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Abstract
High-dimensional data are known to be challenging to explore visually. Dimensionality Reduction (DR) techniques are good op-
tions for making high-dimensional data sets more interpretable and computationally tractable. An inherent question regarding
their use is how much relevant information is lost during the layout generation process. In this study, we aim to provide means
to quantify the quality of a DR layout according to the intuitive notion of sortedness of the data points. For such, we propose a
straightforward measure with Kendall τ at its core to provide values in a standard and meaningful interval. We present sorted-
ness and pairwise sortedness as suitable replacements over, respectively, trustworthiness and stress when assessing projection
quality. The formulation, its rationale and scope, and experimental results show their strength compared to the state-of-the-art.

CCS Concepts
• Human-centered computing → Visualization design and evaluation methods; Visual analytics; • Computing methodolo-
gies → Dimensionality reduction and manifold learning;

1. Introduction

Visualization techniques provide useful tools for data exploration
and decision-making. If a data set has up to two (or three) at-
tributes (or dimensions), scatter plots can be good alternatives for
exploring intuitive notions, such as spatial distribution, distance,
and neighborhood. However, some sort of dimensionality reduc-
tion is usually necessary for data sets with more dimensions. In the
realm of multidimensional visualization strategies, Dimensionality
Reduction (DR) techniques have proven their usefulness [NA19].
Despite the advances in the field, it is inevitable that the mapping
process, from a high-dimensional to a visually low space, incurs in
loss of information due to the high intrinsic dimensionality [FO71]
of many data sets. Therefore, DR techniques are often subject to a
trade-off between interpretability and reliability, raising the ques-
tion of how to effectively assess the impact of the implicit loss of
information from applying a DR technique.

In the current literature, different quality measures have been
proposed Section 2. Despite their popularity, the existing measures
have limitations, especially the adoption of arbitrary/empirical
thresholds to interpret the quality of a layout and the strong depen-
dence on parametrization. In this work, we address these problems
by proposing the concept of sortedness, able to provide a value
within a meaningful interval of how well-preserved is a data set
structure after a mapping process. Sortedness is the level of agree-
ment between a data set and its DR layout regarding the order of

the points as measured by the Kendall τ correlation index in re-
lation to a given reference point [Vig15]. Adopting a correlation
index provides more meaningful values, i.e. from a standard inter-
val, and consistency to the measure by making it commensurable
across different tasks and domains. We also present variants.

Our experimental results show evidence that sortedness is bet-
ter suited to assess DR layout quality in general, and also in
some specific scenarios, than the current practice of adopting
metric/non-metric Kruskal stress, trustworthness, and other related
measures [KNO∗03, Kru64b, Kru64a]. Additionally, sortedness is
able to indirectly assess the preservation of features usually relied
upon by the human interpretation bias during data visualization,
and provide a measure for machine learning pipelines.

2. Related Work

In this section, we present DR techniques as they are a frequently
used type of data transformation where quality assessment is of
interest, and relevant evaluation measures from the literature.

Dimensionality Reduction techniques aim to find a low-
dimensional representation of high-dimensional data [EMK∗21,
NA19]. Existing methods map data points into graphical elements
to preserve pairwise distances or neighborhoods. We can classify
the techniques as global or local according to the type of distance
intended to be preserved, respectively: all points; and, small neigh-
borhoods. Both aspects are considered in our proposal.
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Global techniques fail to preserve neighborhood relation-
ships, especially when sparse high-dimensional spaces are consid-
ered [PNML08]. Kruskal [Kru64a] presented the Multidimensional
Scaling (MDS) technique to map points from a high-dimensional
space to a low-dimensional space by optimization. It minimizes
the quadratic difference between the dissimilarities established in
the original space and the calculated distances in the transformed
space. This quantity is known as stress, adopted as the reference in
this study. Least Squares Projection (LSP) [PNML08] introduces
a different bias into the data transformation which first builds a
neighborhood graph between the points. Next, it selects a subset
of points to project. Remaining points are handled through interpo-
lation by solving a system of linear equations. Many other global
techniques exist. Each approach introduces its specific bias into the
data transformation.

