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Abstract

Reduced precision bounding volume hierarchies and ray traversal can significantly improve the efficiency of ray tracing through
low-cost dedicated hardware. A key approach to enabling reduced precision computations during traversal is to translate the
ray origin closer to the bounding volume hierarchy node after each traversal step. However, this approach precludes sharing
of intersection computations between a parent node and its two children, which is an important optimization. In this paper, we
introduce a novel traversal algorithm that addresses this limitation and achieves a significant reduction in the computational
complexity of traversal compared to previous approaches. We also include an analysis that shows how our algorithm guarantees
watertight intersections which is a key requirement for robust image quality, especially with reduced precision traversal where
numerical errors can be large.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Line and
curve generation

1. Introduction

Ray tracing [Whi80] is one of the most fundamental algorithms
that can be used to implement physically-based rendering [Kaj86,
Jen01, PH10] in a straightforward manner. Since it is based on the
ability to query ray-scene intersections along arbitrary directions it
is a powerful tool for simulating a wide range of light transport sce-
narios. Although great progress has been made over the last decade
towards optimizing software implementations of ray tracing run-
ning on CPU cores [WWB∗14] as well as graphics processing units
(GPUs) [PBD∗10], the time it takes to render an image can still be
prohibitive for real-time applications.

Rasterization on GPUs is another widely used rendering tech-
nique and although it lacks the versatility of ray tracing, it can be
substantially faster and therefore better suited for real-time ren-
dering. A significant part of this speed advantage stems from the
fact that the GPUs provide hardware acceleration for the core al-
gorithms and can efficiently map parts of the rendering pipeline to
many small SIMD processors that execute in parallel. Furthermore,
the graphics hardware industry has spent significant efforts opti-
mizing GPUs over time to derive better performance [KDK∗11].

Hardware acceleration can also be applied to improve perfor-
mance of ray tracing and although this field has received a fair
amount of attention in academic research (see Section 2), it is yet to
be widely adopted by the real-time graphics industry. With greater
emphasis on optimizing GPUs for ray tracing performance, we can
expect significant improvements in hardware ray tracing following
the trends that have been observed with rasterization.

The key aspects of ray tracing that impact performance are
shading and ray-scene intersection computations. Shading be ef-
ficiently evaluated on the GPU cores as long as coherency can
be extracted for SIMD processing. However traversing spatial ac-
celeration structures to determine ray-scene intersections can be a
significant performance overhead. Our work focuses on the prob-
lem of traversing bounding volume hierarchies (BVHs) and is mo-
tivated by the observation that this can be done efficiently us-
ing reduced precision computations combined with BVH compres-
sion. These gains can be multiplied by reusing storage as well
as ray-box intersection computations for the six bounding planes
that are shared between a parent BVH node and its two chil-
dren [FD09, EW11]. However, with previous reduced precision
traversal methods [Kee14], such reuse is not possible.

Moreover, an essential requirement for ray traversal algorithms
is watertight intersections [Ize13, WBW13]. This is especially im-
portant with reduced precision traversal, where incrementally com-
puted values can accumulate errors and lead to missed intersec-
tions. In this paper, we introduce a novel BVH traversal algorithm
that:

• pairs reduced precision intersection testing with a compressed
BVH node structure that can significantly reduce memory traffic,

• reuses computations for bounding planes shared between a par-
ent node and its children, achieving a significant reduction in
intersection cost and

• guarantees watertight intersections, which is a requirement for
producing correct results.
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2. Previous Work

One of the earliest hardware architectures for ray tracing was in-
troduced by Schmittler et al. [SWS02, SWW∗04]. Later Woop
et al. [WSS05, SWS06] presented a fully programmable ray-
processing unit (RPU) that could also handle dynamic scenes. Nah
et al. introduced dedicated hardware for traversal and intersection
called the (T&I) engine [NPP∗11] and derived a complete ray trac-
ing architecture called RayCore [NKK∗14]. Lee et al. [LSL∗13]
presented SGRT, which featured a parallel-pipelined T&I unit to-
gether with a Samsung reconfigurable processor (SRP) for shading
and ray generation.

