
High Performance Graphics (2016)
Ulf Assarsson and Warren Hunt (Editors)

Local Shading Coherence Extraction for
SIMD-Efficient Path Tracing on CPUs

Attila T. Áfra Carsten Benthin Ingo Wald Jacob Munkberg

Intel Corporation

Figure 1: The Mazda scene (5.7M triangles, 76 materials) path traced using our stream-based shading coherence extraction method. For
this scene, our coherent shading algorithm achieves 90% utilization of 8-wide SIMD and reduces the shading time by 2× compared to simple
8-wide packet shading. This results in a total speedup of 35%. For scenes with more complex shading, we have measured speedups up to 3×.

Abstract
Accelerating ray traversal on data-parallel hardware architectures has received widespread attention over the last few years,
but much less research has focused on efficient shading for ray tracing. This is unfortunate since shading for many applications
is the single most time consuming operation. To maximize rendering performance, it is therefore crucial to effectively use the
processor’s wide vector units not only for the ray traversal step itself, but also during shading. This is non-trivial as incoherent
ray distributions cause control flow divergence, making high SIMD utilization difficult to maintain. In this paper, we propose
a local shading coherence extraction algorithm for CPU-based path tracing that enables efficient SIMD shading. Each core
independently traces and sorts small streams of rays that fit into the on-chip cache hierarchy, allowing to extract coherent ray
batches requiring similar shading operations, with a very low overhead. We show that operating on small independent ray
streams instead of a large global stream is sufficient to achieve high SIMD utilization in shading (90% on average) for complex
scenes, while avoiding unnecessary memory traffic and synchronization. For a set of scenes with many different materials, our
approach reduces the shading time with 1.9–3.4× compared to simple structure-of-arrays (SoA) based packet shading. The
total rendering speedup varies between 1.2–3×, which is also determined by the ratio of the traversal and shading times.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Raytracing

1. Introduction

Production rendering for visual effects and animation has recently
undergone a paradigm shift. Traditionally, most renderers used for
feature films were rasterization-based, feed-forward pipelines (e.g.,
Pixar’s RenderMan REYES architecture [CCC87]). However, with
the constant demand for increased visual fidelity, most studios are

now using ray tracing based architectures, where accurate lighting
simulations can be computed more efficiently and robustly.

In previous rasterization-based architectures, each primitive is
tested for visibility and shaded in a feed-forward pipeline, and
shaders are evaluated coherently over sample grids by design, ei-
ther in screen space or object space. In a ray tracer, the points to be

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

DOI: 10.2312/hpg.20161198

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/hpg.20161198


Áfra et al. / Local Shading Coherence Extraction for SIMD-Efficient Path Tracing on CPUs

Art Deco (10.7M triangles, 111 materials) Villa (37.7M triangles, 97 materials)

Conference (0.3M triangles, 36 materials) Dragon (7.4M triangles, 5 materials)

Figure 2: Four of the test scenes used for the performance evaluation of our shading coherence extraction method. Performance numbers
for each scene are given in Table 2.

shaded are not necessarily coherent. For example, in a path tracer
(the most commonly used rendering method in modern production
renderers), the shading step at each ray intersection point typically
emits rays in pseudorandom directions over the hemisphere. This
results in incoherent ray distributions, which in turn lead to inco-
herent shader invocations and data accesses after just one bounce.

On modern parallel architectures (either CPU or GPU), control
flow divergence and incoherent data access can significantly de-
grade both ray traversal and, in particular, shading performance.
Control flow divergence causes underutilization in the vector units
during shading, and incoherent data access translates to non-cached
reads from memory, disk, or even the network.

The growing importance of utilizing vector units and achieving
better memory access patterns is well understood by the rendering
community and has recently received much interest. However, most
existing research focused on improving ray traversal performance,
and as a result, many traversal algorithms for incoherent rays have
been proposed for various architectures (see Section 2). Improving
shading performance by extracting coherence, on the other hand,
has received significantly less attention, despite the fact that in pro-
duction path tracers usually more than half of the rendering time is
spent in shading [ENSB13].

Previous approaches for improving shading coherence (see Sec-
tion 2) operate on a single large, global stream, containing mil-
lions of rays, which is sorted (based on various criteria) to improve
coherence during shading [LKA13, ENSB13]. Letting all proces-
sor cores work cooperatively on a global stream is a natural fit for
high-throughput, high-latency architectures like GPUs, however, it
is suboptimal for CPU architectures because they are more sensi-
tive to memory accesses not served by the cache hierarchy.

In this paper, we propose a local shading coherence extraction
algorithm optimized for modern many-core CPU architectures and
vector instruction sets, which significantly improves the SIMD ef-
ficiency of shading for path tracing based renderers. To extract co-
herence, we trace small streams of rays on each processor thread
in a breadth-first fashion and sort the ray hits by material ID be-
fore evaluating the shaders. In this sorting stage, we group the ray
paths in each stream into coherent SIMD-sized batches that need to
be processed with a single shader, avoiding code path divergence.
The streams are independent from each other and are small enough
(up to a few thousands rays) to fit into the cache hierarchy of the
CPU. Also, they are always compact in the sense that no gaps are
introduced due to terminating paths.

In contrast to previous approaches that work on a single large

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

120



Áfra et al. / Local Shading Coherence Extraction for SIMD-Efficient Path Tracing on CPUs

stream, our local stream approach does not require additional syn-
chronization between the different hardware threads and maxi-
mizes cache usage when operating on the ray path data of the local
stream. Thus, the coherence extraction itself has a very small over-
head, much smaller than that of global methods. Although larger
streams enable potentially higher shading coherence, we demon-
strate that smaller, per-thread streams are sufficient for achiev-
ing close-to-optimal coherence and thus high SIMD utilization for
complex scenes with many different materials and shaders (see Fig-
ures 1 and 2).

We demonstrate the effectiveness of our algorithm by compar-
ing its performance against standard single-ray tracing and packet
tracing, which are the most widely used techniques in current pro-
duction path tracers. In the remainder of the paper, packet tracing
refers to structure-of-arrays (SoA) based SIMD shading of small
(e.g., 8-wide) packets with single-ray traversal, and stream tracing
refers to our coherent stream shading algorithm also with single-ray
traversal. For all but one test scene which has low shading com-
plexity, our stream tracing approach significantly outperforms both
single-ray and packet tracing.