Local techniques are intended to preserve the neighborhood rela-
tionships. They help to identify groups and define their boundaries,
especially for high-dimensional data sets [FFDP15]. The Piecewise
Laplacian-based Projection (PLP) [PEP∗11] addresses the problem
of sensitivity to the positioning of control points, found in tech-
niques such as LSP, by splitting the data set into smaller subsets.
The Local Affine Multidimensional Projection (LAMP) LAMP
[JCC∗11] allows a user-controlled redefinition of the mapping ma-
trix based on a first mapping of control points. This kind of appli-
cation would benefit directly from our proposed intuitive measure
to guide the user through the interactive process. Conversely, some
techniques have probabilistic bias. An example is Stochastic Neigh-
bor Embedding (SNE) [HR02]. Each mapped point is positioned
next to a group of its original neighbors with a given size. Prob-
ability distributions representing the chance of each point choos-
ing another as a neighbor are defined, with higher probabilities as-
signed to closer points. Finally, local approaches have an inherent
type of bias which affects the quality of the DR layout in a very
different way than global techniques. Our proposed measures ad-
dress such diversity by considering the unrestricted neighborhood
ordering which encompasses many notions that are intuitive to the
human bias, differently from the stress measure which was created
having MDS in mind, and from measures limited to a certain num-
ber of neighbors.

Evaluation measures help to assess the quality of maps created
by DR techniques. Most of them aggregate quality measures based
on distance, neighborhood, or cluster segregation measures. How-
ever, the values returned by them are not as interpretable as those
provided by our proposed measure, sortedness. A popular group
of measures proposed to quantify the preservation of distances af-
ter the DR process is the set of stress functions. One of the most
known is the Kruskal [Kru64a] stress function, represented in this
text by σ1, which measures the difference between the distances
calculated in the original space and those calculated in the pro-
jected space. The stress value ranges from 0 to 1, when normalized.
The smaller the value, the higher the quality. When the computed
dissimilarities are not metric, e.g., based on ranking positions, the
non-metric Kruskal [Kru64b] stress function, represented by σ∗,
can be used. Unreasonably good stress values can be observed for
very disordered DR results [PNML08]. Furthermore, similar stress
functions can lead to different perceptions of quality. When the tar-
get characteristic to be preserved is related to the neighborhood,

one can adopt the Neighborhood Preservation (NP) [PM08]. This
measure evaluates how many nearest neighbors established in the
original space remain as nearest neighbors in the projected space.
Its range is also in the interval [0,1], with values closer to 1 rep-
resenting better neighborhood preservation. While this measure is
interpretable, it lacks the standard meaning of our proposed inter-
val based on a correlation index. Other measures are dependent on
a parameter. Trustworthiness [KNO∗03], represented in this text by
Tk, depends on the number of neighbors k. It measures the precision
of the low-dimensional neighborhoods regarding false positives.
Continuity [KNO∗03] measures the recall of the low-dimensional
neighborhoods regarding false negatives. Overall, it is very similar
to Tk.

3. Proposed Method

In this section, we introduce the concept of sortedness and its
respective numeric representation. Sortedness means how well-
preserved is the data set structure after a transformation regarding
the order of the points. The value is calculated by a function that
returns the level of agreement between two sets of points as mea-
sured by the Kendall τ correlation index in relation to a reference
point [Ken38]. This is the most commonly used statistics to un-
derstand the correlation between two different scores for the same
set of items [Vig15]. We present in the next subsections the func-
tion to evaluate the local sortedness (i.e., for a given point), which
can potentially replace trustworthiness, and its reciprocal version,
which considers neighborhood in the same perspective as adopted
in the hubness concept [TRMI13] (Section 3.1). The measures do
not depend on a strong parameter like trustworthiness and can be
considered non-parametric. We also present a function to evaluate
the global (pairwise) sortedness which is sensitive to distortions
beyond neighborhood ordering changes (Section 3.2) while still
ignoring irrelevant perturbations, which is a potential issue with
the Kruskal stress formula I - see Figure 1 in Section 4. Addition-
ally, the pairwise sortedness is generalized to accept a weighting
scheme that turns it into a local measure. The other proposed local
variants differ by depending on a ranking of neighbors according
to their distance to a reference point. The global variant, on the
other hand, depends on a ranking of all pairwise distances. The
weighting scheme is based on a generalization of the Knight algo-
rithm which has complexity O(nlogn) provided the distances are
already ranked [Kni66]. We adopted the Euclidean distance in this
work. All measures are provided as an open-source Python pack-
age [PSN23].