Spjut et al. [SKKB09] introduced TRaX, a programmable ar-
chitecture for ray tracing with multi-threaded MIMD process-
ing, which was better suited for divergent ray paths. Kopta et
al. [KSBD10] further optimized MIMD architectures through shar-
ing of resources such as caches and functional units. In later work,
Kopta et al. [KSS∗13] reworked the TRaX architecture to traverse
ray streams, which were reordered by treelets [AK10] to improve
cache hit rates. Lee et al. [LSH∗15] proposed a MIMD architec-
ture for ray traversal with a reorder buffer to schedule rays based
on cache hits. Although these hardware implementations demon-
strated significant efficiency improvements, they did not leverage
reduced precision computations.

Efficient hardware implementations for ray-box and ray-triangle
intersections have been proposed based on fixed point arith-
metic [HK07, HRB∗10] or better use of floating point preci-
sion [KNP15]. At the same time, the size of the spatial data struc-
ture or triangles can be reduced using compression [CSE06,MW06,
SE10,KMKY10], implicit indexing and fixed surface reduction per
node [BEM10], storing fewer planes per node [WK06, EWM08,
FD09] or triangle strip representations [LYTM08]. In previous re-
search, these two problems i.e., intersection testing and reducing
the size of the spatial data structure, have been investigated mostly
in isolation. The work of Keely [Kee14] is an important exception
as it focuses on BVH compression as well as reduced precision
traversal. Our approach also addresses these problems in a com-
bined manner and achieves further savings in node size and inter-
section computations. In addition to this we provide an algorithm
that is strictly watertight. While watertight bounding box [Ize13]
and ray-triangle intersections [WBW13] have been derived for full-
precision traversal, our focus is on quantized bounding boxes and
reduced precision ray traversal.

3. Background

3.1. BVH Compression

We start with a description of a compression scheme for BVH
bounding boxes along the lines of previous techniques such as
Keely [Kee14] and Mahovsky and Wyvill [MW06]. Consider a
BVH with bounding volumes represented by axis-aligned bound-
ing boxes that are specified using its minimum coordinate p and
maximum coordinate q, where (p,q) ∈ R3. These coordinates can
be compressed by quantizing them to a local low resolution grid
and decompressed as the BVH is traversed to evaluate ray-scene in-
tersections. In the following description, the components of a point
p are accessed as p = (px, py, pz).
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Figure 1: The coordinates of a bounding box can be compressed
by computing quantized relative offsets (r,s) in a local grid that is
aligned with the parent bounding box.

Let (uparent,vparent) be the corresponding coordinates of the
quantized bounding box. The next step is to compress the bounding
boxes of the child nodes inside the parent. Since the BVH compres-
sion is lossy, the decompressed coordinates can be different from
the original coordinates. The local low resolution grid is selected
such that the origin of the grid is aligned with uparent as shown in
Figure 1 and the dimensions of the grid are selected to be the small-
est value that is a power of two and greater than the parent box. The
quantized bounding box is derived by computing relative offsets of
the bounding box coordinates to the origin of the grid and quan-
tizing the result to a small number of bits, Nb. For an axis i, these
operations are described by

ri =


(

pi−uparent
i

)
2eparent

i
2Nb

 , si =


(

qi−uparent
i

)
2eparent

i
2Nb

 , (1)

where 2eparent
i is the grid dimension along x and (r,s) ∈ Z3

>0 are
the quantized offsets relative to the quantized parent bounding box.
Using the floor rounding mode guarantees that (ri,si)∈ [0,2Nb−1].
The exponent eparent

i is given by [Kee14]

eparent
i = argmin

k

(
2k >

(
vparent

i −uparent
i

))
. (2)

