution by capturing the start and end times. To find the overall run-
time per frame, we sum up the measured times for all frames and
divide by the total frames collected. Anticipating increased runtime
with more users, we calculate an adjusted runtime per user by di-
viding the frame’s runtime by the number of concurrent users, as
elaborated in subsection 5.3.
The evaluation covers a total of 73 formations, comprising 14 for-
mations with 2 users, 16 with 3 users, 20 with 4 users, and 23 with
5 users. The variation in the number of formations is attributed to
the increasing number of concurrent users, which in turn leads to
a greater diversity of potential arrangements. We aimed to repre-
sent realistic formations where users stood both farther apart and
close together, resulting in overlapping hands. Additionally, we se-
lected formations in which users remained fixed in one place and
dynamic formations where users moved along a fixed path. Each
of the seven methods mentioned earlier was applied to each forma-
tion for the duration of 1500 frames to determine the percentage of
correctly assigned hands. This evaluation was conducted both with
and without applying the history algorithm. In total, we obtained

1022 results for comparative analysis.
The evaluation was performed on a Windows notebook equipped
with an Intel Core i7-12700H CPU and an NVIDIA GeForce RTX
3070 Ti Laptop GPU. We utilized Unity3D 2021.3.9 as the soft-
ware platform, coupled with an in-house developed hand tracking
framework for Unity. This framework served as a layer for hand
tracking, and was responsible for recording tracked hands in a pre-
liminary setup, playing back these recordings, and rendering the
hands during the evaluation.
By conducting these evaluations, we gain insights into the accuracy
of hand assignment and the computational efficiency of the meth-
ods, ensuring their feasibility in real-time applications.

5. Results

We conducted an analysis of various metrics to determine the op-
timal method for a real colocated VR scenario. Firstly, we evalu-
ated the effectiveness of our history algorithm in improving hand
assignment results. Additionally, we identified the method or com-
bination of methods that yielded the best outcomes. To evaluate the
algorithm and methods, we measured the accuracy of hand assign-
ment for each frame, enabling us to calculate a correctness ratio
for each combination of method, formation, and utilization of the
history algorithm. This resulted in a total of 1022 values, each rep-
resenting the percentage of correctly assigned hands throughout the
evaluation.
The third metric we examined was the runtime of the algorithm.
As our objective is to use this estimation method in real-time colo-
cated VR applications, runtime is a critical factor in determining the
method’s feasibility. The runtime was measured in milliseconds per
frame for each run.
Based on our implementation and the complexity of the methods,
we formulated the following hypotheses for our expected results:

• H1: The history algorithm significantly improves hand assign-
ments.

• H2: When used individually, the machine learning algorithm
achieves the highest correctness ratio.

• H3: The machine learning algorithm has the longest runtime.
• H4: A dynamic combination of two methods can yield results

with a correctness rate comparable to that of machine learning,
while also achieving a reduced runtime.

By analyzing these metrics and testing our hypotheses, we aim
to provide valuable insights into the performance and suitability of
different methods for real-time colocated VR scenarios. To select
the appropriate test for the comparative analysis in the subsequent
sections, we performed a Shapiro-Wilk normality test [SW65] on
each analysis. The test results suggested that the examined data
did not adhere to a normal distribution (p < 0.001). We presume
that the non-normal distribution might be attributed to the varying
complexity of different methods, leading to distinct runtimes and
diverse accuracy distributions across different scenarios.

5.1. History analysis

To evaluate the impact of the history algorithm, we analyzed all
available test results, resulting in a sample size of 1022 entries. Half
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of the entries (n=511) were executed with the history algorithm en-
abled, while the other half was run without it. The objective was
to determine if the utilization of the history algorithm leads to a
significant improvement in hand assignment rates. The results are
visualized in Figure 3.
Without employing the history algorithm, an average correctness
rate of 0.658 (σ = 0.26) was observed across all data. However,
when the history algorithm was included, the rate increased to
0.793 (σ = 0.29). We conducted an Independent-Samples Mann-
Whitney U test [Nac08] for comparative analysis. The resulting
p-value (p<0.001; U=79317), together with a rank-biserial cor-
relation coefficient of r=0.393 (indicating a positive effect size),
demonstrate significant differences with a notable improvement in
hand assignment correctness rates when employing the history al-
gorithm. These findings confirm H1, as the utilization of our history
algorithm led to significantly enhanced assignment results, show-
casing an average improvement of 20% in our evaluations.