2. Previous Work

Most ray tracing based renderers today trace a single ray
at a time, hence a lot of research has been devoted over
the years to improve performance of single-ray based traver-
sal algorithms [WBB08, DHK08, AL09, Áfr13]. However, exceed-
ing the single-ray traversal performance requires traversal ap-
proaches which focus on extracting coherence from multiple
rays that are traced together. Ray packet based traversal algo-
rithms [WSBW01, WBS07, ORM08, BWW∗12] attempt to im-
prove traversal efficiency by doing depth-first traversal for a small
number of rays in a SIMD fashion. They achieve notable speedups
for mostly coherent ray distributions (e.g., primary rays, hard
shadow rays) but suffer from divergence for incoherent workloads.

Breadth-first ray tracing [Han86, LMW90] is a more robust so-
lution, which traverses entire ray generations together and ex-
tracts coherent subsets of rays by ray queuing [PKGH97, AK10],
ray reordering/sorting [BWB08, GL10], or ray stream filtering
[WGBK07, GR08, RGD09]. Recently, the focus shifted to traver-
sal algorithms that combine the advantages of stream filtering and
SIMD-optimized single-ray traversal [Tsa09, BAM14, FLPE15].
These algorithms can be more efficient than corresponding single-
ray or ray packet techniques if sufficient coherence can be extracted
out of the ray stream.

Apart from improving coherence for ray traversal, the shading
phase suffers from the same issues of low vector utilization and in-
coherent memory accesses when shading a set of incoherent rays.
The more incoherent the rays are, the higher the probability that
many different shaders have to be evaluated within a SIMD batch.
Researchers addressed this issue by extending the shading frame-
work with (multiple) pre-shading filtering/sorting steps to increase
execution coherence during shader evaluation.

In the context of GPU ray tracing, Wald [Wal11] and van
Antwerpen [vA11] proposed techniques that compact streams of
rays to avoid inactive threads due to terminated ray paths, but SIMD

divergence from executing different shaders was completely ig-
nored. To address the issue of low shading efficiency when using
multiple materials, Hoberock et al. [HLJH09] employed different
stream compaction steps in a separate shading phase, improving
vector utilization. Laine et al. [LKA13] showed that splitting up a
monolithic GPU path tracing kernel into smaller specialized kernels
combined with global ray queuing can significantly improve vector
utilization and register usage, resulting in speedups up to 3×. The
GPU-based OptiX ray tracing framework [PBD∗10] also supports
queuing and batching of tasks (including shading) to improve vec-
tor utilization, but it cannot gather rays from different hardware
vectors.

The majority of CPU-based renderers trace a single ray at a time,
which directly translates to shading single rays. On wide-vector
CPU architectures (where the vector width is 8 or greater) this leads
to severe underutilization of SIMD units. The Embree kernel frame-
work [WWB∗14] supports shading of ray packets where the packet
width corresponds to the vector width of the underlying CPU ar-
chitecture. However, with an increasing number of ray bounces,
the SIMD utilization per shader evaluation for a given ray packet
can quickly drop to a single active ray.

As the number of rays within a single packet is typically not
enough to extract sufficient coherence for shading, researchers fo-
cused on larger ray streams instead. For CPU-based production ren-
dering, Eisenacher et al. [ENSB13] proposed to use a large ray
stream combined with sorting to improve data access coherence
during shading. The main goal was maximizing both geometry and
texture access coherence, which made a costly and complex texture
cache implementation obsolete and enabled coherent geometry ac-
cess. Even though data access coherence is improved by sorting the
rays before shading, the shader evaluation is still done sequentially
for a single ray at a time.

Concurrently to our work, RenderMan RIS [Pix16] is apparently
using a local coherence extraction technique similar to ours in its
shipping versions, as suggested by the public API documentation
and example plugin source codes. However, no paper has been pub-
lished on this approach yet, thus, many important algorithmic and
implementation details such as sorting and vectorization strategies
are not available, neither is any data on SIMD efficiency.

3. Coherence Extraction

Our shading coherence extraction method is based on tracing small
streams of rays in a breadth-first manner, traversing and shading
generations of rays together. These ray streams consist of up to a
few thousand rays, and each rendering thread traces separate, inde-
pendent streams. In the following, we assume that a single render-
ing thread is mapped to a single CPU hardware thread. Therefore,
the streams are kept local with respect to the CPU thread and the lo-
cal CPU caches, and no costly cross-core communication [SBH15]
is required. This simplifies the coherence extraction algorithm and
also minimizes the execution overhead on high-end CPUs with tens
of threads.

Our framework implements a unidirectional path tracing integra-
tor with next event estimation. On each surface interaction, the cur-
rent path is extended with one ray, and a light is sampled with one

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

121



Áfra et al. / Local Shading Coherence Extraction for SIMD-Efficient Path Tracing on CPUs

Figure 3: The material IDs assigned to the primitives of the Mazda
scene, visualized with different colors. Our method sorts the ray
hits by material ID before shading, which is enough to achieve high
SIMD utilization.

shadow ray. The shading system consists of materials, bidirectional
scattering distribution functions (BSDFs), and shaders. Each mate-
rial in the scene has a unique material ID (see Figure 3) and is as-
sociated with a shader. The material shaders, when given a surface
point, construct a composite BSDF consisting of one or more lay-
ers, which is then evaluated and sampled by the integrator. Lights
(e.g., area lights or environment maps) are treated as emissive ma-
terials and can be directly sampled. Multiple importance sampling
(MIS) [VG95] is used to combine the BSDF and light samples.

3.1. Algorithm

The path state on each hardware thread consists of two ray streams:
an extension ray stream for extending the paths, with one path seg-
ment at a time, and a shadow ray stream for direct light sampling.
The path tracing algorithm is divided up into stages, each involving
an iteration over certain ray stream values. An overview of our path
tracing pipeline is shown in Figure 4.