The bounding boxes can be iteratively decompressed from the
quantized offsets when the BVH is traversed from the root node as
described in Equations 3 and 4, i.e.,

ui = uparent
i + ri2

(eparent
i −Nb), (3)

vi = uparent
i +(si +1)2(e

parent
i −Nb), (4)

where (u,v) are the decompressed coordinates that are initialized
with the coordinates of the root box at the start of the traversal. The
value of si is incremented by one, which compensates for the neg-
ative error introduced by the f loor operation in Equation 1. This
also guarantees vi−ui > 0, which is required for deterministic grid
dimensions if a parent node is decompressed from a child node
[Kee14]. Our representation is slightly different (see Section 4).

3.2. Reduced Precision Traversal

Intersections between rays and the compressed BVH are deter-
mined by traversing the BVH, decompressing the bounding boxes
and computing ray-bounding box intersections at each node, which
can be evaluated using Kay and Kajiya’s slab test [KK86].
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The slab test uses a parametrized ray representation o+td, where
o is the ray origin, d is the ray direction and t is the distance along
the ray. Ray-bounding box intersections can be determined by com-
paring the parametric distances from the ray origin to each of the
six planes of the bounding box. The parametric distances to the two
planes along the axis i are given by

λi = (ui−oi)wi, (5)

µi = (vi−oi)wi, (6)

where wi =
1
di

is the ray slope. Assuming the slopes (wx,wy,wz)
are positive, a ray intersects a bounding box if

max(λmax, tmin)≤min(µmin +2ulp(µmin), tmax), (7)

where λ
max and µmin are the maximum and minimum values of

λi and µi respectively and (tmin, tmax) represent the clip distances
of the ray. The function ulp() returns the unit in the last place of
a finite precision floating-point value. Adding this compensation
term to µmin ensures watertight intersection results [Ize13]. When
wi < 0, the corresponding values of λi and µi have to be swapped.

The parametrc distances can be computed with reduced preci-
sion arithmetic if the origin of the ray (traversal point) is moved
closer to the bounding box [Kee14]. This can be done by updating
the origin of the ray at each traversal step. However, if the ray ori-
gin is modified, the values of (λλλ,µµµ) computed for the parent node
cannot be reused for the shared bounding planes of the child nodes.
Therefore, for a pair of sibling nodes, Equations 5 and 6 have to
be evaluated for twelve bounding planes, which could otherwise be
reduced by half [FD09, EW11].

4. Our BVH Node Structure

The bounding boxes of a pair of sibling nodes share six bounding
planes (coordinates) with the parent node. This can be leveraged
to derive a compact node structure that stores six bounding planes
for a pair of sibling nodes and a pair of 3-bit masks (l,m) that
assign the planes to the left or right sibling [FD09, EW11]. We use
a similar node structure but store quantized plane offsets instead of
the full precision coordinates.

Assuming a depth-first layout for a binary tree we store an Np-
bit index to the right child pair, one bit to indicate an internal or
leaf node, six compressed coordinates and a pair of 3-bit masks as
shown in Table 1. If the index of the right child pair is relative to the
parent node, then this index is always even and the least significant
bit of the index can be dropped. Therefore, if Np is the number of
bits used for the child index, a single BVH can contain 2Np+1− 1
nodes. Assuming Nb = 6 and Np = 21, only 8 bytes are required to
store a pair of nodes. This is just a third of the node size used in
Keely’s work [Kee14].

5. Algorithm

In this section, we derive a reduced precision traversal algorithm
that can reuse computations for planes that are shared with the par-
ent node by combining bounding box decompression with traver-
sal.

Field Number of Bits
Leaf node indicator 1
(l,m) 6
(r, s) Nb×6
Index to right child pair Np

Table 1: Layout for a pair of sibling nodes. Only six bounding
planes are stored and the remaining six bounding planes are shared
with the parent node.

