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Abstract
Colormap design is challenging because the encoding must match the requirements of data and analysis tasks
as well as the perception of the target user. A number of well-known tools exist to support the design of colormaps.
ColorBrewer [HB03], for example, is a great resource to select colors for qualitative, sequential, and diverging
data. PRAVDAColor [BRT95] and Tominski et al. [TFS08], for example, provide valuable guidelines for single
analysis tasks such as localization, identification, and comparison. However, for solving real world problems
in most practical applications, single elementary analysis tasks are not sufficient but need to be combined. In
this paper, we propose a methodology and tool to design colormaps for combined analysis tasks. We define
color mapping requirements and develop a set of design guidelines. The visualization expert is integrated in the
design process to incorporate his/her design requirements, which may depend on the application, culture, and
aesthetics. Our ColorCAT tool guides novice and expert designers through the creation of colormaps and allows
the exploration of the design space of color mapping for combined analysis tasks.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications

1. Introduction & Related Work

The elementary analysis tasks of data visualizations are local-
ization, identification, and comparison of data values [AA06],
which corresponds to the search tasks locate and browse to
identify and compare data values in the multi-level typology
of Brehmer and Munzner [BM13]. This was introduced for
color mapping strategies by Tominski et al. [TFS08], who
focuses rather on different data transformations than on de-
signing colormaps. The challenge is that different tasks have
different requirements for the visual encoding. For exam-
ple, comparing data values requires that perceived distances
match data distances. This is typically accomplished with
unipolar colormaps that do not vary over different hues. These
colormaps are the results of todays tools for continuous (se-
quential) data [BRT95, HB03, WVVW∗08]. However, these
colormaps are insufficient in the task of identifying data val-
ues (e.g., read metric quantities) because they do not provide
many distinct colors [War88]. Color scales that are effective
in identification must vary over multiple hues [War88], but
this distorts perceptual linearity and biases the analysts in the
comparison task. The complexity for designing colormaps
increases if tasks are combined, e.g., to identify and compare
data values, which is a typical task in real applications.

Most of the existing guidelines and tools are data-
driven [War88, HB03, Bre15]. There exist also task-driven
guidelines and tools [BRT95,Rhe00] but they focus on single
tasks. We argue that this is not enough, since real analy-
sis tasks typically require the combination of different ele-
mentary tasks. There exist algorithms [LH92, Kei00, KRC02,
WGM∗08,LSS12,MBS∗14] for sophisticated colormaps that
may cover single task combinations. However, these algo-
rithms are based on complex color spaces and optimization
problems. The colormap designer has no influence on the
outcome of optimized results that, e.g., may lack in aesthet-
ics [WGM∗08] but also may not be in-line with the mental
model of domain experts since the ordering of colors depends
on culture and domain. This results in inappropriate colormap
selection since there is no available tool that supports de-
signers in the creation of colormaps for their analysis task.
Further, colormaps for color-blind persons require additional
strategies [Oli13, SMO∗13] or recoloring methods [KOF08].
Mittelstädt et al. [MBS∗14] defined data-dependent quality
metrics for mapping data relations to color and Bernard et
al. [BSM∗15] perceptual-metrics for static 2D colormaps.
Since both focus on encoding data relations and not on en-
coding single data dimensions, the approaches do not define
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Figure 1: Colormaps for analysis tasks ( 1 localization, 2 identification, 3 comparison) and their combinations for sequen-
tial (a) and diverging (b) data. The colormaps vary perceptual linear over hue, saturation, and intensity according to the task
combination. All colormaps presented here are color-blind safe besides 2 , which maximizes JNDs for normal color vision.

requirements and quality metrics for the elementary analysis
tasks to identify, localize, and compare data values.

We see a gap of defining the color mapping requirements
for elementary analysis tasks and their combinations; and fur-
ther, we see the need for a tool that guides designers through
the design space of colormaps. Therefore, we provide Col-
orCAT, which is a tool to support visualization experts in
the design of colormaps. The designer has to specify the
data-type (sequential or diverging) and the analysis task com-
bination. ColorCAT determines the requirements for the col-
ormap according to the specified data and task properties,
and automatically generates a suitable (color-blind safe) col-
ormap. The designer may modify the colormap according to
the application but also in terms of culture and aesthetics.