Ray generation. First, we initialize the extension ray stream with
primary rays generated from an image tile (e.g., 16×16 pixels). The
rays could correspond to one or more samples per pixel.

Ray intersection. Then, we intersect all rays in the stream with
the scene geometry. For this step, we can intersect the rays either
with a traditional single-ray algorithm or with a faster stream-based
approach [BAM14, FLPE15] that traverses the rays together in or-
der to extract coherence. For all measurements shown in the paper,
we rely on single-ray traversal to highlight the improvement on to-
tal rendering performance exclusively from improving shading ef-
ficiency. The resulting ray hit point data, including the material ID,
is stored in the stream. If a ray does not hit any geometry, a special
material ID (e.g., 0) is stored to indicate a ray miss.

Sorting. In the next stage, we extract shading coherence by sort-
ing the indices of the rays in the stream by the material ID of the
hit points. The ray data itself is not shuffled around during sorting.
Thus, we produce an array of ray IDs where rays that must be eval-
uated with the same shader are referenced consecutively. Since the

Sorting

Ray generation

Ray intersection

Accumulation

Shadow ray intersection

Material evaluation

Figure 4: Overview of our path tracing pipeline. The algorithm can
be divided into three groups of stages: traversal (extension ray and
shadow ray intersection), shading (material evaluation, accumula-
tion, and ray generation), and sorting.

streams are local, we can use a simple sequential sorting algorithm
to achieve this. We opted for the counting sort algorithm [Knu98]
because the number of different material IDs is typically on the
order of hundreds or, in the worst case, thousands. It can be imple-
mented very efficiently and has O(n+ k) complexity, where n is
the stream size and k is the maximum material ID.

Material evaluation. Coherent material shading is performed by
iterating over the sorted ray IDs and executing the shaders for
batches of rays with the same material ID using SIMD operations.
A shader is invoked for m rays in parallel at a time, where m is
the SIMD width. Each instance of the shader is mapped to a dif-
ferent SIMD lane. If the size of a batch is a multiple of the SIMD
width, the vectors passed to the shader are fully utilized, thus the
shader is executed at maximum compute efficiency. However, the
actual SIMD utilization can still be suboptimal due to control flow
divergence in the shader itself.

The integrator can either choose to continue the path and gen-
erate an extension ray by sampling the BSDF of the material, or it
can flag the path for termination. The integrator can also optionally
generate a shadow ray by picking a light source, directly sampling
it, and evaluating the BSDF for the generated ray direction. If there
are different types of lights in the scene (e.g., both area and environ-
ment lights), light sampling could suffer from SIMD divergence. In
order to avoid this, material evaluation and light sampling could be
split into separate stages. We did not do this in our framework be-
cause light sampling is usually much less expensive than material
evaluation, but this may not be the case in production rendering.

The extension ray, path throughput, path flags (termination and
light sampling), and other variables (e.g., BSDF sample PDF,
medium ID) that are computed by the integrator are appended to a
new, compact stream, discarding the old stream. Double buffering
is used for the storage of the input and output streams, switching the

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

122



Áfra et al. / Local Shading Coherence Extraction for SIMD-Efficient Path Tracing on CPUs

buffers after each ray bounce. The shadow ray and the direct light
contribution (assuming the shadow ray is not occluded) are added
to the shadow ray stream, which is separate from the extension ray
stream because not all materials might support shadow rays (e.g.,
perfectly specular materials). The direct light contribution will be
added to the path radiance only in a later stage, after testing all
shadow rays for occlusion.

For rays that did not hit anything, a special miss shader is ex-
ecuted, which in our implementation accumulates the pixel val-
ues corresponding to the terminated paths in the framebuffer. This
shader can additionally return a specific background color or a
color sample from an environment map.

Shadow ray intersection. After evaluating all materials over the
stream, the shadow rays generated by the integrator are tested for
occlusion. The results (either hit or miss for each ray) are written
back to the stream, which will be used to compute the final direct
light contributions in the next stage.

Accumulation. Finally, we iterate again over the extension and
shadow rays streams, with a single loop, to accumulate the direct
light contributions for the unoccluded rays in the path radiances,
and to perform framebuffer accumulation for the paths flagged for
termination.

Path regeneration. After the accumulation stage, we can either
continue with the ray intersection stage or we can first generate
more primary rays from the current tile if the number of rays in the
stream drops below a threshold, due to terminated paths. This tech-
nique is known as path regeneration [NHD10]. Since the stream is
compact, generating and appending new primary rays is trivial and
allows us to operate close to the maximum SIMD efficiency.

3.2. Implementation

We have optimized our framework (both shading and ray traver-
sal) for the AVX2 instruction set, which provides 8-wide SIMD
instructions for 32-bit data types. The shaders are executed us-
ing structure-of-arrays (SoA) style SIMD processing, which is also
how vectorizing compilers like the Intel R© SPMD Program Com-
piler (ispc) [PM12] and modern GPU architectures parallelize
scalar code over multiple vector unit lanes.

The streams are stored in a SoA memory layout, which is a nat-
ural fit for SIMD processing, and thus it is preferred over the sim-
pler array-of-structures (AoS) layout. The SoA layout enables us-
ing efficient SIMD vector loads and stores for stages that operate
on consecutive rays in a stream. Other stages that access rays in
an arbitrary order, such as the material evaluation stage, use gather
instructions to read values into vectors.

Appending values in a vector to the stream is done using a pack-
store operation [Int16], which compacts the vector based on an ac-
tive mask before storing it in memory. Although AVX2 does not
have a pack-store instruction, it can be efficiently emulated with
a vector permute instruction followed by a masked vector store in-
struction. Future instruction sets such as AVX-512 [Int16] will have
native pack-store instructions, which will be potentially even faster.