The parametric distances for six planes can be incrementally de-
rived from the parent node as

λi = λ
parent
i +wiri2

(eparent
i −Nb), (8)

µi = λ
parent
i +wisi2

(eparent
i −Nb). (9)

Since ri is a reduced precision term, the multiplication opera-
tions in Equations 8 and 9 can be computed with lower precision.
Note that with this traversal algorithm, the decompressed bound-
ing boxes are no longer available. Therefore, the exponent eparent

cannot be directly computed. In Section 5.4, we introduce a low-
cost method for computing exponents without decompressing the
bounding boxes.

5.1. Watertight Compression and Traversal

With each traversal step, numerical errors can be introduced
through finite precision floating-point arithmetic, which results in a
lower bound (λλλ

lower
,µµµlower) and an upper bound (λλλ

upper
,µµµupper)

for the parametric distances. Assuming the slope wi is positive,
a necessary and sufficient condition for watertight intersections is
that for each axis i, λ

upper
i ≤ λi and µlower

i ≥ µi.

Using an approach similar to Ize’s work [Ize13], the upper bound
for λi after the first traversal step, can be derived from Equation 8,
i.e.,

λ
upper
i =

(
λ

parent
i +wir

upper
i 2(e

parent
i −Nb)(1+ ε)2

)
(1+ ε), (10)

where ε is the machine epsilon of the underlying floating-point rep-
resentation and errors are introduced by the computation of the
slope wi, the inner multiplication, and the outer addition. The value
of rupper

i can be derived from the leftmost expression in Equation 1,
which results in

rupper
i =

(
pi−ulower

i

)
2(Nb−eparent

i ). (11)

Working backwards from Equation 11, our first step towards water-
tight intersections is to ensure that ulower

i ≥ ui by modifying Equa-
tion 3, resulting in

ui = RU
(

uparent
i + ri2

(eparent
i −Nb)

)
, (12)

where RU() is a rounding rule that rounds the result of the floating-
point operations upward towards positive infinity [IEE08]. With
fixed-function ray traversal, these rounding rules can be baked into
the floating-point hardware. Next, we ensure that rupper

i ≤ ri by
modifying Equation 1 into

ri =
⌊

RD
(

pi−uparent
i

)
2(Nb−eparent

i )
⌋
, (13)

where RD() rounds the result of the floating-point operations down-
wards towards negative infinity [IEE08].
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Finally, we ensure that λ
upper
i ≤ λi by modifying Equation 8 so

that

λi = RD
(

λ
parent
i +RD(wiri)2(e

parent
i −Nb)

)
, (14)

where the slope wi is also rounded to the lower value. Therefore, the
first constraint for watertightness i.e., λ

upper
i ≤ λi, is met. Although

we have eliminated positive errors in the value of λi, negative errors
still remain. Moreover, these negative errors get accumulated with
each traversal step. Unfortunately since the offset for µi is derived
with respect to λ

parent
i , errors in λi are coupled with the errors in µi.

Therefore, accumulated negative errors in λi would lower the value
of µlower

i violating the second constraint for watertightness.

However, we can decouple λi and µi using an alternative com-
pression scheme, where the offsets for qi are derived with respect
to vparent

i as shown in Figure 2. Negative numerical errors in µi can
then be independently eliminated similar to positive errors in λi.
Algorithm 1 describes the compression part and Algorithm 2 de-
scribes the incremental computation of parametric distances. These
distances are then compared to determine ray-box intersections for
the sibling nodes as described in Equation 7.

Local G
rid

Parent
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parent
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2

Figure 2: We decouple the minimum and maximum coordinates by
computing the relative offset of the maximum co-ordinate q (not
shown) with respect to the maximum decompressed coordinate of
the parent box vparent instead of the minimum coordinate uparent .

