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Abstract
Herein, we propose a method for three-dimensional (3D) reconstruction of cultural heritage based on deep learning, which we
apply to the reliefs of the Buddhist temple heritage of Borobudur Temple, in Indonesia. Some parts of the Borobudur reliefs have
been hidden by stone walls and are not visible following the reinforcements during the Dutch rule. Today, only gray-scale photos
of those hidden parts are displayed in the Borobudur Museum. First, we reconstruct 3D point clouds of the hidden reliefs from
these photos and predict the pixel-wise depth information for each of them using a deep neural network model. We then apply
our stochastic point-based rendering mechanism to produce a high-quality visualization of the reconstructed point clouds. We
have achieved promising visualization results that provide us with an intuitive understanding of the valuable relief heritage that
is no longer visible to ordinary visitors.

CCS Concepts
•Applied computing → Digital libraries and archives; •Computing methodologies → Neural networks; •Human-centered
computing → Visualization;

1. Introduction

Borobudur is a UNESCO World Heritage Site and the largest Bud-
dhist temple in the world. Borobudur comprises approximately
2,672 individual bas-reliefs (1,460 narrative and 1,212 decorative
panels), distributed at the hidden foot and the five square platforms.
These reliefs can be divided into five sections based on the dif-
ferent independent stories they tell. The temple, which has high
cultural value, has been restored and its foot encasement was re-
installed owing to safety concerns. During the restoration, the re-
liefs of the hidden foot were covered by stones, only grayscale pho-
tos photographed in 1890 have remained and are displayed in the
Borobudur Museum. Today, only the southeast corner of the hid-
den foot is revealed and visible to visitors. In this work, we re-
construct the hidden reliefs into point clouds from their monocular
grayscale photos. Our reconstruction method is based on a depth
prediction neural network which maps intensity or color measure-
ment to depth values. The monocular images and corresponding
depth maps of the visible parts of the Borobudur reliefs are used to
train the deep neural network. Then, three-dimensional (3D) point
clouds are reconstructed from the remaining photos, and the depth
map is predicted by the deep neural network model. Furthermore,
owing to the Borobudur temple’s complex internal structure, we ap-

ply our stochastic point-based rendering mechanism to implement
transparent visualizations of the reconstructed point clouds.

2. Related Work

With rapid advancements in computer-vision algorithms, it is pos-
sible to efficiently and flexibly reconstruct cultural heritage us-
ing laser scan data [PMJh14] or defective cultural heritage objects
[GSP∗14, HS17, LZT∗11]. However, many cultural heritage ob-
jects, similar to Borobudur reliefs, are no longer available to acquire
3D information from owing to irreversible damage. For image-
based reconstruction, the majority of available methods use mul-
tiple images to reconstruct 3D models [KL12, KDD∗14, IHD∗13].
However, only a single monocular photo per object remains preva-
lent in many cases. Hence, a reconstruction method from a single
image is urgently required. Depth estimation from a single image is
an ill-posed problem as it is inherently ambiguous to map intensity
or color measurement to a depth value. Hand-crafted features and
probabilistic graphical models are mainly used to tackle the monoc-
ular depth estimation problems in classic methods [SCN05]. Re-
cently, many studies using deep learning have achieved remarkable
advances in depth estimation. Eigen et al. [EPF14] were the first to
use a convolutional neural network (CNN) to perform depth esti-
mation and produce a promising result over an indoor dataset. As
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Figure 1: Network Structure of the proposed method: the orange part at the top represents the global coarse-scale network, and the blue
part at the bottom represents the local fine-scale network.

regards the transparent visualization method for large-scale point
clouds, the pioneering approach suffers from a large computational
cost due to the depth-sorting process involved. In our previous
work, we proposed stochastic point-based rendering, which enables
precise and interactive-speed transparent rendering [THS∗12]. This
method achieves accurate depth feel by employing a stochastic al-
gorithm without depth sorting. We have successfully applied this
method to several types of large-scale laser-scanned point clouds
of 3D cultural objects [TUH∗14,THO∗16] and proved its wide ap-
plicability.

