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Abstract
femtoPro provides an immersive laser laboratory experience for training, experimentation and analysis. In this paper, we
present its programmatic design and architecture driven by requirements such as: accurate (non-)linear optics calculations,
real-time performance on virtual reality (VR) headsets, easy authoring capabilities of pedagogical “quests”, as well as natural
user interactions and effective, multisensory feedback. We elaborate on how we tackle these challenges considering frontend
components and the simulation backend. Notable features encompass an incremental, graph-based laser path solver algorithm
with caching capabilities, a volumetric pulse shape renderer with accurately mapped color and transparency, an intuitive
interaction system that translates coarse hand motions into precise adjustments, a comprehensive interface for configuring,
conducting, and analyzing complex experiments with double precision accuracy including time-series measurements with mov-
ing platforms, and a generally flexible, modular architecture achieved through event-based communication, dynamic binding,
and other state-of-the-art coding principles. Most of our proposed solutions should be directly applicable to similar immersive
science laboratories, independently of their concrete domain.

CCS Concepts
• Computing methodologies → Modeling and simulation; • Applied computing → Physical sciences and engineering;

1. Introduction

Laser technologies are becoming increasingly ubiquitous in our
everyday lives, with numerous applications across various fields,
such as research, industry, commerce, medicine, and defense [SPI].
Moreover, lasers with ultrashort pulse durations in the order of
femtoseconds (10−15s) and below are used for time-resolved spec-
troscopy of quantum dynamics in physics, chemistry, biology, and
material sciences. However, setting up and maintaining an ultrafast
laser laboratory requires significant resources, such as sophisticated
equipment, technical and physical infrastructure as well as expe-
rienced personnel. The high initial costs, ongoing resource needs
and limited capacities can be a barrier for many institutions, re-
stricting their ability to advance on this rapidly evolving technol-
ogy. The femtoPro software [BvMMM] aims at accessibility, ef-
fectiveness, and efficiency of teaching, conducting and analyzing
ultrafast laser experiments by providing an interactive, eye-safe,
collaborative VR laboratory experience backed by a realistic op-
tical simulation model. It tackles these challenges by offering an
immersive experience featuring a lab space and 3DUI elements that
align very closely with the real-world environment and instruments,
various feedback mechanics tailored towards quick apprehension
of laboratory procedures and the physical system including a so-
phisticated quest system and an interactive whiteboard. It is opti-
mised to yield high, constant frame rates to run on standalone VR

headsets to maximise flexibility and user experience. femtoPro has
been successfully integrated into an elective course on “Ultrafast
Spectroscopy and Quantum Control” for the chemistry Master’s
program at the University of Wuerzburg. Its apt use for outreach
initiatives and engaging a wider audience has successfully been
demonstrated at public science fairs and academic conferences. Be-
yond its current use cases, femtoPro can serve as a versatile tool
for designing, simulating, and conveying standard and custom op-
tical experiment setups in various fields of application [BMM∗23].
This paper provides an overview of femtoPro’s software architec-
ture, encompassing the system’s components and their interactions,
the management and processing of general and simulation data as
well as the underlying rationale behind UI and software design de-
cisions. By presenting this information, the paper offers insights
and knowledge that can be transferred to the development of vir-
tual laboratories and other types of experiment-based interactive
simulation experiences in different fields of science. For readers
interested in the details of the implemented optics model and its
mathematical foundations, we published another paper which fo-
cuses on femtoPro’s pulse transformation algorithm approximating
linear and non-linear optical responses as well as the various inte-
grated aspects of light-matter interactions [BMM∗23]. Moving for-
ward to Section 2, we will examine related work on VR laboratory
experiences in different domains and more specifically for optics
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applications. Section 3 outlines a typical application scenario for
femtoPro. This provides the basis for Section 4 which delves into
the software’s architecture, focusing on its core concepts, namely
the experiment instance and the simulation system. Section 5 con-
cludes the paper and outlines planned extensions of femtoPro.

Figure 1: General overview. In-game screenshot.