Figure 3: Accumulated correctness across all methods with and
without the history algorithm. The utilization of the history algo-
rithm leads to an overall higher level of correctness.

5.2. Method comparison

In this analysis, the methods listed in section 4 were compared
based on their correctness ratio. Since the previous section demon-
strated the superior performance of the history algorithm, we fo-
cused on runs where the history algorithm was applied to achieve
the highest possible correctness in our evaluations. This resulted in
a sample size of 511 cases, corresponding to N=73 per method with
7 applied methods.
Initially, we calculated the means and standard deviations (σ) of the
correctness ratio for all methods, which can be found in detail in the
supplemental material. From the table, it is evident that the methods
that include machine learning exhibit the highest correctness ratio
with the lowest standard deviation. Conversely, the rotation method
yielded the lowest average correctness, with approximately half of
the assigned hands being incorrect on average. The corresponding
bar graph can be seen in Figure 4.
We conducted an Independent-Samples Kruskal-Wallis test
[KW52] to assess the differences in correctness among all meth-
ods. The analysis yielded a significant result (p<0.001; H=92.9;
df=6) and a medium effect size, as measured by Eta-squared (η2 =
0.172), indicating substantial differences in the distribution of cor-
rectness across the methods.
To further investigate these differences, we performed a post-hoc

test for pairwise comparisons between the methods. We applied

Figure 4: Mean correctness results for the methods. The two most
accurate methods are highlighted.

Bonferroni correction (with k=21) to adjust the resulting p-values.
The detailed p-values can be found in the supplemental material.
The rotation method exhibited significantly different results com-
pared to all other methods, indicating it has the lowest correctness
ratio. The machine learning method demonstrated significant dif-
ferences when compared to the distance and rotation methods. Al-
though significance was initially observed for the dynamic methods
before Bonferroni correction, it was no longer present after adjust-
ing for multiple comparisons. A larger sample size might help re-
duce this variance. However, it is worth noting that the machine
learning method exhibited the least variance and the most consis-
tent correctness across all runs, as evidenced by its low standard
deviation and consistent data distribution.
The dynamic combination of distance and machine learning shows
an even more favorable outcome, showing significant differences
compared to all other methods except for the standalone Machine
Learning method. It also displayed high consistency with a low
standard deviation.
With a correctness ratio of 99%, both the machine learning algo-
rithm and the dynamic combination of machine learning and dis-
tance emerged as significantly superior algorithms for hand assign-
ments. Therefore, these findings partially support Hypothesis H2,
with the exception that the dynamic combination yielded similar
results.
The remaining methods fell within a similar range of average cor-
rectness, ranging from 72% to 78%, and did not produce signifi-
cant differences from each other. This suggests that the choice of
method in this range should be based on other factors, such as run-
time. However, given that machine learning and the dynamic com-
bination of distance and machine learning achieved higher average
correctness with significant differences compared to other meth-
ods, they are preferred over the remaining methods if runtime is
acceptable (more details on runtime results are provided in the next
chapter).

5.3. Runtime

In our final decision regarding the optimal hand assignment algo-
rithm, it is crucial to consider the runtime to assess the method’s
feasibility in a real-time scenario. Since we have already estab-
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lished in subsection 5.1 that the history algorithm significantly im-
proves hand assignments, we also need to investigate if it intro-
duces a substantial increase in runtime. In addition to correctness,
runtime plays a vital role in selecting the best method.
To obtain the final runtime for the most effective hand assignment
method, we calculated and compared the runtime for each method
when the history algorithm was employed. As the allocation meth-
ods are applied to active hands and users in each frame, the compu-
tational load increases with more users and hands. To account for
this, we used a user-adjusted runtime per computation frame for the
analysis by dividing the measured frame runtime by the number of
users.
The findings in the runtime analysis will aid in selecting the most
suitable algorithm for hand assignment, taking both correctness and
runtime into consideration.