Extension ray stream Double Size
buffered (bytes)

Ray origin (xyz) Y 3×4
Ray direction (xyz) Y 3×4
Ray tfar Y 4
Path flags, pixel ID, sample ID Y 4
Path throughput (RGB) Y 3×4
Path radiance (RGB) Y 3×4
Medium ID Y 4
Ray ID N 4
Hit material ID N 4
Hit primitive ID N 4
Hit UV N 2×4
BSDF sample PDF N 4
BSDF sample type N 4

Shadow ray stream Double Size
buffered (bytes)

Ray origin (xyz) N 3×4
Ray direction (xyz) N 3×4
Ray tfar N 4
Light sample radiance (RGB) N 3×4

Table 1: Variables in the extension ray and shadow ray streams.
The streams are stored in SoA layout, thus each variable is stored
in a separate array. Some arrays are double buffered. The total
storage cost per path is 188 bytes. We rely on many paths per pixel
and bilinear texture lookups for anti-aliased texture filtering, and
thus do not include ray differentials. These would add an additional
48 bytes per path. For our default stream size of 2048, the path state
occupies 376 KB per thread and can therefore be efficiently held in
the CPU cache hierarchy.

The opposite of the pack-store is the load-unpack, which is used in
the accumulation stage to expand the shadow ray stream, inserting
inactive elements when loading into SIMD vectors, so the indices
of its elements match those of the extension ray stream. This way,
both streams can be processed in the same loop, iterating over the
streams in lock-step. We completely avoid using scatter operations,
which are more expensive on current CPU architectures.

Table 1 shows the contents of the extension ray and shadow ray
streams. As previously mentioned, the extension stream has to be
double buffered because it is both an input and an output stream
for the material evaluation stage. However, some variables in the
stream are either only inputs or only outputs (e.g., ray IDs, hit data).
To minimize the size of the path state, we employ double buffering
only for those variable arrays that require it. This is illustrated in
Figure 5, where we provide an example for the stream data flow
when executing shaders.

The path state in our implementation requires 188 bytes of stor-
age per path, which, for example, translates to a total size of 376 KB
for streams of 2048 elements. In Section 4, we will demonstrate that
2048 is a good default choice for the stream size on current CPUs.
The entire path state for a thread is allocated in a single chunk, in-
stead of separately allocating each variable array of the streams, so
a single pointer and an index are sufficient for addressing any value.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

123



Áfra et al. / Local Shading Coherence Extraction for SIMD-Efficient Path Tracing on CPUs

Ray ID array:

Input array:

SIMD register:

Output array:

SIMD register:

0 4 11 1 2 9

1 2 9

1 2 6 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 4 11 1 2 6 9 15 5 10 12 13 3 7 8 14

Pack-store

Shading

Gather D
ouble buffers

Figure 5: Stream data flow for executing SIMD shaders. Here we
use 4-wide SIMD for simplicity. The colors indicate different mate-
rials. First, values from the input variable (e.g., x coordinate of ray
origin) array are gathered into a SIMD register using the sorted
ray IDs as indices. This SIMD vector is then fed into the shader,
which computes new values for a subset of the lanes and deacti-
vates the rest (due to path termination). Finally, the active values
are appended to the output array using a pack-store operation.

4. Results

We compare our stream tracing algorithm to standard single-ray
tracing with scalar shading and packet tracing with SoA-based
SIMD shading. All algorithms use the same single-ray SIMD
traversal kernel and are implemented in the same path tracing ren-
derer having a scalar and a SIMD shading code path. The packet
and stream tracers use identical SIMD shading code.

4.1. Test Setup

Path tracer. Our path tracer supports the most important BSDFs
used in state-of-the-art production renderers. For diffuse surfaces,
the Lambert and Oren-Nayar [ON94] models are used. Rough di-
electrics and conductors are implemented with microfacet BSDFs
based on the Smith microsurface model [Hei14] and the GGX nor-
mal distribution [WMLT07]. The microfacet BSDFs are impor-
tance sampled using the distribution of visible normals [HD14].
Shaders can model more complex materials (e.g., plastic, metallic
paint) by combining multiple surface layers into a unified BSDF
[WW07]. Each layer can feature separate shading normals, which
can be either sampled from a normal map or generated procedu-
rally. The scene can be illuminated with area lights, distant lights
(e.g., the sun), ambient lights, and HDR environment maps.

The pseudorandom numbers for the samples are generated using
the Sobol low-discrepancy sequence [JK08] and Cranley-Patterson
rotation [CP76]. Russian roulette is used for path termination after
8 path segments, and the maximum number of path segments is
limited to 48.

The acceleration structures used for ray intersections are high-
quality 8-way branching BVHs [WBB08] constructed using both
object and spatial splits [SFD09]. Since we are primarily interested
in shading performance, we use the same vectorized single-ray
traversal kernel [Áfr13] for single-ray, packet, and stream tracing.

0

20

40

60

80

100

120

8 32 128 512 2048 8192 32768

M
ra

y/
s

Stream size

Art Deco Conference Dragon Mazda Villa

0

10

20

30

40

50

60

70

80

90

100

8 32 128 512 2048 8192 32768

S
IM

D
 u

til
iz

at
io

n 
(%

)

Stream size

0

1

2

3

4

5

6

7

8

8 32 128 512 2048 8192 32768

LL
C

 m
is

s 
/ 1

00
0 

in
st

.

Stream size

Figure 6: Performance of our method without path regeneration in
million rays per second (top) and shading SIMD utilization (mid-
dle) for 8-wide SIMD and different stream sizes. The number of
LLC misses per 1000 instructions was also measured (bottom) us-
ing Intel R©VTuneTMAmplifier. The tile size was fixed at 16×16 pix-
els, and the number of samples per pixel (per stream) was varied
between 1–128, depending on the stream size.

Using a specialized stream traversal kernel could provide further
speedups but analyzing this is beyond the scope of our paper.

The code, including the shaders, was written in C++ using AVX2
intrinsic functions, and it was compiled with the Intel R© C++ Com-
piler 16.0.2 for Linux.