2. Related Work

In computer graphics, ray tracing is a well-known rendering tech-
nique used to create realistic images by simulating the way light
interacts with objects in a scene. It can also be applied in optics sys-
tem design to predict and optimize the path of light beams [SM62,
Wik]. Furthermore, various solutions exist for numerically solving
Maxwell’s equations, which are a set of partial differential equa-
tions that can accurately describe the behavior of light waves, and
available solvers often take into account the interaction with quan-
tum mechanical systems [ORI∗10, Lum, MPBK09, Man, KMP].
In this context, the UI of the LabView platform developed by
Schmidt and colleagues was an inspiration for the femtoPro project
[SHSF]. However, solutions employing the aforementioned meth-
ods do not meet the requirements for a VR laser lab, as ray trac-
ing does not consider the wave nature of light essential to specific
laser experiments or the lateral spatial beam profile, and solving
Maxwell’s equations are too costly for real-time computation. Nu-
merous applications already exist in the realm of VR training, e.g.,
in the health sciences including dentistry [VMWOD15], first-aid
[BBRvM19], and classroom management [LLH∗16]. VR training
applications also span across diverse engineering fields, including
construction [WWW∗18], surveying [BC19], and electrical engi-
neering [JG18]. To our knowledge, the first VR laser lab in the field
of optics was reported in 1996, introducing students to the prin-
ciples of light wave propagation [BMK96]. Numerous solutions
have been following in relevant areas, e.g. fiber optics engineer-
ing [HTRK13], and experimental teaching [TGYP16, QLF∗18].
Additionally, some commercial products are under development or
have already been released, such as the Immersive Photonics Lab,
a VR application stating to “accurately replicate physical phenom-
ena and allow for practical skill development in industrial or educa-
tional contexts” [VR , ALP]. femtoPro’s unique value proposition
lies in its ability to create a realistic and immersive virtual labo-
ratory experience, combining essential features such as the align-
ment of different optical devices, accurate simulation and analysis

of various non-linear optical phenomena, an easy-to-use didactic
content editing system, and remote collaboration (in development
for a future version). femtoPro takes advantage of the widely used
Unity game engine’s pre-built capabilities in rendering, detection
of collisions, specification of interactions, sensory processing, and
networking [HSH∗20].

3. Overview

Fig. 1 depicts a screenshot of the femtoPro laser laboratory. As in
real-world labs, the experiment table is its central element. A red
beam is emitted from the blue laser device to the left of the image.
In the given situation, the beam propagates through nine optical el-
ements that are mounted to the table and serve different purposes
such as reflection, refraction, frequency conversion, wavelength fil-
tering, and detection. In the bottom-right corner of the image, an
optical element is mounted to a mechanical delay stage that allows
users to incrementally change the path length of the laser beam
to generate time series of differently parameterized measurements.
The way the laser propagates is simulated based on Gaussian beam
optics, taking into account additional femtosecond laser pulse prop-
erties such as dispersion [BMM∗23]. The simulation’s outcome not
only determines the trajectories of the beams but also their opti-
cal properties measured in the virtual environment and plotted on
the screen of the laptop at the bottom-left of the screenshot. The
user interface of the measurement application running on the vir-
tual laptop provides the same functionality as the software applica-
tions used in real-world laboratories. On the wall at the back of the
virtual lab, there are two whiteboards which are primarily used to
inform the user about open and completed quests in training curric-
ula. femtoPro is developed for stand-alone head-mounted displays
such as the Quest and the Pico device series [Met, PIC]. They have
all the required sensing, processing and rendering capabilities built-
in, provide the user with a stereoscopic view with six degrees of
freedom, and feature a pair of 3D controllers. femtoPro can both
be used seated or in standing pose. There are various quests, which
introduce the user to navigation in the VR environment by means
of teleportation, selection, placement and configuration of optical
elements, the use of support devices such as the delay stage, the
virtual laptop, and, very importantly, the adherence to safety guide-
lines during all experiment stages. There is an extensive curricu-
lum of additional quests that teach the user to not only setup and
run more involved experiments but also to incrementally adjust and
expand those.