Algorithm 1 Bounding box compression for a pair of sibling nodes
with decoupled minimum and maximum coordinates. Bounding
box coordinates that are not shared with the parent box are indi-
cated by a pair of three bit masks (l,m).

for all i ∈ (x,y, z) do
if ple f t

i 6= pparent
i then

li = 1
ri =

⌊
RD
(

ple f t
i −uparent

i

)
2(Nb−ei)

⌋
else

li = 0
ri =

⌊
RD
(

pright
i −uparent

i

)
2(Nb−ei)

⌋
ui = RU

(
uparent

i + ri
)

2(ei−Nb)

if qle f t
i 6= qparent

i then
mi = 1
si =

⌊
RD
(

vparent
i −qle f t

i

)
2(Nb−ei)

⌋
else

mi = 0
si =

⌊
RD
(

vparent
i −qright

i

)
2(Nb−ei)

⌋
vi = RD

(
vparent

i − si
)

2(ei−Nb)

Algorithm 2 Watertight traversal for a pair of sibling nodes. If the
slope wi is negative the minimum and maximum coordinates are
swapped. Six parametric distances are computed and then assigned
to the left or right child depending on the mask (l,m).

for all i ∈ (x,y, z) do
// Initialize (λ,µ) for left and right nodes
λ

le f t
i = λ

parent
i

µle f t
i = µparent

i

λ
right
i = λ

parent
i

µright
i = µparent

i
// Compute new distances. Swap ri and si if slope is negative
if wi ≥ 0 then

λi = RD
(

λ
parent
i +RD (wiri)2(e

parent
i −Nb)

)
µi = RU

(
µparent

i −RD (wisi)2(e
parent
i −Nb)

)
else

λi = RD
(

λ
parent
i +RD (|wi|si)2(e

parent
i −Nb)

)
µi = RU

(
µparent

i −RD (|wi|ri)2(e
parent
i −Nb)

)
// Assign computed distances to left and right nodes
if (li = 0 and wi ≥ 0) or (mi = 0 and wi < 0) then

λ
le f t
i = λi

if (mi = 0 and wi ≥ 0) or (li = 0 and wi < 0) then
µle f t

i = µi

if (li = 1 and wi ≥ 0) or (mi = 1 and wi < 0) then
λ

right
i = λi

if (mi = 1 and wi ≥ 0) or (li = 1 and wi < 0) then
µright

i = µi

5.2. Degenerate Axes

If a component of the ray direction di along an axis i is zero, then
the corresponding values of (λi,µi) will evaluate to±∞ and there-
fore cannot be derived incrementally. In such a scenario, we mark
the axis i as a degenerate axis and instead of incrementally comput-
ing the values of (λi,µi), we incrementally compute the offset of the
plane coordinates relative to the ray origin (ui− oi,vi− oi). Note
that is equivalent to incrementally computing the value of (λi,µi)
with a slope wi = 1. Once we have derived these coordinate offsets,
we can directly compare them against the ray origin to derive the
values of (λi,µi),

if ui−oi ≤ 0 and vi−oi ≥ 0 then
λi =−∞
µi =∞

else
λi =∞
µi =−∞.

5.3. Ray Setup

For each ray-BVH intersection, the values of the parametric dis-
tances (λλλ

root
,µµµroot) are initialized by performing a full precision

intersection test with the quantized root bounding box. The initial
parametric distances and the ray slope are only computed once per
ray and therefore can be evaluated in the shader before initiating
hardware based traversal. The computed ray slopes can also be used
for watertight ray-triangle intersections [WBW13].
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Showdown Temple Crown San Miguel
Keely (8-Bit) 64.9 / 5.1 95.5 / 8.0 60.5 / 8.6 97.5 / 8.3
Keely (10-Bit) 64.0 / 4.7 91.8 / 6.6 58.1 / 7.8 94.2 / 7.4
Our 63.8 / 4.7 90.7 / 6.2 57.3 / 7.6 93.2 / 7.2
Full Precision 54.6 / 4.0 78.3 / 4.9 51.6 / 7.0 86.5 / 6.6

Table 2: The number of internal-nodes / primitive-leaves traversed
for the four test scenes, using different traversal methods.