In this paper, we claim the following contributions: 1) A
definition of requirements for different analysis tasks and
their combinations; 2) Quality metrics for one dimensional
colormaps to support these requirements and; 3) provide
color-blind safe color maps for each task combination; 4) We
contribute ColorCAT for guided design of colormaps.

2. Color Mapping Requirements
The challenge is that the different tasks have conflicting re-
quirements for colormaps. We extend the guidelines [TFS08,
MBS∗14, BSM∗15] by defining colormap requirements and
quality metrics for (combined) elementary analysis tasks and
provide means for high qualitative colormaps. Figure 1 shows
examples of colormaps created with ColorCAT. The encircled
numbers link colormaps to the task combinations.
1 R1-Localization. This task is performed when the ana-

lysts wants to see “where” specific objects are located within
the data [BM13], e.g., visual query for the value 100 on the
display. Therefore, data values and ranges of high impor-
tance must be perceptually striking in the visualization (e.g.,
highlighting). To provide an appropriate color mapping, the
visual importance V I of a color i must encode the data im-
portance DI (Eq. 1). Studies showed that visual attention is
predominantly steered by intensity and saturation [CYG04].
Thus, V I can be approximated by the arc of intensity I and
saturation S (in the HSI color space [Kei00]), which is in-
line with the approach of Guo et al. [GGMZ05], Bernard et
al. [BSM∗15], and results of ColorBrewer [HB03].

QM1 = ∑
i
|DI(i)−V I(i)| V I(i) =

√
I2
i +S2

i (1)

QM1 can be minimized by selecting one color hue and in-
crease in intensity and saturation according to the specified
data importance, e.g., from black to green (sequential) or
blue and orange (diverging). ColorCAT lets the user specify
the data importance by interactive spline charts and models
intensity and saturation accordingly (see Section 3.4).
2 R2-Identification. This task is performed when the ana-

lyst browses or explores the data and reads values from color
encoded objects on the screen [BM13], e.g., estimate the
value of the upper-left object. A high number of perceptually
distinct colors (JND, just-noticeable-difference [MEO94])
allows accurate identification of data values [War88,MSK14].
The task requires that the number of JNDs is maximized
but all colors share equal visual importance (R1) to avoid
the typical harmful effects of “rainbow” colormaps [RTB96]
such as attention steering effects or intensity gaps. In order to
measure the amount of JNDs, a colormap can be segmented
such that the colors within each segment are perceptually
equal to the centroid of the segment (∆E(c1,c2) < JND),
but perceptually distinct (∆E(c1,c2)> JND) to the centroid
of other segments (equivalent to MacAdam ellipses [Mac42]
in color spaces or within a 2D colormap [BSM∗15]). The
number of segments corresponds to the number of JNDs.

∆E =
√

(∆J/KL)2 +∆a2 +∆b2 see [LCL06] (2)

Thus, sequential colormaps must vary perceptually linear
over the full range of hues with maximized and equalized (R1)
intensity and saturation. An alternative to increase the number
of distinct colors with equal visual importance is increasing
intensity while decreasing saturation (Figure 2). This is rec-
ommended for color-blind persons for whom mixing red
and green tones must be omitted. Accordingly, diverging
colormaps increase in saturation but decrease in intensity.

Figure 2: Colorblind-safe colormaps for identification.

3 R3-Comparison (absolute differences) is about com-
paring two or more visual encoded objects [BM13] and
to perceive the relative and absolute differences. This
task requires that distances in data space are equal to
perceived distances in the visual encoding [RTB96]. The
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Figure 3: (Ia) The user selects the data type and analysis task combination ( 1 Localization, 2 Identification, 3 Comparison)
and ColorCAT suggests a colormap design based on the task requirements (see Figure 1). (Ib) The user can select different
base colors in the color picker, which allows free adding, removing and rotating knots. (Ic) visualizes the steps of the colormap
algorithm for the designer to understand how the base colors are modified to match the analysis task. (Id) Splines allow advanced
users to modify intensity and saturation of colormaps. (Ie) The scatterplot allows visual inspection of colormaps and (If) reveals
the quality of colormaps. (II) shows ColorCAT simulating red-green blindness. (III)Examples for categorical and ordinal colors.

color encoding is faithful if the color distances ∆E(c1,c2) of
two data values reflect the data distance d(d1,d2). Therefore,
perceptual linearity can be measured with the Sammon’s
stress measure (Eq. 3) [Sam69, MBS∗14]. To provide
perceptual linear colormaps for sequential and diverging data,
the colormaps must vary from single color hues to black with
perceptual linear decreasing saturation and intensity.