4. Architecture

In this section, we provide an overview of the femtoPro’s software
architecture as illustrated in Fig. 2. The concrete implementation
adheres to industry standards and best practices, such as clean code
principles and object orientation, which may not be apparent in the
architectural representation [Mar17]. Furthermore, by using agile
development methodologies, we prioritize adaptability, and respon-
siveness to changing requirements over rigid planning and upfront
design [Mar17]. In the figure, grey boxes represent components
within the Experiment Instance or Simulation System. Black ar-
rows indicate the simulation data flow, and blue dotted lines the
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Figure 2: Schematic overview of the system’s architecture.

overall communication architecture. The experiment instance sec-
tion comprises Optical Devices along with User Interactions to
manipulate them. Additionally, it includes a Quest System to de-
fine experiment-specific quests. The simulation system can process
numerical input data from any experiment instance. It comprises
three components: Simulation Backend, Analysis, and Rendering.
At the beginning of each simulation cycle, the backend receives
input data from the optical devices of an experiment instance, in-
cluding properties like their position. It then calculates the prop-
erties of all laser pulses. As indicated in the Input-Output cycle,
and described in more depth in Section 4.2, the calculations for
the laser path are performed incrementally for each optical device,
where one step’s result serves as input for the next, until the en-
tire path is determined in a self-consistent manner. The generated
pulses are passed on to Simulation Rendering and Analysis compo-
nents. The first generates a visual representation of each laser pulse
based on its numerical characteristics. The latter is responsible for
providing real-time graphical representations of aggregated simu-
lation data such as curves or bar charts. The communication within
and between the components of the system is realized by means of
independent event channels that follow the publish-subscribe pat-
tern [GHJV95]. In femtoPro, event channels are implemented as
wrapper classes for standard C# events, which manage all event
handling logic. Any component that holds a reference to a chan-
nel can invoke or listen to the wrapped event. These references to
channels are injected into the respective publishers and subscribers
in the editor via drag and drop or programmatically via script – a
technique known as dependency injection [Mar17]. This principle
plays a crucial role in ensuring that the project remains decoupled
and maintainable. Event binding can also happen dynamically dur-
ing runtime, thereby providing greater flexibility in the design of
interactive UI elements. For example, when a user clicks on a mea-
surement device in the UI for analysis during runtime, events of
the desired device are injected into the respective UI panel. Our
architectural decision to separate the simulation system and exper-
iment instance led us to use a multiscene workflow for the con-
crete implementation. In this approach, the simulation logic and
elements that are generic and not specific to any particular exper-
iment, such as the lab environment, are located in the main scene.
A specific experiment setup, on the other hand, is stored in a sep-

arate scene, which can be loaded additively to the main scene. We
opted for this approach over a single scene workflow for several
reasons. Firstly, it offers better scalability as we plan the creation
of 50+ new experiments in the near future. Secondly, it lowers ini-
tial loading times and memory consumption at runtime. Finally,
collaboration using version control is improved by reducing merge
conflicts since experiment and simulation data are located in sepa-
rate scene files. The only disadvantage of the multiscene workflow
is that references between scenes become invalid once any affected
scene unloads. We address the issue by restricting the placement
of elements to the scene where they are (mostly) referenced, thus
minimizing cross-scene references. If required, we pass references
across scene boundaries through events at runtime.

4.1. Experiment Instance

Figure 3: Examples of optical devices. From left to right: laser
source, lens, mirror, beam blocker and power meter. In-game
screenshots, retouched for visual clarity.