5.4. Computing Grid Dimensions

Since we combine bounding box decompression and traversal, the
decompressed bounds are no longer available. However, the grid
size di along an axis i can be computed separately. Note that an
unsigned floating-point value with an Nb-bit mantissa is sufficient
to represent the grid size. At each traversal step, the value of di can
be iteratively derived from its previous value dparent

i as

di = dparent
i − (ri + si)e

parent
i . (15)

The exponent of di gives the grid exponent, i.e., ei = exponent(di).
The initial value of the grid size droot and the quantized coordinates
of the root bounding box are precomputed during BVH compres-
sion.

5.5. Traversal Stack

In order to share bounding planes and traversal computations be-
tween a parent node and its children, the BVH should be traversed
in a topological order i.e., a parent node should be traversed before
its children. Typically such a traversal would require a stack, where
each stack entry would store the traversal state for the parent node,
which includes the full precision values of λλλ, µµµ and d as well as the
index of the far child node pair. A single stack entry requires close
to 32 bytes, which is large compared to an uncompressed BVH,
where only the index of the far child is stored.

In order to reduce the memory requirements of the stack, we
truncate it to the top four entries using a restart trail [Lai10]. With
a four entry stack, the number of additional traversal steps result-
ing from restarts is less than 10%. We assume a dedicated storage
of 128 bytes per ray for the truncated stack. The total size of this
memory on-chip would depend on the maximum number of rays
in flight, which is an architecture dependent parameter outside the
scope of our analysis.

Keely [Kee14] avoids a stack entirely using bidirectional node
references to retrace traversal steps [KSS∗13]. However this ap-
proach does not guarantee topological ordering, which precludes
sharing of bounding planes. Furthermore with a topological traver-
sal order, the accumulated numerical errors in λ and µ are bounded
by the maximum depth of the BVH, which is significantly smaller
than the maximum number of traversal steps.

6. Results

In order to analyze the implementation and performance trade-offs
of our approach, we compare it against the reduced precision traver-
sal technique of Keely [Kee14], which we call traversal point up-
date (TPU). We evaluate these traversal methods using the four test
scenes shown in Figure 3, at a resolution of 512× 512 pixels and
16 samples per pixel.

The Showdown and Temple scenes have less than one million
triangles, which is representative of the geometric complexity ob-
served in typical real-time applications. The Showdown scene is an
outdoor environment with ray traced direct lighting, while Temple
is an indoor scene one-bounce diffuse indirect lighting. The Crown
scene has over five million triangles and several glossy and refrac-
tive surfaces, which we render with up to four indirect ray bounces.
The San Miguel scene is a complex outdoor scene with over one
million triangles and rendered with direct environment lighting.

The Showdown, Temple and San Miguel scenes have been ren-
dered using PBRT [PH10], while the Crown scene has been ren-
dered using a renderer based on Embree [WWB∗14]. For all the
scenes, we extract the ray and geometry information from the
renderer and simulate traversal in a standalone functional simu-
lator. Watertightness is verified by comparing each ray intersec-
tion against the result produced by robust full precision traver-
sal [Ize13]. We use a BVH builder based on a binned surface area
heuristic (SAH) [Wal07]. We do not split primitives across spatial
divisions [SFD09], which can further improve performance.

Modifications to TPU: Considering the significantly smaller node
size that can be achieved by sharing bounding planes with the
parent node, we use this node structure for both traversal meth-
ods. As discussed in Section 5.5, this requires a traversal stack.
Therefore, we introduce a minor modification to TPU, where the
de-compressed coordinates are stored in the stack along with the
coordinates of the origin and the distance to the translated origin
tmin. The translated value of tmax is derived at each traversal step
by adding the updated value of tmin. Note that this introduces an
extra addition to the original method. With these modifications to
TPU, we make it practically watertight. It is guaranteed that the de-
compressed bounding boxes are strictly watertight. However a few
missed intersections can still result from accumulated numerical
errors in the ray clip bounds tmin and tmax.