5.3.0.1. History runtime To assess the impact of the history al-
gorithm on runtime, we evaluated the runtime across all available
runs, resulting in a sample size of 1022, evenly split between runs
with and without the history algorithm.
When utilizing the history algorithm, we observed an average user-
adjusted runtime of 0.465 ms (σ = 0.22). In contrast, the average
user-adjusted runtime without the history algorithm was 0.147 ms
(σ = 0.24). It is important to note that these mean values do not
solely represent the runtime of the algorithm, as they incorporate
the values from different assignment methods. However, they do
indicate that the history algorithm generally results in a higher run-
time.
We conducted an independent-samples Mann-Whitney U test and
calculated the rank-biserial correlation coefficient to determine
the effect size. The test yielded a significant result (p<0.001;
U=40603), and the coefficient (r=0.689) indicated a positive ef-
fect size, demonstrating significant differences between using and
not using the history algorithm.

5.3.0.2. Method runtime Considering the significant improve-
ment in the correctness ratio achieved by the methods, we pro-
ceeded to analyze the runtime of each method when combined
with the history algorithm. The mean runtime values per number
of users, along with the user-corrected value, are visually depicted
in Figure 5. Detailed values can be found in the supplemental ma-
terial.

Again, we conducted an Independent-Samples Kruskal-Wallis
test. The analysis revealed significant differences among the user-
corrected runtimes of the methods, with a p-value of less than 0.001
(H=249.74; df=6) and a positive effect size (calculated using Eta-
squared) of η

2 = 0.484. To determine the specific differences, post-
hoc pairwise comparisons were performed with Bonferroni correc-
tion (with k=21).
The results indicate significant differences between the Machine
Learning (ML) method and all other methods, as well as between
the Dynamic Method with Machine Learning and Distance (D-ML-
DYN) and all other methods, each with a p-value of less than 0.001.
As both of these methods involve reinforcement learning agents,
which demand more CPU time, it was anticipated that they would
exhibit longer runtimes. These findings confirm our hypothesis H3.
However, it is worth noting that there was also a significant dif-
ference between the two methods that utilize Machine Learning

Figure 5: Mean runtime results for the methods at various user
counts. One bar illustrates the mean runtime adjusted for the num-
ber of users.

(p=0.047). This indicates that the dynamic combination, with a
mean runtime of 0.65ms, is significantly faster than the Machine
Learning method alone, which has an average runtime of 0.83ms,
by 27.7%. When considering the results from subsection 5.2, hy-
pothesis H4 can also be confirmed. The dynamic combination of
the machine learning and distance algorithms exhibits a signifi-
cantly better runtime while achieving the best correctness results
among all the applied methods.
No significant differences were observed among the remaining
methods that do not utilize machine learning agents, suggesting
similar runtimes for these methods. With an average runtime of
approximately 0.35ms, these methods are 85.7% faster than the
dynamic method with machine learning and 137.1% faster than
the isolated machine learning method. A more comprehensive dis-
cussion on the applicability of the methods based on these results,
along with the previous findings, is presented in section 6.

6. Discussion

The results demonstrate significant differences in the effectiveness
of different algorithms for assigning recognized hands to users in
colocated VR scenarios. As anticipated, the rotation method per-
forms the worst, with approximately half of the virtual hands being
incorrectly assigned. This outcome is logical since hands typically
have a specific orientation to their owners but can be freely rotated.
Assigning hands becomes challenging when two users have simi-
lar orientations in the scene, resulting in ambiguous assignments.
Although a combination of the rotation method with other methods
could potentially yield improvements, initial tests did not reveal
any visible enhancement over other methods. Furthermore, since
the rotation method does not offer significantly better runtime, it is
not suitable for reliable hand assignment.
The distance-based methods, whether utilizing the distance or a
prerecorded area, deliver similar results across all examined as-
pects. With an accuracy rate of approximately three out of four
hands correctly assigned, the performance is better than the rotation
method but still insufficient for ensuring reliable assignment. Con-
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trary to our assumptions, the precise definition of the hand’s area of
action (prerecorded area) does not yield significantly better results
compared to the pure distance method, which essentially represents
a radius around the user. Additionally, combining these two meth-
ods did not confirm the notion that they could mutually support
each other. Given the similar correctness rates and runtimes, the
distance algorithm is preferable to the prerecorded area algorithm
in terms of simplicity.
Taking into account Figure 6, it becomes evident again why the dis-
tance methods do not exhibit high overall correctness rates. When
examining user information where users are far apart, the assign-
ment of hands can be achieved with a high probability of success.
However, if users are standing close to each other and their hands
overlap, assigning hands based solely on distance becomes signif-
icantly more challenging. Consequently, the distance methods are
more suitable for scenarios where users in colocated spaces are not
in close proximity to each other.