3. Method

3.1. Network Structure

As shown in Figure 1, the neural network employed for depth pre-
diction comprises two sub-networks: a global coarse-scale network
that handles low image resolution and a local fine-scale network
that handles high image resolution. The original input image is si-
multaneously imported by these two networks. The global coarse-
scale network predicts a coarse depth map at a global level, i.e., a
coarse output with cues such as the object location and an approx-
imate figure shape. The result of the global coarse-scale network
is passed to the local fine-scale network and fused with the inter-
mediate results during the convolution. Thus, a refined output is
predicted by the latter network. Thus, the coarse output is refined
with local details and the final depth map comprises both global
and local information.

The global coarse-scale network comprises five convolutional
layers with two max-pooling layers to extract feature maps. The
feature maps are converted to two fully-connected layers contain-
ing the entire image in their field of view. Then, the last fully-
connected layer is reshaped into a coarse depth map as the output of
the coarse-scale network, in which the value of each pixel is equal
to the value of each weight in the last layer. The local fine-scale
network comprises four convolutional layers and one max-pooling
layer. Following the first convolutional layer and a pooling stage,

the output of the global coarse-scale network is imported as a fea-
ture map and fused with the original feature maps. Note that the size
of the feature maps output by the first part of fine-scale network is
identical to those output by the last part of fine-scale network by
design. This size is maintained through zero-padded convolutions
of all the layers in the local fine-scale network. Figure 1 shows the
kernel size and the number of feature maps of each layer. Note that
a center crop is maintained following the max-pooling layers in the
proposed method. All hidden layers use the rectified linear activa-
tions except the two output layers in both networks that use linear
activation. To avoid overfitting, we apply a dropout layer after both
the coarse 6 and fine 3 parts in Figure 1.

For depth estimation, the question is how to measure the rela-
tionships between points in the scene without considering the ab-
solute global scales. Here, we apply a scale-invariant error as a loss
function following Eigen’ s work [EPF14]. For a predicted depth
map y and the ground truth y*, each with n pixels indexed by i, the
per-sample training loss is set as follows:

L
(
y,y∗

)
=

1
n ∑

i
d2

i −
λ

n2

(
∑

i
di

)2

(1)

di = logyi− logy∗i (2)

Note that in Equation 1, the element-wise error is reduced by
setting λ=0, and the scale-invariant error is reduced by setting
λ=1. When λ=0.5, the function produces absolute-scale predic-
tions, thereby slightly improving the qualitative output.

3.2. Stochastic Point-based Rendering

Here, we briefly review our transparent visualization method, the
stochastic point-based rendering [THO∗16]. First, multiple sub-
groups of point clouds are prepared, each of which describes the
surface equivalently but is statistically independent. Each subgroup
should have the same point-density distribution. Here, we denote
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Figure 2: Main results for one hidden relief of Borobudur: (a) monocular photo of one hidden panel, (b) predicted depth map, (c) recon-
structed point cloud and (d) transparent visualization result.

the number of subgroups by L. Then, for each subgroup, its con-
stituent 3D points are projected onto the image plane to create an
intermediate image. In the projection process, we consider the point
occlusion per pixel. A total of L intermediate images are obtained.
Finally, the L intermediate images are averaged to create the final
transparent image. For the number of points, n, the area of the local
surface segment S, the point sectional area s, and surface opacity α

in each local surface segment adopts the following value:

α = 1−
(

1− s
S

)n
(3)

In this method, L is available as the image-quality parameter be-
cause it reflects the number of the averaged intermediate images.
By tuning the local number of points, n, we can control the local
surface opacity α according to Equation 3.

4. Experiments

The original dataset used to train the deep network comprises 5,687
pairs of image patches and corresponding depth maps from four
monocular photos of four panels of the visible Borobudur reliefs.
We simply divided the dataset into training data and test data by a
ratio of 75/25. In our case, the four panels contain only 85 human
figures and several decorative objects. As the training data is lim-
ited in our case, efforts were made to avoid overfitting of the deep
neural network. We augmented the training data with several trans-
formations: rotation, flips, adding noise and blurring. After the aug-
mentation, our training dataset contained 31,339 images and their
corresponding labels. However, more original data is needed in our
case, this is discussed in the future work.