6.1. Analysis

Figure 4 (left) shows the relative increase in the number of traversal
steps with our method compared to full precision BVH nodes and
traversal, when the plane offsets are quantized to different num-
bers of bits Nb. With 8-bit plane offsets the increase in traversal
steps is less than 5% and with 6-bit offsets, it is between 8% and
17%. It is interesting to note that the San Miguel and Crown scenes,
which have higher geometry complexity, also have a smaller rela-
tive increase in the number of traversal steps. Splitting larger tri-
angles could potentially improve performance with the Showdown
and Temple scenes, which we leave for future analysis.

We pick 6-bit plane offsets for the remaining part of our analysis,
which allows a pair of nodes can be stored in 8 bytes and presents a
good trade-off between cache-aligned node sizes and the number of
traversal steps. Figure 4 (middle) shows the relative increase in the
number of traversal steps with TPU using different mantissa widths
for the intersection test. Similar to Keely [Kee14], we use a one-bit
multiplier in our implementation of TPU to compute the offset to
the new origin. Using 6-bit mantissas results in a large increase in
the number of traversal steps but this drops significantly with 8-bit
mantissas, where the increase is between 14% and 25%.
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Showdown Temple Crown San Miguel
Figure 3: Higher quality renderings of the four test scenes used in our evaluation. The Showdown and San Miguel scenes are rendered with
direct environment lighting, while the Temple and Crown scenes are path traced, i.e., with indirect lighting.
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Figure 4: Relative increase in the number of traversal steps with different reduced precision options. Left: our method with different number
of bits Nb for the plane offset. Middle: traversal point update (TPU) with 6-bit plane offsets and using different sizes of mantissa bits for the
intersection arithmetic. Right: TPU with intersection tests using 8-bit and 10-bit mantissas and our method, both with 6-bit plane offsets.

Figure 4 (right) compares the relative increase in traversal steps
using our technique against TPU with 8-bit as well as 10-bit man-
tissas. Since we use full precision values for the slopes and the
parametric distances, our method presents the lower bound for the
increase in traversal steps. With 10-bit mantissas, the performance
of TPU is close to our method and with 8-bit mantissas, it intro-
duces between 2% to 8% additional traversal steps. Table 2 shows
a more detailed comparison of the different traversal methods.

6.2. Bandwidth

The memory traffic resulting from BVH node fetches depends on
the system architecture and design choices such as the sizes and
hierarchy of the caches, ordering of nodes, the number of parallel
traversal tasks, etc. Although these aspects are outside the scope of
our paper, the potential reduction in node bandwidth with the com-
pact node structure of Section 4 remains one of the key motivations
for our work. Therefore, we include a simplified bandwidth anal-
ysis using a functional implementation of ray traversal, where we
measure the bytes fetched per ray based on the number of cache
line misses that are observed. We use a simple ordered depth-first
BVH layout [NPK∗10, LSL∗13] to improve cache line locality.

Figure 5 shows the bytes fetched per ray for the Temple scene,
assuming a fully associative cache of 32 kB. Compared to a full
precision BVH node pair (32 bytes), a node pair with 6-bit plane
offsets compressed to 8 bytes brings a reduction of about 50% in
node bandwidth when using cache lines of 64 bytes. With cache
lines of 32 bytes, this is further reduced to about 40%. Consider-
ing the small size of a compressed node compared to the size of a
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Figure 5: Number of node bytes fetched per ray for the Temple
scene using a cache size of 32 kB, with 32 bytes and 64 bytes
line sizes. We compare three configurations, namely, a full pre-
cision node pair (32 bytes), a node pair with 16-bit plane offsets
(16 bytes), and a node pair with 6-bit plane offsets (8 bytes). The
bounding planes are shared with the parent node for all configura-
tions.

cache line, a node layout scheme that re-orders nodes across mul-
tiple BVH levels [YM06], can potentially achieve further savings
in bandwidth. Note that there is no additional bandwidth associated
with the stack as it is stored on-chip in a truncated form.