Figure 6: Effect of user proximity on the accuracy for the distance
method. Reduced correctness and increased variance can be seen
when users are near each other.

When examining the methods involving machine learning, the
results demonstrate a significantly improved assignment rate. The
prior reinforcement learning of an AI agent was crucial in effec-
tively determining the assignment factors. However, the one-time
learning effort is no longer necessary in subsequent applications,
highlighting its capability to produce good results. With a correct-
ness rate of approximately 99%, these machine learning methods
exhibit the highest accuracy in hand assignment, regardless of the
proximity of users to each other. This distinguishes them clearly
from the distance methods and scores an even higher accuracy than
existing algorithms [LJS18].
Nonetheless, as expected, the machine learning methods also have
the highest runtime due to the computational complexity involved,
with a user-corrected runtime ranging from 0.65 to 0.83 ms. The
runtime increases linearly with the number of users and hands
present in the scene. Its applicability is thus contingent on the num-
ber of users, as well as the complexity and rendering demands of
the virtual VR scene. Nevertheless, the runtime remains sufficiently
low to enable real-time applications.
The dynamic combination of machine learning and distance al-
gorithms proves to be the optimal approach among the presented
methods. The results indicate that the weaknesses of the distance
method in assigning hands to users standing close to each other can
be effectively compensated for by the machine learning agent. As a
result, a significantly improved runtime (of 21%) can be achieved

while maintaining a high correctness rate. This combination is par-
ticularly suitable for complex applications with high computational
complexity. When users are consistently in close proximity to each
other, the worst-case runtime is comparable to that of using ma-
chine learning alone. Based on these findings, this combination is
recommended for real-time applications.
Finally, the results highlight the significant improvement in the cor-
rectness rate of hand assignments achieved by the history algorithm
we developed. As expected, applying the algorithm also leads to
higher runtime. However, the runtime remains at a reasonable level
even with the algorithm, ensuring its applicability. The 20% im-
provement in assignment correctness, coupled with an acceptable
increase in runtime, establishes the algorithm as a substantial en-
hancement to the methods. Consequently, we incorporate it into
our methods for optimal results.

7. Conclusion

This research aimed to present and compare algorithms for assign-
ing tracked hands to virtual users in a colocated virtual environ-
ment, using limited information from the tracking system. Unlike
other solutions that rely on image detection information [TFC20]
[LBC∗14] [LJS18] [ZJS18], we focused on utilizing the hand lo-
cation in the virtual scene. We introduced and evaluated various
methods for determining hand assignments, including a history al-
gorithm that enhances assignment robustness by leveraging past as-
signment information.
Our evaluation revealed that assignment methods employing pre-
learned AI agents achieved the highest accuracy with the lowest
variance. Specifically, the dynamic combination of an AI agent for
close user proximity and overlapping hands, combined with a sim-
ple distance calculation for greater distances, improved the runtime
while maintaining a high correctness rate of 99%. This dynamic
combination effectively addressed the challenge of assigning over-
lapping hands. Although other methods exhibited better general
runtimes, their accuracy fell short of being suitable for real colo-
cated VR scenarios. In scenarios involving hand tracking systems
for tracking multiple hands, such as those utilizing camera tracking
meshes, our solution provides developers with a high-accuracy and
real-time hand assignment tool.
The computational load in a colocated VR environment increases
with each additional user, which leads us to anticipate that this ap-
proach will eventually be constrained by the computational power
of the system, ultimately limiting the maximum number of concur-
rent users before the application becomes impractical. Future appli-
cations should consider investigating the limitations concerning the
maximum number of users and hands that can be simultaneously
present in the virtual scene. Furthermore, it would be worthwhile
to explore potential enhancements to the algorithm’s runtime. For
instance, enhancing the performance of hand assignments can be
achieved by optimizing the algorithm’s execution frequency. This
can be accomplished by avoiding the execution of the algorithm
during every frame. One avenue for improvement is to investigate
the integration of image detection cues, such as hand color, shape,
and classification, to augment both accuracy and runtime in hand
assignment. Such explorations have the potential to significantly
advance the effectiveness and efficiency of hand ownership estima-
tion techniques.
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