Hardware. Our test system is a dual-socket workstation with two
Intel R©Xeon R©E5-2699 v3 CPUs based on the Haswell microarchi-
tecture, each having 18 cores clocked at 2.3 GHz, 36 hardware
threads, 8-wide SIMD, 256 KB L2 cache per core, and a 45 MB

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

124



Áfra et al. / Local Shading Coherence Extraction for SIMD-Efficient Path Tracing on CPUs

Scene
Single Packet Stream Stream w/ regeneration

Mray/s Mray/s SIMD
Speedup

Mray/s SIMD
Speedup

Mray/s SIMD
Speedup

Single Single Packet Single Packet
Art Deco 41.7 47.0 22% 1.13× 68.6 88% 1.65× 1.46× 67.3 88% 1.61× 1.43×
Conference 14.0 15.2 20% 1.09× 44.6 93% 3.18× 2.93× 44.5 95% 3.18× 2.92×
Dragon 81.7 99.9 54% 1.22× 96.4 98% 1.18× 0.96× 92.0 99% 1.13× 0.92×
Mazda 55.4 60.5 23% 1.09× 81.6 90% 1.47× 1.35× 80.3 93% 1.45× 1.33×
Villa 42.6 46.3 26% 1.09× 57.6 88% 1.35× 1.24× 57.6 92% 1.35× 1.24×

Table 2: Performance of the following path tracing techniques: single-ray tracing, packet tracing, and our stream tracing method without
and with path regeneration. For the SIMD methods (packet and stream), we list the total performance in million rays per second (including
ray traversal and shading), the SIMD utilization, and the speedup compared to single-ray and packet tracing. For all test cases we used a
stream size of 2048 rays and a tile size of 16×16, and we rendered the images with 256 samples per pixel per frame. Thus, we traced a total
of 65536 paths per tile.

shared last-level cache (LLC). The system has quad-channel DDR4
memory clocked at 2133 MHz.

Scenes. We use five test scenes to evaluate the performance of our
path tracer, which are depicted in Figures 1 and 2. Our assets and
shaders are an attempt to approach the complexity used in visual
effects, architectural visualization, and computer-aided design, but
we like to point out that high-end visual effects productions may
use significantly (1–2 orders of magnitude) more complex geome-
try, materials, and textures than presented here. Please refer to the
image captions for the material and triangle counts.

Mazda, Art Deco, and Villa are large scenes with detailed geom-
etry, many materials, high-resolution texture and normal maps (up
to three layers), and realistic shaders. The most complex material in
these is the car paint in the Mazda scene, which is a two-layer mate-
rial having a microfacet conductor substrate with procedural flakes
and a microfacet dielectric coating (see the closeup in Figure 1).

The Conference scene has simple geometry but has the highest
shader complexity of all scenes. The floor is made of an expensive
procedural marble material, which is evaluated using a 3D frac-
tional Brownian motion (fBm) function with value noise. The noise
function is implemented with hashing for the integer lattice points
and cubic Catmull-Rom interpolation. The red chairs feature the
procedural car paint material, and the table is made of rough glass.
The rest of the materials are simple matte and glossy surfaces.

Finally, the Dragon scene consists of millions of triangles but has
only five simple materials (rough glass and Lambertian surfaces).
This test scene was added in order to evaluate shading coherence
extraction where it has low potential for improving performance.

All scenes were rendered at a resolution of 3840×2160, and the
image was broken up into tiles of 16×16. The number of samples
per pixel per stream was varied depending on the stream size.

4.2. Measurements

Figure 6 shows the path tracing performance, the shading SIMD
utilization (in the material evaluation stage), and the number of
LLC misses for our method with respect to different stream sizes.
For most scenes, the highest performance is achieved using a
stream size of 1024–2048, for a SIMD utilization of about 90%
(using 8-wide SIMD). There is a trade-off for using larger streams:

0

10

20

30

40

50

60

70

80

90

100

pkt stm pkt stm pkt stm pkt stm pkt stm

Art Deco Conference Dragon Mazda Villa

Ti
m

e 
(n

or
m

al
iz

ed
)

traversal shading sorting unaccounted

Figure 7: Breakdown of the time spent on traversal, shading, and
sorting for packet tracing (pkt) and our stream tracing method
(stm). Note that sorting and the unaccounted operations have
negligible costs. We have performed these measurements using
Intel R©VTuneTMAmplifier.

increasing the stream size improves SIMD utilization by a small
amount but starts to hurt performance due to the higher number of
cache misses (caused by a larger working set). We have measured
the biggest performance drop for the Dragon scene (up to 14%),
which has the lowest shading complexity, having only 5 materials.
The rest of the scenes, with 36–111 materials, behave very similarly
in terms of both rendering speed and shading efficiency.

Based on these measurements, we have opted for a default
stream size of 2048 for our further tests, which means that the per-
processor path state for 36 threads occupies about 30% (13 MB) of
the shared LLC. Care must be taken not to saturate the LLC with
the streams as it serves the traversal memory requests as well. Us-
ing streams larger than 16384 has practically no benefits since the
SIMD utilization already exceeds 97% at this level. It is clear that
using local streams is highly efficient, and global streams are not
necessary for attaining almost perfectly coherent shader execution.

In Table 2, we have compared the performance of our method,
both with and without path regeneration, against single-ray and
packet tracing. For all scenes except the simple Dragon scene,
stream tracing without path regeneration is the fastest approach.
In those cases, it outperforms single-ray tracing by 1.35–3.18× and

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

125



Áfra et al. / Local Shading Coherence Extraction for SIMD-Efficient Path Tracing on CPUs

4 materials 1024 materials

Figure 8: Tiled Box scene with different number of randomly gen-
erated materials (with Oren-Nayar or GGX conductor substrates
and up to two GGX coatings, without textures). The number of ma-
terials includes one emissive material used for the light source.

0

50

100

150

200

250

300

2 4 8 16 32 64 128 256 512 1024

M
ra

y/
s

Number of materials

Packet Stream 2048 Stream 8192 Stream 32768

0

10

20

30

40

50

60

70

80

90

100

2 4 8 16 32 64 128 256 512 1024

S
IM

D
 u

til
iz

at
io

n 
(%

)

Number of materials

Figure 9: Million rays per second and shading SIMD utilization for
the Tiled Box scene (Figure 8) with varying number of materials,
using packets and streams (with 2048, 8192, and 32768 rays).

packet tracing by 1.24–2.93×. Also, it achieves significantly higher
SIMD utilization for shading than packet tracing: while for pack-
ets the SIMD utilization is only 20–54%, for streams it is 88–98%.
We see the highest speedup for the Conference scene, almost 3×,
which has the most complex shaders. This number is very close to
what Laine et al. [LKA13] measured for their wavefront tracer us-
ing a much larger global stream (1M rays) on a GPU with 32-wide
vector units, for the same scene with similarly complex shaders.