3.1. Local Neighborhood Sortedness

Let ρ : Rd → R2 be a transformation function (e.g., a dimension-
ality reduction), and X ⊂ Rd a d-dimensional data set. The sorted-
ness λ : Rd → [−1;1] of a given point xxx ∈ X projected as x̂xx onto a
resulting set X̂ ⊂ R2 by ρ is defined by Equation (1).

λτw(xxx) = τw[rX (xxx),rX̂ (x̂xx)] (1)

where τw(aaa,bbb) is the weighted Kendall τ correlation index between
rankings aaa and bbb [Vig15]. Such variant of the Kendall τ index is
weighted by the function w(i)= (i+1)−1 defined for each rank 0≤
i < |X |; and, rX (xxx) is the ranking of all other points in X according
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to their proximity to xxx. In the unlikely case when there are one
or more distance ties, the lexicographical order of rX (xxx) followed
by rX̂ (x̂xx) is adopted to break them when defining the weight of
each point. When the weight function is constant, e.g., w(i) = 1,
the measure, represented by λτ1 , has the same behavior of the non-
metric stress function σ∗ (Section 2). Despite the similarity, λτ1

provides more meaningful values than σ∗: the intuitive correlation
index interval, and a companion p-value for the null hypothesis H0
(H0 implies no correlation). For completeness, a complementary
measure is presented in Equation (2), the reciprocal sortedness.

λτw(xxx) = τw[rX (xxx),rX̂ (x̂xx)] (2)

where rX (xxx) represents the reciprocal neighborhood ranking, i.e., it
contains the rank positions of xxx within each list of neighbors. A list
of neighbors is provided by each point uuu ∈ X \ {xxx}. In the case of
position ties, the same previously mentioned breaking rule applies.
In both equations, all rankings assume the points are listed in the
same order.

The mean sortedness µ = |X |−1
∑xxx∈X λτw(xxx) can be used as a

measure of global sortedness of DR layouts as a balance between
local and global evaluation.

3.2. Pairwise Sortedness

The pairwise sortedness Λτ1 is defined by Equation (3).

Λτ1(X , X̂) = τ(RX ,RX̂ ) (3)

where RX is the ranking of distances between all combinations of
pairs in X . Here, we adopt the original Kendall τ function, i.e.,
w(i) = 1. An advantage of the measure is that it detects a more
subtle type of distortion than just changes in the ordering of neigh-
bors: it is sensitive to any change in the relative proximity between
points. To illustrate how it works, given three points a,b,c ∈ X ,
any change in the relationship between original and projected dis-
tances like d(a,b) > d(b,c) versus d[ρ(a),ρ(b)] < d[ρ(b),ρ(c)] is
penalized by the measure, even if the ordering across a, b, and c is
preserved. Such sensitivity is closer to that of the stress function,
while still ignoring irrelevant distortions as shown in Figure 1, and
with the benefit of providing a p-value. It is a tentative hierarchy
of projective distortions, where the higher the position in the stack,
the less sensitive the measure. Different from metric stress, none of
the variants are differentiable.

The pairwise sortedness Λτ1 can be generalized to its weighted
form Λτw when an independent importance criterion is defined. The
proximity of each pair of points to a reference point is a convenient
fit for such criterion as it enables the local calculation of the pair-
wise sortedness. The formula is presented in Equation (4)

Λτw(xxx) = τw[RX ,RX̂ ,WX (xxx)] (4)

where WX (xxx) is a ranking that indicates the importance of each pair
according to how small the mean of the distances of its two points
to xxx is. The rankings RX and RX̂ are the same for every xxx ∈ X .
Therefore, their values can be calculated only once to assess all
data set points.

● Change in neighborhood order

● Change in reciprocal neighborhood order

● Change in pairwise distance relations

● Change that keeps neighborhood and order

● Rigid motion (rotation, translation, reflection)
● Change in scale

pairwise
sortedness

non-metric
stress

metric
stress

reciprocal 
sortedness

sortedness

                              

                              

Figure 1: Overview of measures: each measure is sensitive to nar-
rower subsets of transformations/DR artifacts. σ1 and λτw are sen-
sitive to strong changes in the data, e.g., neighborhood order. σ1 is
sensitive to small, including irrelevant, changes.