6.3. Intersection Errors

As discussed in Section 6, we compare our watertight algorithm
against a modified version of TPU, which is more robust but not
strictly watertight. Figure 6 reports the fraction of the ray-bounding
box tests that result in false misses with TPU, compared to the wa-
tertight intersection test of Ize [Ize13]. Our algorithm on the other
hand does not produce any false misses.
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Figure 6: The ratio of false misses to the total number of bounding
box intersection tests.

6.4. Arithmetic Complexity

Table 3 lists the different floating-point operations for TPU as well
as our method. It also includes a technology-independent estimate
of the arithmetic complexity in terms of the number of equivalent
NAND-gates. These estimates were derived by synthesizing param-
eterized floating-point units from the Synopsys Designware Foun-
dation library with two pipeline stages. Translating the ray origin
closer to the node enables lower precision intersection tests with
TPU compared to our approach. However, the number of opera-
tions and the overall arithmetic complexity is significantly lower
with our approach, which requires 60% fewer gates compared to
TPU.

The subtractor in step 6 (of TPU), requires full precision inputs
in order to limit the impact of catastrophic cancellations [Gol91].
However since the output of this subtractor is truncated to 8 bits, its
implementation can be optimized. We approximate the complex-
ity of this operation with an 8-bit subtracter [Kee14]. One of the
operands in the additions corresponding to step 4 and 8 has a one-
bit mantissa. We synthesize this adder by forcing 23 mantissa bits
of one operand to zero, which results in a 14% reduction in gate
count. From Equation 15, we can see that both operands in the sub-
traction operation for computing the grid size (step 1) have the same
exponent. Therefore these subtractors do not require alignment of
the input radix. Synthesizing these adders with a shared exponent
results in a significant gate count reduction, which is close to 50%.

7. Conclusion

Techniques like data compression and reduced precision arithmetic
are commonly used to achieve greater efficiency in modern GPU
pipelines. We aim to derive similar gains by leveraging these tech-
niques for hardware ray tracing. Towards this goal, we have intro-
duced a joint algorithm for reduced precision traversal and BVH
compression that achieves a significant reduction in intersection
cost and traversal bandwidth, across a variety of scenes. Our algo-
rithm also produces robust watertight results, meeting the require-
ments for high quality rendering.

Having reduced the cost of processing BVH nodes, we note that
the cost of processing triangles remains an important target for fu-
ture optimizations. Unfortunately lossy compression that is well
suited for a BVH, is not applicable to triangle data. It remains to
be seen if fast lossless compression schemes, such as those used
for color and depth data in a rasterization pipeline, can be applied
to triangles in a raytracing architecture.

Traversal Point Update
No. Computation Step Floating-Point Operation Gates
1 Grid exponent 6, 6-bit sub 1888
2 Decompressed bounds 6, 24-bit add 17400
3 Full precision origin 6, 24-bit add 17400
4 tmin 2, 24-bit add 4980
5 tmax 2, 24-bit add 4980
6 Plane distances (λ,µ) 12, 8-bit sub 11506
7 12, 8×8-bit multiply 9899
8 Distance to boxes 2, 24-bit add 4980

Total 73,032

OUR
No. Computation Step Floating-Point Operation Gates
1 Grid exponent 6, 6-bit sub 1888
2 Plane distances (λ,µ) 6, 24-bit add 17400
3 6, 6×24 bit multiply 9790

Total 29,078

Table 3: Arithmetic complexity for intersecting a pair of sibling
nodes with traversal point update (TPU) [Kee14] and our method
respectively.

We also note that building a system architecture for ray tracing
that leverages these energy efficient techniques, is an interesting
challenge for the future. We are positive that with consistent ef-
forts in that direction, ray tracing can become a strongly competi-
tive choice for real time rendering
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