0

10

20

30

40

50

60

70

80

90

100

8 32 128 512 2048 8192 32768

SI
M

D
 u

til
iz

at
io

n 
(%

)

Stream size

SIMD8 SIMD16

Figure 10: 8-wide and 16-wide SIMD utilization for shading the
Mazda scene using our method (without path regeneration). With
2048 rays per stream, doubling the SIMD width causes only 10%
reduction in SIMD utilization.

Using path regeneration was not beneficial for our test scenes,
being slightly slower than the basic method. This can be explained
by the overhead of handling rays from different generations in the
same stream, and the negligible improvement in SIMD utilization,
up to only 4%. However, turning on path regeneration could be
worthwhile for outdoor scenes similar to Villa, where paths termi-
nate at a higher rate, and there are several complex materials.

In Figure 7, we show measurements of the time spent on ray
traversal, shading, and sorting by our method and packet tracing.
From these results, it is apparent that our method significantly de-
creases shading time for all scenes by 1.2–3.4×. The ray traversal
times are, in most cases, roughly the same for the two methods,
which suggests that reordering ray intersections has very little ef-
fect on the overall performance. Therefore, the rendering speedups
can be entirely attributed to the shading coherence extraction. The
biggest difference in traversal time is for Dragon, where stream
tracing causes a 10% traversal slowdown due to more cache misses,
but shading is still faster. The chart also reveals that sorting has al-
most zero overhead: only up to 0.3% of the total rendering time.

The charts in Figure 9 illustrate the scaling of path tracing perfor-
mance and shading SIMD utilization with the number of materials
in a procedurally generated scene (see Figure 8). For 1024 materi-
als, 2048 rays per stream are not enough to extract sufficient shad-
ing coherence. By increasing the stream size to 8192, stream trac-
ing outperforms packet tracing by 1.87×. Streams of 32768 have
smaller speedups in the tested range due to the higher cache over-
head but could perform better for more complex scenes.

So far we have analyzed the coherence extraction efficiency of
our method only for 8-wide SIMD. Future CPUs are switching to
even wider SIMD, with the AVX-512 instruction set, which will
enable 16-wide vector execution. To predict the efficiency of our
method on such architectures, in Figure 10 we show the shading
SIMD utilization using 16-wide SIMD for different stream sizes.
As expected, the utilization is lower than using 8-wide SIMD, but
the difference is small for larger streams. For example, the utiliza-
tion for streams of 2048 rays is already at 80%, which can be in-
creased to almost 90% by doubling the number of rays to 4096.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

126



Áfra et al. / Local Shading Coherence Extraction for SIMD-Efficient Path Tracing on CPUs

This indicates that our algorithm will scale well to wider vector
architectures.

5. Discussion

Shading. From the results we can conclude that our algorithm is
much more efficient than single-ray and packet tracing for scenes
with moderate to high shading complexity. In such cases, packet
tracing with SIMD shading is only marginally (less than 14%)
faster than single-ray tracing with scalar shading, which is consid-
erably easier to implement.

In contrast, our method makes much better use of the increas-
ingly wider vector units of recent CPUs, which could justify imple-
menting a SIMD shading system in a path tracing renderer using,
e.g., ispc. The industry, however, is moving toward the standard-
ized adoption of Open Shading Language (OSL) [Gri16], which
currently does not have a compiler supporting SoA-based vector-
ization, making the transition to SIMD shading in production ren-
derers difficult in practice. Nevertheless, OSL would be the ideal
framework for implementing such a vectorized shading system.

Since our coherence extraction approach is local, it also scales
well to more, potentially hundreds of CPU cores, and to bigger on-
chip caches. However, for simple workloads where the number of
shaders and their complexity is low, packet tracing remains a viable
alternative.

Sorting. In our framework, we assign materials to surfaces using
per-primitive material IDs but other shading systems could take a
different approach. Although we rely on sorting material IDs to ex-
tract coherence, our method allows for other sorting criteria as well.
For example, one could define only a single material which instan-
tiates different BSDF components (BxDFs) depending on parame-
ters fetched from textures. Thus, there would be no concept of ma-
terial ID in this shading framework. Nevertheless, coherent shading
could be implemented by first instantiating all BxDFs in a separate
stage and then sorting by BxDF ID. The downside of this approach
is that storing the instantiated BxDFs for the entire stream could
substantially increase the memory requirements.

To achieve even higher performance, additional sorting steps
could be introduced. After sorting by material ID, the ray hits could
be further sorted by the IDs of the intersected primitives to improve
geometry access coherence, reducing the amount of cache misses.
Texture lookup coherence could be improved as well by sorting by
the texture coordinates of the hit points. For these steps, instead of
using counting sort, other sorting algorithms like radix sort would
be more appropriate. Apart from temporarily storing the keys, sort-
ing by primitives and textures would not require additional mem-
ory. Another, already mentioned, optimization would be to perform
light sampling in a separate stage after sorting by light ID.

Limitations. Our framework restricts the shaders to spawn only
one extension ray and one shadow ray per invocation. Shooting
more than one shadow ray could be enabled by simply increasing
the size of the shadow ray stream or by adding more streams. How-
ever, recursively spawning multiple extension rays would be more
difficult to implement because the streams are fixed-sized and they
may not have enough room to store the additional paths.

The integrator in our framework is based on unidirectional path
tracing, which is often used in production renderers but in some dif-
ficult cases produces excessive amounts of noise. Extending our ap-
proach to more robust light transport algorithms like bidirectional
path tracing [LW93, VG94] is a promising research direction.

Another limitation is that the control flow divergence inside the
shaders is not alleviated. Therefore, sorting by material or shader
ID does not work well if the shaders are so complex that their exe-
cution quickly degrades to a single SIMD lane.