3.3. Interpretation

All three functions benefit from the meaningful values provided
by the Kendall τ rank correlation index. Notable values are 1.0,
0.5, 0.0, and -1.0, meaning respectively: perfect correspondence;
half of the sortedness is preserved; meaningless transformation
(equivalent to random projection); and, worst possible transfor-
mation (total unsortedness) which should only happen if it is ac-
tively/accidentally engineered to provide the exact opposite of the
expected result. These meaningful values contrast with the cur-
rent practice, which relies upon arbitrary values, e.g., adopting
σ∗ > 0.200 as an indication of a low-quality DR, among other
arbitrary values for increasing quality (0.100, 0.050, 0.025, and
0.000) [Kru64a]. Therefore, our measures are superior from the in-
terpretability perspective. Each measure is sensitive to a different
set of distortion types. Relevant types for this text are illustrated
by Figure 2. The distortion degree varies from minor disturbances
to major changes in the ordering. The more distorted the DR lay-
out, the more misleading it will be to human interpretation. Rigid
motion changes the point of view keeping the data topology.

4. Experiments

The following subsections present an experimental comparison of
the proposed and literature measures to illustrate their properties.
We applied global and local changes to a set of randomly generated
two-dimensional points to simulate projection artifacts. The set is
intentionally small to accentuate the effect of such changes. There-
fore, both input and output data sets are two-dimensional, allowing
to isolate the effects of interest from possible projection biases.

4.1. Subset Randomization

The lesser the correspondence between the data set and the DR lay-
out, the lower its quality for visual interpretation. To simulate this,
we uniformly sampled 1000 random points bounded by a 100x100
square. We randomized the location of an increasingly larger subset
of the points to show how this progressive change in the ordering
of the points affects the measures. Figure 3 shows meaningful near
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Change in pairwise 
distance relations

Original data Rigid motion 
(reflection)

Minor distortion

Change in 
neighborhood order

Change in reciprocal 
neighborhood order

1st

2nd

2nd

1st

2nd
1st

1st

3rd
3rd

1st

Figure 2: Examples of transformations/DR artifacts related to a
central point from most trivial to most misleading, and respec-
tive values for each measure (left to right, starting from the top).
Dashed red circles indicate the expected positions for an exact
transformation. Bold lines highlight relevant distances for compar-
ison. Red: original. Blue: new. Gray: reference. Refer to Figure 1
to see how artifacts might relate to each other.
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λτw sortedness
Λτw pairwise
Λτ1 pairwise (global)
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Figure 3: Effect of increasing the randomized points subset size.
The proposed measures match the intuition that the absence of ran-
domization has value 1, while total randomization has value 0.

zero end values for all proposed variants, while T5 and σ1 end val-
ues are 0.5 and 0.4, respectively. A more detailed comparison of
the local variants is provided by boxplots in Figure 4 where each
point in the plot represents the local measure for a data point. Non-
global curves are calculated by averaging local values. The boxplot
illustrates the stability of the measures across all points. Pairwise
sortedness has better overall stability when the whiskers and out-
liers are considered and a shorter box when higher shuffling levels
are applied (Λτw > 12.5%). This can be explained by the calculation
of the measure being the same for all points except for the weight-
ing of pairs, i.e., only the weights are relative to the point under
measurement. T5 has the overall tallest boxes, except for level 50%
which affects mostly λτw and λτw .

3.125 6.25 12.5 25.0 50.0 100.0
Randomized Points (%)

−0.5

0.0

0.5

1.0

T5 trustworthiness
λτw reciprocal
λτw sortedness
Λτw pairwise
1−σ1 metric stress

Figure 4: Effect of increasing the randomized points subset size.
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λτw reciprocal
λτw sortedness
Λτw pairwise
Λτ1 pairwise (global)
1−σ1 metric stress

Figure 5: Distortion level affects σ1 earlier, and T5 later.‡

4.2. Gaussian Distortion

The application of Gaussian noise to each point with increasing
amplitude is a way to highlight which measure is affected earlier or
later as a result of its degree of sensitivity. We sampled 17 points
bounded by a 100x100 square, and translated each point in a fixed
random direction. The first affected measure is σ1, followed by the
pairwise variants (Λτ), and finally, the λτw variants as shown in Fig-
ure 5. The last affected measure is T5, which means it was the least
sensitive to Gaussian noise. This shows how sensitive is σ1 to even
the smallest change in the data while Tk is the least sensitive due to
its hit-or-miss nature which is limited to k neighbors.