The network was implemented in TensorFlow and all experi-
ments were run on an NVIDIA GTX 1080Ti GPU with 12GB mem-
ory. The probability of dropout layers was set to 0.5. The model
was trained using an Adam optimizer with the following learning
rates: 0.001 for the global coarse-scale network and 0.01 for the

local fine-scale network. Our model was fine-tuned on the NYU
Depth dataset which comprises 464 indoor scenes, shot as video
sequences using a Microsoft Kinect camera. The original size of
the frames was 640×480 pixels and we down-sampled it to half
the resolution and reshaped it to 304×228 pixels to fit our model.
In the pre-training stage, we trained our model with a batch size
of 50 for approximately 40 epochs. After the pre-training stage,
we trained our model on our relief dataset with a batch size of 50
for approximately 20 epochs. We use the trained model to predict
the depth map from the monocular photos of the hidden reliefs.
Then, the corresponding point clouds were reconstructed based on
the monocular photos and the depth maps. Note that following this,
the number of 3D points was the same as the number of pixels of
the monocular photo. Furthermore, we apply our stochastic point-
based rendering method to the reconstructed point clouds of hidden
reliefs to create 3D see-through images.

5. Results

We compared our result with Eigen’ s [EPF14] on our relief dataset
as shown in Table 1 which proves that our method provides promis-
ing results in general for the depth prediction task. The error met-
rics we used are identical to those in previous works [LSP14]. As
our dataset is extremely small, the depth prediction result achieved
herein can be improved. While the local fine-scale network seems
to exhibit no improvement in the results according to the error

Table 1: Comparison between Eigen’ s and the present results.

Coarse-Eigen’ s Refine-Eigen’ s Coarse-Our’ s Refined-Our’ s
threshold δ <1.25 0.647 0.612 0.689 0.624
threshold δ <1.25 0.922 0.906 0.917 0.911
threshold δ <1.25 0.985 0.981 0.985 0.983

abs relative 1.046 1.326 0.872 1.085
sqr relative 0.716 0.750 0.715 0.725

RMSE 10.02 10.16 10.01 10.05
RMSE(log) 0.105 0.107 0.114 0.113
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Figure 3: Details of the 3D reconstruction results (from left to
right): monocular photo patch, depth prediction map, and the re-
constructed result.

metrics, its effect is obviously shown in the depth maps through
the sharper and clearer boundaries thus obtained(Figure 1). Fig-
ure 2 shows the original monocular photo of one hidden panel of
the Borobudur reliefs, the depth prediction map, the reconstruction
result and the corresponding transparent visualization result. The
gaps in the reconstructed point cloud are caused by the patch-wise
training of our network. Improving the accuracy of the depth pre-
diction or implementing post-processing techniques can eliminate
the gaps, we will explore this elimination in future work. To clearly
demonstrate the details of our reconstruction results, the example
results of qualitative patches are shown in Figure 3.

As the temple is approximately a square building, the full-view
of these reliefs cannot be viewed at a certain point in case of opaque
visualization owing to the existence of corners. Hence, we recon-
structed two old photos of the hidden reliefs which represent two
panels of the valuable reliefs. Although the reliefs in these photos
do not actually cover the two sides of a corner, to explain the contri-
bution of our transparent visualization method, i.e., the stochastic
point-based rendering, we simulated the reliefs under the assump-
tion that they do cover the two sides.

6. Conclusions

In this study, we reconstructed 3D point clouds of the hidden parts
of reliefs from the Borobudur temple from a single monocular
photo. Our reconstruction method achieves a promising visualiza-
tion result providing a proper 3D understanding of the valuable
relief-type heritage that is no longer visible to ordinary visitors. We
also applied our stochastic point-based rendering mechanism to the
reconstructed point clouds and achieved their see-through imaging
with accurate depth feel. We believe that our work provides an ef-
ficient way to protect relief-type cultural heritage. We have also
demonstrated that our mechanism can be successfully applied to
the Borobudur temple reliefs.

In future work, we plan to collect more training data from the vis-
ible parts of the Borobudur reliefs using a 3D camera to gain more
accurate depth map prediction. An automatic point-cloud-stitching
method can also be explored to fill the gaps in the manually-linked
point cloud data. Furthermore, we will consider other models to
improve the depth prediction results achieved here.
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