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Abstract
Pediatric chronic kidney disease (CKD) increases the risk of cardiovascular disease, stroke and other life-threatening con-
ditions. Monitoring blood pressure in CKD patients is crucial to managing these risks. 24-hour ambulatory blood pressure
monitoring (ABPM) is recommended for its comprehensive and accurate assessment of blood pressure over 24 hours. An-
alyzing and comparing 24-hour ABPM data of multiple diagnostic visits is a challenging task. Traditional methods involve
comparing individual visits using paper printouts, which can be time-consuming and lacks a systematic overview of deviations
over time. In this work, we present a dashboard visualization that allows clinicians (i) to assess the evolution of ABPM data
over multiple diagnostic visits, (ii) to compare ABPM data of CKD patients with reference data of a healthy cohort, and (iii) to
perform a detailed intra-individual comparison of the ABPM data acquired at two subsequent diagnostic visits. We demonstrate
the dashboard in a case study of a patient with mild-to-moderate-stage CKD.

CCS Concepts
• Human-centered computing → Visual analytics;

1. Introduction

Chronic kidney disease (CKD) in pediatric patients is characterized
by the gradual loss of kidney function [BRMR16]. Hypertension
is common in these patients since the kidneys help in controlling
blood pressure, e.g., by producing specific hormones. Ambulatory
blood pressure monitoring (ABPM) is hence, an important tool in
CKD monitoring. It provides continuous blood pressure (BP) read-
ings over 24 hours, detects BP changes, and helps in adjusting med-
ication dosages and in treatment evaluation [SP04,SNF∗12]. Physi-
cians analyzing ABPM data of pediatric CKD patients face chal-
lenges due to the lack of normative data specific to this population
and the lack of dedicated analysis software. Traditional methods of
ABPM data analysis use paper printouts hampering a reproducible,
structured overview of deviations over time [OPS∗13]. To address
these shortcomings, a visualization tool incorporating normative
data is necessary to identify patterns, trends and deviations in lon-
gitudinal 24-hour ABPM data [TSK∗21]. Many research works are
dedicated to the visual analysis of time-series data [FXJ20]. A sub-
set focuses on multi-variate time series and/or multiple time series
visualization [TR09,GK15,LSS09,SBM∗14,FKL∗22]. Since none
of the existing approaches has so far been tailored to 24-h ABPM
data of multiple visits, we propose a novel dashboard for the com-
parative visual analysis of those data.

2. Method

Dashboard Visualization. The dashboard visualization for as-
sessing longitudinal ABPM data is shown in Figure 1. At first, a
patient case is loaded based on patient ID, name (omitted here for
privacy reasons), age, body height, and sex (Fig. 1,a). The dash-
board is then populated with the ABPM data of all available diag-
nostic visits. The left panel provides an overview of the ABPM
data in relation to the average ABPM profile of a body height-
and sex-matched healthy sub-cohort (Fig. 1,b). One radar chart is
drawn per visit. The systolic (red) and diastolic (blue) patient pro-
files are shown together with their respective healthy reference pro-
file (green). The filled area representation shall convey the respec-
tive deviation from normal and enable clinicians to quickly iden-
tify large deviations. Next to the visit number, the respective age
of the patient is shown. Moreover, the number of reference pro-
files available for computing the average reference profile is shown
(green legend). The visual encoding of the right panel is similar
(Fig. 1,e). Here, the transitions between two visits are conveyed by
radar charts. For instance, the upper chart "Visit 4→5" superim-
poses the systolic and diastolic profiles of visit 4 (dashed line) and
5 (solid line). Again, the area between profiles encodes the devia-
tion. In the left/right panel, the user can select two/a single radar
chart (Fig. 1,c) causing the corresponding, detailed line charts to
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Figure 1: Dashboard for the visual analysis of single-patient 24-h ABPM data (details provided in the text).

be displayed in the center of the dashboard (Fig. 1,d). In the line
plot, day and night time are emphasized since a nocturnal dipping
of BP, for instance, is indicative for a normal profile. Finally, a ta-
ble at the bottom of the dashboard shows some quantitative devia-
tions between the visits with respect to a subset of study variables
(Fig. 1,f). The therapy mode provides crucial information that may
explain changes in BP due a specific associated medication. The
development of our dashboard was carried out by utilizing pandas,
numpy, matplotlib, and seaborn libraries of the Python program-
ming language.
Average healthy profile computation. At each patient visit, the
body height- and sex-matched healthy subcohort is determined (pa-
tient body height ±5cm and same sex). Since the corresponding
subcohort profiles have different starting and end points as well as
different temporal sampling rates, they need to be synchronized be-
fore averaging. At first, all profiles are aligned at noon. Then, arti-
ficial measurements are added for each ABPM profile if necessary
at the earliest overall starting point and the latest overall end point
in order to cover the same time span. As artificial measurement, the
first and the last real measurement are simply propagated, respec-
tively. Next, all profiles are resampled to one measurement value
per minute. Thus, all profiles have the same length (number of mea-
surement points) and the real measurements are kept. Finally, the
average healthy profile is computed.

3. Case Study

Our CKD dataset contains 546 CKD patients and 825 healthy pa-
tients. The age range of the CKD patients is 5 to 25 and of the

healthy cohort it is 5 to 20. The average number of visits per CKD
patient is 3 and there is one visit per healthy child. Besides, the
average number of measurements per visit for CKD and healthy
patients is 63 and 65, respectively. Figure 1 shows the ABPM data
of a 18-year-old (female) patient diagnosed with mild-to-moderate-
stage CKD, for whom nine 24-hours ABPM profiles were obtained
during routine checkups between 2010 and 2018. Using our visu-
alization tool, medical domain experts noticed a high BP in visit
4 compared to visit 2 and visit 3. This is due to the patient re-
ceiving kidney transplantation (TPL) before obtaining the visit 4
ABMP data. The high BP was caused due to the side effects of the
immunization suppression drug given to the patient after transplan-
tation. Medical domain experts verified this by comparing with the
ABPM data of visit 5 where the BP was back to normal due to the
proper medications given to the patient. Overall, performing such
longitudinal visualization helps clinicians to prescribe and adjust
necessary medications to maintain the patient normal BP.

4. Conclusion

Our dashboard visualization provides an overview of deviations in
ABPM data over multiple diagnostic visits, allows for comparison
with reference data of healthy patients, and enables detailed in-
traindividual comparison of ABPM data between subsequent visits.
Our case study demonstrates the usefulness of the tool in analyz-
ing ABPM data. In future work, we plan to integrate quantitative
measures of profile dissimilarity and the visual highlighting of crit-
ical differences between profiles.
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