4.3. Single Point Translation

A user trying to interpret a point far from its original neighbors
would inevitably draw wrong conclusions. This experiment illus-
trates how each measure is affected when the point of interest is
moved away from its original position. Here, such translated point
is part of a set of uniformily sampled 25 collinear points within the
interval [0;50] along the x axis. Each natural number in the axis
corresponds to an offset in Figure 6. On one hand, it shows that Λτ1

values are penalized by less than 0.2 in the complete translation
(step=50) due to the measure global nature. On the other hand, local
measures are directly related to the translated point which makes
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λτw reciprocal
λτw sortedness
Λτw pairwise
Λτ1 pairwise (global)
1−σ1 metric stress

Figure 6: Effect of single point translation in a linear data set. Non-
global curves represent only the values for the translated point.

them more sensitive to its translation. Despite its focus on weight-
ing pairwise distance relationships in the neighborhood, Λτw has a
noticeable decrease in value from 1.0 to around 0.4. This shows the
point displacement still penalizes the measure as one would expect
from a local measure, instead of exclusively taking into account
the remaining perfect ordering of the neighbors among themselves.
The penalization is fully present in the case of the λτw variants due
to their use of rankings always relative to the point of interest. This
is illustrated by the extreme case of λτw =−1 in the plot. The value
λτw = 0 is consistent with the translation having completed half of
the linear data set length: half of the points still keep their relative
position; the other half is ordered in the exact opposite direction of
the expected.

4.4. Global Distortion

We also investigated the effect of changing the overall data struc-
ture, while keeping most local structures preserved. This represents
changes that affect, e.g., the visual interpretation of how large struc-
tures are related inside the DR layout. We created a data set with
three non-overlapping clusters with 100 random points each. The
global distortion consisted in swapping the position of two clus-
ters. Figure 7 shows the effect of such change for increasing clus-
ter sizes for different measures. Notice that the curve of the global
variant (Λτ1 ) is the most penalized by the cluster swap, while the
local variants are mainly focused on the fact that the local neigh-
borhood is preserved for the majority of the points. On the other
hand, trustworthiness (Tk) is completely unable to detect changes
beyond the scope of k neighbors. Λτ1 behaves similarly to σ1, with
the advantage of providing a meaningful value. Interestingly, the
curve stays around 0.5, meaning half of the ordering is lost. Notice
that 0 represents a total absence of correlation, and 1 represents a
perfect correlation. This suggests that, for the global variant, clus-
ter ordering is as important as local ordering in this experiment.
Conversely, the local variants (mean values) are penalized by a de-
crease between 0.1 and 0.15 (right half of the chart) due to the
global change. Among the local variants, Λτw and λτw are respec-
tively the most and the less sensitive to global changes, specially
for smaller cluster sizes.

101 102

Cluster Size

−0.25

0.00

0.25

0.50

0.75

1.00

T5 trustworthiness
λτw reciprocal
λτw sortedness
Λτw pairwise
Λτ1 pairwise (global)
1−σ1 metric stress

Figure 7: Effect of swapping two out of three non-overlapping clus-
ters. Curve T5 was set to zero when undefined.

5. Conclusion

We presented the concept of sortedness as a measure of how or-
dered a DR layout is when compared to the original data points.

The simplest variant quantifies the correlation between the orig-
inal and projected neighborhoods of a given point. When un-
weighted, sortedness provides an interval of values more meaning-
ful than non-metric stress while still presenting the same behavior,
i.e., one increases monotonically with the other. When weighted,
sortedness is a suitable non-parametric replacement for trustwor-
thiness. In practice, we consider it non-parametric as the weighting
function does not need to be changed. The weighting function rec-
ommended in the literature already has the desired behavior of de-
creasing the importance of each neighbor according to its proxim-
ity [Vig15]. Additionally, we presented the reciprocal counterpart
of sortedness as a slightly more sensitive measure that considers
neighborhoods in the same way adopted in the concept of hubness.

Pairwise sortedness is the most sensitive variant. It quantifies the
correlation between the rankings of pairwise distances of a DR lay-
out when compared to the original data. This measure can be a re-
placement for Kruskal stress formula I. The former is less sensitive
to irrelevant changes in the points location than the latter, and, like
all proposed variants, the interval of values provided by Kendall τ

is more interpretable. When unweighted, it provides a global mea-
sure. When weighted, pairwise sortedness is a local (point-wise)
measure that can be averaged across all points if a balance between
locality and globality is desired.
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