Optical devices provide functionality such as light manipulation,
detection, and measurement. For femtoPro we have implemented
a wide range of optical elements that can be categorized as laser
sources, pulse transformers, and pulse end points. Pulse transform-
ers are optical elements that generate new outgoing pulses at their
surface through linear and non-linear interactions with incoming
pulses. These interactions can involve various optical phenomena
such as reflection or refraction which enable the pulse transformer
to change the spatial as well as spectral-temporal properties of the
incoming pulse. Examples of pulse transformers include mirrors or
lenses (see Figure 3). In contrast to pulse transformers, pulse end-
points are physical elements that mark the end of a laser pulse’s
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path. Pulse endpoints can be sensors such as power meters (see
Fig. 3) or spectrometers that measure the wavelength-dependent
power distribution of a pulse at their surface. The laboratory en-
vironment and interactive components such as the laptop as well
as the player’s hands also serve as pulse endpoints. For the femto-
Pro simulation, linear and non-linear interactions of laser pulses are
only tracked at pulse transformer surfaces. All other surfaces termi-
nate the laser beam. All optical devices have distinct geometric and
optical properties that can be modified in the game engine’s editor
as well as in real time during gameplay impacting the simulation
output. Examples are the adjustment of the curvature radius of a
mirror or the definition of the refractive index of a lens determin-
ing a refracted pulse’s direction and beam divergence properties.
Furthermore, the settings for each laser source can be customized
to allow the generation of pulses with varying characteristics in-
cluding different wavelength, intensity and duration. The ability to
configure and customize optical components is crucial to produce
experiments that cover a wide range of optical phenomena. We have
included detailed properties that can be modified in the editor and at
runtime. For VR contexts, it is important that we maintain immer-
sion, avoid discomfort such as motion sickness, and that the usage
of optical devices is intuitive and self-explanatory. To achieve these
goals, we used industry standards for player locomotion and inter-
action with the game environment. In addition, in order to closely
mimic the interaction procedures of real lab work, we also devel-
oped custom interaction techniques for the optical devices.

Figure 4: Interactions from left to right: teleporting, interacting
with the keypad UI and mounting an optical device onto a surface.
In-game screenshots, retouched for visual clarity.

To move to a new location, the player can use the teleportation sys-
tem by selecting a destination with the thumbstick of the controller
and releasing it to teleport. Valid, unobstructed destination points
are indicated by a trajectory curve from the current position to the
destination that is also marked with a circle on the floor, providing
clear feedback to the user (Fig. 4, left). To improve comfort in a
seated VR experience with limited space available, the player can
also turn left or right by 45 degrees using the corresponding thumb-
stick action. We completely avoided Heads-Up Displays (HUDs),
i.e., UI elements that are overlaid on a fixed position on the player’s
screen. Instead, user interfaces are projected onto elements in the
virtual world, such as a virtual laptop or a level selection folder.
This design approach allowed for a more seamless integration of
the user interface into the virtual world, thus promoting a more im-
mersive experience while reducing visual discomfort. We utilized
the engine’s standard raycast system to select UI elements, to click
buttons, and drag sliders. As a visual cue of their interactivity, spe-
cific UI elements are highlighted upon hover. We also implemented
a virtual keyboard and numpad for inputting strings and numbers
into fields (Fig. 4, middle). They open in front of the clicked input

field similar to a real-world keyboard. The user simply clicks on
corresponding keys to enter characters, or to use additional comfort
features like erasing all input. While inputting numbers or strings
via virtual keyboard is an industry standard, it can still be cumber-
some for users. To improve usability, it is worth considering the
addition of a speech-to-text feature in the future. To increase the
realism, we used animated hand meshes instead of the default con-
troller model and deployed grabbing and pinching as two default
interactions. When a user’s hand approaches an interactive object,
its mesh is highlighted with a glow, intuitively guiding the user to-
wards interaction options (Fig. 4, right). The user can grab optical
devices and other interactive objects, such as the virtual laptop and
level selection folder. By default, grabbing involves a force pull
mechanism that pulls elements towards the controller from a dis-
tance. However, this reduces realism and makes precise positioning
difficult. To address this, we disabled force pull to restrict grabbing
interactions to objects within close proximity to the user’s hand.
Every optical device can be locked in place on the table to prevent
accidental grabbing interaction. The position of the screws attached
to the floorplate of each device indicates whether it is locked or
not. The device can be grabbed and lifted when the screws are up,
and it is locked when the screws are down. The user can change
the locking state of the device by pinching its floor screws (Fig. 4,
right). Besides that, the pinching gesture is used to precisely adjust
optical devices, for example by interacting with their micrometer
adjustment screws. To address the insufficient precision of user in-
put, we developed a crank mechanism that translates coarse circu-
lar arm motions to the desired precise adjustments of screws and
device components. This mimics a real-world device frame whose
position can likewise be fine-tuned by respective screws.