6. Conclusion

We have proposed a local shading coherence extraction algorithm
for CPU path tracing, which significantly improves SIMD utiliza-
tion and thus performance over traditional single-ray and packet
based approaches by up to 3×. We have shown that small local
streams of rays map well to the CPU’s cache hierarchy and sort-
ing these streams enables nearly fully coherent shader execution
with very low overhead. Our method efficiently handles complex
scenes with hundreds of different materials and shaders, while be-
ing well suited for future wider-SIMD architectures. The measure-
ments suggest that the method could perform even better with ac-
tual production shaders, which are likely to be much more expen-
sive than ours. We are planning to release our framework as open
source for the direct benefit of the rendering research community.

Acknowledgements

The Art Deco, Mazda, and Villa scenes are courtesy of Evermotion.
The Conference scene is by Anat Grynberg and Greg Ward. The
Dragon model is courtesy of the Stanford 3D Scanning Repository.

We would like to thank Tomas Akenine-Möller, Jim Nilsson,
Chuck Lingle, and Jim Jeffers for their guidance and support.

References
[Áfr13] ÁFRA A. T.: Faster Incoherent Ray Traversal Using 8-Wide AVX

Instructions. Tech. rep., Babeş-Bolyai University, 2013. 3, 6

[AK10] AILA T., KARRAS T.: Architecture considerations for tracing
incoherent rays. In Proceedings of the Conference on High Performance
Graphics (2010), HPG ’10, Eurographics Association, pp. 113–122. 3

[AL09] AILA T., LAINE S.: Understanding the efficiency of ray traver-
sal on GPUs. In Proceedings of the Conference on High Performance
Graphics 2009 (2009), HPG ’09, ACM, pp. 145–149. 3

[BAM14] BARRINGER R., AKENINE-MÖLLER T.: Dynamic ray stream
traversal. ACM Transactions on Graphics (Proceedings of ACM SIG-
GRAPH) 33, 4 (2014), 151:1–151:9. 3, 4

[BWB08] BOULOS S., WALD I., BENTHIN C.: Adaptive ray packet re-
ordering. In Proceedings of the IEEE Symposium on Interactive Ray
Tracing 2008 (2008), IEEE Computer Society, pp. 131–138. 3

[BWW∗12] BENTHIN C., WALD I., WOOP S., ERNST M., MARK W.:
Combining single and packet-ray tracing for arbitrary ray distributions
on the Intel MIC architecture. IEEE Transactions on Visualization and
Computer Graphics 18, 9 (2012), 1438–1448. 3

[CCC87] COOK R. L., CARPENTER L., CATMULL E.: The Reyes image
rendering architecture. Computer Graphics 21, 4 (1987), 95–102. 1

[CP76] CRANLEY R., PATTERSON T. N. L.: Randomization of number
theoretic methods for multiple integration. SIAM Journal on Numerical
Analysis 13, 6 (1976), 904–914. 6

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

127



Áfra et al. / Local Shading Coherence Extraction for SIMD-Efficient Path Tracing on CPUs

[DHK08] DAMMERTZ H., HANIKA J., KELLER A.: Shallow bounding
volume hierarchies for fast SIMD ray tracing of incoherent rays. Com-
puter Graphics Forum 27, 4 (2008), 1225–1233. 3

[ENSB13] EISENACHER C., NICHOLS G., SELLE A., BURLEY B.:
Sorted deferred shading for production path tracing. In Proceedings of
the Eurographics Symposium on Rendering (2013), EGSR ’13, Euro-
graphics Association, pp. 125–132. 2, 3

[FLPE15] FUETTERLING V., LOJEWSKI C., PFREUNDT F.-J., EBERT
A.: Efficient ray tracing kernels for modern CPU architectures. Journal
of Computer Graphics Techniques (JCGT) 4, 5 (2015), 90–111. 3, 4

[GL10] GARANZHA K., LOOP C.: Fast ray sorting and breadth-first
packet traversal for GPU ray tracing. Computer Graphics Forum 29,
2 (2010), 289–298. 3

[GR08] GRIBBLE C. P., RAMANI K.: Coherent ray tracing via stream fil-
tering. In 2008 IEEE/Eurographics Symposium on Interactive Ray Trac-
ing (2008), pp. 59–66. 3

[Gri16] GRITZ L.: Open Shading Language 1.7 – Language Specifica-
tion, Jan. 2016. 9

[Han86] HANRAHAN P.: Using caching and breadth-first search to speed
up ray-tracing. In Proceedings of Graphics Interface and Vision Inter-
face ’86 (1986), GI ’86, Canadian Man-Computer Communications So-
ciety, pp. 56–61. 3

[HD14] HEITZ E., D’EON E.: Importance sampling microfacet-based
BSDFs using the distribution of visible normals. Computer Graphics
Forum 33, 4 (2014), 103–112. 6

[Hei14] HEITZ E.: Understanding the masking-shadowing function in
microfacet-based BRDFs. Journal of Computer Graphics Techniques
(JCGT) 3, 2 (2014), 48–107. 6

[HLJH09] HOBEROCK J., LU V., JIA Y., HART J. C.: Stream com-
paction for deferred shading. In Proceedings of the Conference on High
Performance Graphics 2009 (2009), HPG ’09, ACM, pp. 173–180. 3

[Int16] INTEL CORPORATION: Intel R©Architecture Instruction Set Exten-
sions Programming Reference, 2016. Reference number: 319433-024. 5

[JK08] JOE S., KUO F. Y.: Constructing Sobol sequences with better
two-dimensional projections. SIAM Journal on Scientific Computing 30,
5 (2008), 2635–2654. 6

[Knu98] KNUTH D. E.: The Art of Computer Programming, Sorting and
Searching, 2 ed., vol. 3. Addison-Wesley, 1998. 4

[LKA13] LAINE S., KARRAS T., AILA T.: Megakernels considered
harmful: Wavefront path tracing on GPUs. In Proceedings of the
5th High-Performance Graphics Conference (2013), HPG ’13, ACM,
pp. 137–143. 2, 3, 8

[LMW90] LAMPARTER B., MUELLER H., WINCKLER J.: The Ray-z-
Buffer – An Approach for Ray Tracing Arbitrarily Large Scenes. Tech.
rep., 1990. 3