QM3 =
1

∑i< j d(di,d j)
∑
i< j

(d(di,d j)−∆E(ci,c j))
2

d(di,d j)
(3)

R4-Comparison (relative differences). It is possible to pre-
serve a perceptual ordering in a non-linear colormap. Col-
ormaps that vary over multiple hues and linear over inten-
sity are perceptually ordered and thus, enable relative judg-
ments [War12] (see 23 ).
12 R1 & R2. It is possible to build combinations of the dif-

ferent tasks, e.g., the analysts wants to locate specific objects
and at the same time to identify (browse) the values of other
objects (this supports the explore task of Brehmer and Mun-
zner [BM13]). To support identification, the colormaps must
vary over hues with a maximum of saturation (R2). Intensity
is increased to highlight the value ranges of interest (R1).
23 R2 & R3. The most common analysis task combination is

that the analyst wants to identify but also to compare data val-
ues. The challenge is to provide perceptual linearity and many
distinct colors simultaneously. The results are the well-known
spiral colormaps [LH92, Kei00, War12] for sequential data
that vary over hues with a maximum of saturation (R2). The
increasing intensity perceptually orders the colors and thereby
reduces the bias of non-linearity on relative judgments (R4).
13 R1 & R3. This combination comprises the localization
and comparison of data values. Complete perceptual linear-
ity (R3) cannot be achieved because some value ranges must

stand out due to highlighting. Therefore, colors must be per-
ceptually ordered by linear increasing intensity (R4) and sat-
uration increases to highlight the specified data objects (R1).

123 R1, R2 & R3. The combination of all tasks is not rec-
ommended because this results in colormaps with many
trade-offs. By varying over hues with linear increasing inten-
sity (R4) and a minimum of saturation (R2), values can be
identified and compared. To support localization, saturation
increases to the specified value range (R1).

3. ColorCAT: Guided Design of Colormaps

The idea of ColorCAT is that the designer specifies the proper-
ties of the data (sequential, diverging) and selects the analysis
task combination (see Figure 3). ColorCAT then derives the
requirements (R1,R2,R3,R4) for the selected tasks and mod-
els the intensity and saturation gradient of the colormap to
minimize the quality metrics QM1−QM3. The designer se-
lects and orders base colors especially for identification tasks
to provide multiple hues (R2). The colormap is generated by
interpolating between the base colors in a perceptual uniform
color space to maximize JNDs (R2) and to ensure perceptual
linearity (R3) and/or orderliness (R4). Advanced designers
are able to interactively change all properties of the colormap.

Categorical and Ordinal Data. All colormaps in this paper
are designed to map continuous data. ColorCAT can also
generate color encodings for categorical and ordinal data (see
Figure 3(III)) since the requirements of Section 2 are valid
for these data types as well. The user can specify the number
of colors and thereby the number of categories. Categorical
data can only be identified or localized since there exist no
absolute or relative differences between categories.
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3.1. Interactive Selection of Base Colors.
ColorCAT provides an interactive color picker that visualizes
the intuitive HSL color space. ColorCAT supports the user
by suggesting color orderings for, e.g., spiral colormaps and
color harmonies for diverging colormaps. In this way, the
designer can order the colors according to domain, culture,
or user preferences (R4). Expert users can scan through the
HSI and CIECAM02 color spaces and create customized
colormaps beyond our guidelines.

3.2. Color Vision Deficiencies
In order to design colormaps that are color-blind safe, Col-
orCAT can be switched into three types of color blindness:
protanopia, deuteranopia (most common), and tritanopia. All
colors in ColorCAT will be simulated by the approach of Bret-
tel et al. [BVM97] according to the selected deficiency and
thus, colormap designers can perceive how the colormap will
appear to a color-blind person (see Figure 3(II)). Addition-
ally, ColorCAT indicates the quality by QM1−QM3 of the
colormaps for the selected color blindness. This mainly influ-
ences the base color selection since mixing red and green hues
should be avoided. However, also these hues can be mixed
if the difference in intensity between these hues is high.