Figure 5: Fine-adjusting the angle of a mirror (left) and its upper
stand (right). In-game screenshots, retouched for visual clarity.

As shown in Fig. 5 (left), the horizontal and vertical angle of a
mirror’s frame can be adjusted in this way. Here, a complete rev-
olution of the relevant screw causes it to move by 0.25mm which
results in a 0.286-degree rotation of the frame. Figure 5 (right) il-
lustrates the fine adjustment of the upper stand. Dependent on the
type of interaction, an L-shaped line or a circle is rendered relative
to the user’s hand and the interactable’s center, visually guiding
the user’s motion in an intuitive manner. The precision of input in-
creases with the hand’s distance from the object being manipulated.
This is because a greater distance means a larger circular motion of
the hand, translating into a smaller and therefore more precise an-
gular change in the object’s position. Furthermore, users receive
direct feedback on the validity of their interactions. For example, a
continuous, subtle haptic impulse is given for each step the screw is
turned, whereas an intense single vibration impulse is triggered and
the circle changes to red when the device reaches a physical thresh-
old. The quest system plays a vital role in delivering educational

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

48



A. Müller, S. Müller, T. Brixner & S. v. Mammen / Programmatic Design and Architecture of an Immersive Laser Laboratory

content. It aims at teaching the fundamentals of the VR application
and guides the users through the process of conducting and ana-
lyzing experiments according to expert-approved procedures and
safety guidelines. An according quest manager object is attached
to every experiment scene, that can hold multiple quests which, in
turn, can contain multiple conditions for flexible quest design. A
quest where the user moves an object through several checkpoints
can, for instance, be easily modelled by means of multiple con-
ditions. A quest is fulfilled when all its conditions are met. Simi-
larly, the scene’s overall mission is fulfilled when all quests within
that scene are accomplished. The fulfillment state is transmitted via
events to respective listeners that are bound to the instantiation of
the experiment scene at runtime. This dynamic binding results in
modular and interchangeable components, thereby enhancing the
flexibility of the quest system. An optional in sequence parameter
ensures that certain conditions can only be met in a specific order,
as, for instance, dictated by safety guidelines and standard proce-
dures.

Figure 6: Quest editor (left) and the automatically generated Quest
UI displayed in-game on a virtual whiteboard (right). Unity Editor
screenshots. Retouched for better readability.

The quest system has been specifically designed for physics experts
who have little programming experience. A quest’s metadata such
as its name or the in sequence-attribute can be defined without any
coding by using the UI of the editor (Figure 6, left). The designer
can choose from a wide range of pre-made condition scripts suit-
able for most situations. In these cases, the user only needs to setup
the desired references. For instance, when using the generic con-
dition for the laser hitting an object, the reference to the specific
object must be assigned to the corresponding field inside the edi-
tor. Furthermore, the designer can extend existing or create entirely
new condition scripts easily without the need to know the quest sys-
tem’s internal logic, as it is encapsulated in abstract base classes.
Inside the virtual laboratory, a whiteboard displays the titles and
descriptions of all available quests in the current experiment scene.
A checkbox is attached to each quest text to clearly indicate its cur-
rent fulfillment state (Figure 6, right). Relevant events of the quest
system, like their initialization and change of state, are transmitted
to the whiteboard UI via event channels (as described in Section 4).
When a quest is fulfilled, its description fades to grey, the check-
box gets a green checkmark and an uplifting bell-sound is played.
This immediate audio-visual feedback has proven to be an effec-
tive reward mechanic that contributes to an enjoyable user experi-
ence [RSBLW17].

4.2. Simulation System

The simulation system’s main objective is to generate laser pulses
using numerical input provided by optical devices and user interac-
tion (simulation backend), which can then be rendered in 3D (sim-
ulation rendering) and analyzed at runtime during gameplay (sim-

ulation analysis). The simulation backend is responsible for gener-
ating the complete path of all laser pulses, which originates from
a laser source, traverses various optical devices, such as lenses and
mirrors, until it reaches its termination point, such as a measure-
ment device or a wall. We have modeled the path of laser beams
as a directed graph to facilitate calculations. This model features
laser sources as root nodes, optical devices with the ability to trans-
form pulses as internal nodes, and pulse endpoints as leaf nodes.
Laser pulses serve as directed edges connecting the nodes, with
each pulse having exactly one source and target node. As depicted
in Algorithm 1, the calculation of laser paths is performed each
frame in a node-by-node manner by processing a queue containing
all nodes requiring (non-)linear optical transformations of incom-
ing to outgoing pulses.