[LW93] LAFORTUNE E. P., WILLEMS Y. D.: Bi-directional path trac-
ing. In Proceedings of Third International Conference on Computational
Graphics and Visualization Techniques (Compugraphics ’93) (1993),
pp. 145–153. 9

[NHD10] NOVÁK J., HAVRAN V., DACHSBACHER C.: Path regenera-
tion for interactive path tracing. In Eurographics 2010 – Short Papers
(2010), Eurographics Association, pp. 61–64. 5

[ON94] OREN M., NAYAR S. K.: Generalization of Lambert’s re-
flectance model. In Proceedings of the 21st Annual Conference on
Computer Graphics and Interactive Techniques (1994), SIGGRAPH ’94,
ACM, pp. 239–246. 6

[ORM08] OVERBECK R., RAMAMOORTHI R., MARK W. R.: Large
ray packets for real-time Whitted ray tracing. In IEEE/Eurographics
Symposium on Interactive Ray Tracing 2008 (2008), pp. 41–48. 3

[PBD∗10] PARKER S. G., BIGLER J., DIETRICH A., FRIEDRICH H.,
HOBEROCK J., LUEBKE D., MCALLISTER D., MCGUIRE M., MOR-
LEY K., ROBISON A., STICH M.: OptiX: A general purpose ray trac-
ing engine. ACM Transactions on Graphics (Proceedings of ACM SIG-
GRAPH) 29, 4 (2010), 66:1–66:13. 3

[Pix16] PIXAR: RenderMan Documentation – RIS Developers’ Guide.
https://renderman.pixar.com/resources/current/
RenderMan/risDevGuide.html, May 2016. 3

[PKGH97] PHARR M., KOLB C., GERSHBEIN R., HANRAHAN P.: Ren-
dering complex scenes with memory-coherent ray tracing. In Proceed-
ings of the 24th Annual Conference on Computer Graphics and Interac-
tive Techniques (1997), SIGGRAPH ’97, ACM, pp. 101–108. 3

[PM12] PHARR M., MARK W. R.: ispc: A SPMD compiler for high-
performance CPU programming. In Innovative Parallel Computing (In-
Par) (2012), pp. 1–13. 5

[RGD09] RAMANI K., GRIBBLE C. P., DAVIS A.: StreamRay: A stream
filtering architecture for coherent ray tracing. In Proceedings of the
14th International Conference on Architectural Support for Program-
ming Languages and Operating Systems (2009), ASPLOS XIV, ACM,
pp. 325–336. 3

[SBH15] SCHWEIZER H., BESTA M., HOEFLER T.: Evaluating the cost
of atomic operations on modern architectures. In 2015 International
Conference on Parallel Architecture and Compilation (PACT) (2015),
pp. 445–456. 3

[SFD09] STICH M., FRIEDRICH H., DIETRICH A.: Spatial splits in
bounding volume hierarchies. In Proceedings of the Conference on High
Performance Graphics 2009 (2009), HPG ’09, ACM, pp. 7–13. 6

[Tsa09] TSAKOK J. A.: Faster incoherent rays: Multi-BVH ray stream
tracing. In Proceedings of the Conference on High Performance Graph-
ics 2009 (2009), HPG ’09, ACM, pp. 151–158. 3

[vA11] VAN ANTWERPEN D.: Improving SIMD efficiency for parallel
Monte Carlo light transport on the GPU. In Proceedings of the ACM
SIGGRAPH Symposium on High Performance Graphics (2011), HPG
’11, ACM, pp. 41–50. 3

[VG94] VEACH E., GUIBAS L.: Bidirectional estimators for light trans-
port. In Proceedings of Eurographics Rendering Workshop (1994),
pp. 147–162. 9

[VG95] VEACH E., GUIBAS L. J.: Optimally combining sampling tech-
niques for Monte Carlo rendering. In Proceedings of the 22nd Annual
Conference on Computer Graphics and Interactive Techniques (1995),
SIGGRAPH ’95, ACM, pp. 419–428. 4

[Wal11] WALD I.: Active thread compaction for GPU path tracing. In
Proceedings of the ACM SIGGRAPH Symposium on High Performance
Graphics (2011), HPG ’11, ACM, pp. 51–58. 3

[WBB08] WALD I., BENTHIN C., BOULOS S.: Getting rid of packets
– efficient SIMD single-ray traversal using multi-branching BVHs. In
Proceedings of the IEEE Symposium on Interactive Ray Tracing 2008
(2008), pp. 49–57. 3, 6

[WBS07] WALD I., BOULOS S., SHIRLEY P.: Ray tracing deformable
scenes using dynamic bounding volume hierarchies. ACM Transactions
on Graphics 26, 1 (2007). 3

[WGBK07] WALD I., GRIBBLE C. P., BOULOS S., KENSLER A.: SIMD
Ray Stream Tracing – SIMD Ray Traversal with Generalized Ray Packets
and On-the-fly Re-Ordering. Tech. Rep. UUSCI-2007-012, SCI Institute,
University of Utah, 2007. 3

[WMLT07] WALTER B., MARSCHNER S. R., LI H., TORRANCE K. E.:
Microfacet models for refraction through rough surfaces. In Proceedings
of the 18th Eurographics Conference on Rendering Techniques (2007),
EGSR’07, Eurographics Association, pp. 195–206. 6

[WSBW01] WALD I., SLUSALLEK P., BENTHIN C., WAGNER M.: In-
teractive rendering with coherent ray tracing. Computer Graphics Forum
20, 3 (2001), 153–165. 3

[WW07] WEIDLICH A., WILKIE A.: Arbitrarily layered micro-facet sur-
faces. In Proceedings of the 5th International Conference on Computer
Graphics and Interactive Techniques in Australia and Southeast Asia
(2007), GRAPHITE ’07, ACM, pp. 171–178. 6

[WWB∗14] WALD I., WOOP S., BENTHIN C., JOHNSON G. S., ERNST
M.: Embree: A kernel framework for efficient CPU ray tracing. ACM
Transactions on Graphics 33, 4 (2014), 143:1–143:8. 3

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

128

https://renderman.pixar.com/resources/current/RenderMan/risDevGuide.html
https://renderman.pixar.com/resources/current/RenderMan/risDevGuide.html