3.3. Color Map Algorithm
ColorCAT uses the perceptual uniform color space
CIECAM02-UCS [LCL06] to estimate perceived color differ-
ences and thus, create perceptual linear colormaps. However,
perceptual uniform color spaces share the problem that inter-
polation especially along the lightness channel often leads
to colors that are undefined in RGB [LSS12]. The HSI color
space [Kei00] is not perceptually uniform but is defined (in
RGB) for the creation of colormaps with perceptual linear
increasing intensity. The trade-off is that all interpolations
between base colors are calculated in CIECAM02 (in order
to provide perceptual linearity) and HSI is used for modeling
the intensity (and saturation) properties of a colormap.

The algorithm performs the following steps: 1) The base
colors are extended by interpolation between the base colors
in the HSI color space. This increases the number of “color
knots” for interpolating intensity and saturation. 2) The al-
gorithm assigns intensity and saturation to the “color knots”
according to the analysis tasks. 3) For perceptual linearity,
the algorithm computes the distances between all color knots
with CIECAM02-UCS and places the knots according to their
distances in the final (ordered) set of colors for the colormap.
4) The empty spaces between the knots are interpolated in
CIECAM02 to provide a perceptual linear colormap.

3.4. Interactive Refinement & Interfaces
ColorCAT visualizes each step of the algorithm in order to
enable the user to understand how the base colors are utilized
and modified, which can be interactively changed in the color
picker tool. Further, we provide an interactive spline chart that
visualizes the intensity and saturation of the colormap. The

user can modify the splines by interactively adding, remov-
ing, and moving control points of the intensity and saturation
splines. Thus, the user can specify the data importance (see
Section 2) for localization tasks. The quality metrics panel
reveals the quality of the colormap in the according metrics.
ColorCAT enables the user to store alternative colormaps in
a list and provides a scatterplot of continuous data, which
is encoded with the selected or currently modified colormap
for visual inspection. The background color has high impact
on the foreground color perception. Colors may blend with
the background or strong contrasts change the appearance of
single colors. Therefore, the designer can switch the back-
ground color of the scatterplot for visual inspection. Our
colormaps work best on black backgrounds. We omitted the
usage of white, which is often used to encode extreme values
but would blend with white backgrounds. ColorCAT exports
the colormaps in different formats (RGB and CIELAB color
pallets, Java and Javascript arrays) in data files, but also can
export this directly as JAVA classes. Exported classes can
be directly used in JAVA based systems to visualize the col-
ormap but also provide the interactive spline chart to modify
the intensity and saturation properties of colormaps.

4. Discussion & Future Work
There exist sophisticated color mapping algorithms that out-
perform the colormaps of ColorCAT in single analysis tasks
or data types. However, the advantage of ColorCAT is that it
integrates the visualization expert in the design of colormaps.
The expert intuitively combines different analysis tasks and
modifies the colormap to match the target domain, user pref-
erences, and culture, which is not possible for automatic
methods. We argue that the integration of the visualization ex-
pert is more important for design processes of visualizations
since the challenge of visualization design is to match the
mental model of the target user. Contrast effects have high
impact on color encodings. We therefore suggest applying the
method of Mittelstädt et al. [MSK14] to avoid this issue or at
least to add multiple base colors since varying over hues mini-
mizes contrast effects as well [War88]. Aesthetic design goals
are also very important in colormap design, because aesthetic
designs reduce the stress of visual analysis tasks [WGM∗08]
and make the use of tools more enjoyable [Nor02]. It remains
an open question how to satisfy perceptually-motivated met-
rics and to allow enough artistic freedom for colormap design
simultaneously. Novel colormaps are presented by Samsel et
al. [SPG∗15] who derived the designs with trained artists. It
would be interesting to extend ColorCAT in this direction.

5. Conclusion
In this paper, we introduce color mapping requirements and
quality metrics for elementary analysis tasks and task com-
binations. Further, we present an approach to generate (also
color-blind safe) colormaps for each task combination and
provide ColorCAT, which comprises the automatic require-
ment analysis for task-based color design and interactively
guides designers through the process of designing colormaps.
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