Algorithm 1 Pseudocode of the laser path solver algorithm.

1: At experiment initialization:
2: Add all source nodes to process queue
3: For each frame:
4: Add all nodes affected by change or pulse interruption
5: while queue !empty && increment++ < MAX
6: node = queue.Dequeue()
7: pulses_out = Transform(node, node.pulses_in)
8: Trace target nodes of all pulses_out
9: Add target nodes of new, changed & vanished pulses

The first step of the algorithm is to add all laser sources to the
queue once an experiment scene is loaded. Each frame, the algo-
rithm iterates through all optical elements, or nodes, of the experi-
ment. If a node’s optical or geometrical properties have changed in
comparison to the last frame, the node itself and all nodes that are
directly affected by this change, i.e., all source nodes of incoming
edges, are added to the queue. An algorithm to detect any pulse in-
terruptions is executed next. In case of interruptions, both source
and target node of the affected pulse are added to the queue. It is
worth mentioning that the process queue can contain only unique
node entries and rejects any duplicate insertions. After enqueuing
all nodes affected by change or pulse interruption, the queue is pro-
cessed: For each dequeued node the transformations of any incom-
ing pulses are calculated based on the principles of (non-)linear op-
tics. The resulting outgoing pulses are traced and their target nodes
are determined. Target nodes of pulses that have changed since last
frame are subsequently added to the queue. The laser path solver al-
gorithm is terminated when either the queue is empty or when the
maximum iteration count for a frame is reached. The latter condi-
tion acts as a safeguard against infinite looping due to potential cy-
cles in the laser path, for example when a specific circular arrange-
ment of mirrors reflects a beam indefinitely. Dependent on the com-
plexity of an experiment setup, accurately calculating (non-)linear
optical pulse transformations can be the most costly step of the laser
path solver. By calculating only those parts of the graph that are
affected by change, and by preserving the rest as is, we increased
the performance of the whole simulation without compromising ac-
curacy. Furthermore, the algorithm immediately yields all relevant
changes in its environment, including geometrical and optical prop-
erties of nodes, as well as pulse-matter interactions, contributing to
a highly authentic laboratory experience. While the laser path solv-

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

49



A. Müller, S. Müller, T. Brixner & S. v. Mammen / Programmatic Design and Architecture of an Immersive Laser Laboratory

ing algorithm minimizes unnecessary computations, some experi-
ment configurations may require revisiting nodes within the same
frame. This issue is an inevitable consequence of the underlying
graph traversal logic and can arise, for instance, when a laser beam
is reflected back to its originating node. On average, only a part
of the laser path changes, whereas computational cost tends to de-
crease the closer these modifications are to a leaf node. Besides
that, the impact on performance is significantly greater for path
segments that comprise non-linear optical pulse transformations
compared to those limited to linear optics. In the worst-case sce-
nario, the alteration of root node properties demands the recalcu-
lation of the entire graph. In practice, a performance analysis con-
ducted during VR play sessions underscored the importance of path
caching by revealing that in most frames the laser path remained
largely unchanged. This can be attributed to the user engaging in
various activities that do not interfere with the simulation, such as
reading quest descriptions, exploring the environment, inspecting
the experiment setup, or analyzing simulation results on the vir-
tual laptop. For treating the spatial behavior of laser beams we im-
plemented a model of Gaussian beam propagation [BMM∗23]. To
keep the cost low, we decided to ignore astigmatism such that all
beams have circular cross sections. We also ignore diffraction ef-
fects when a beam partially hits an obstacle. Instead, we approx-
imate the transmitted beam as a perfectly circular Gaussian beam
whose diameter is defined by the common geometric cross-section
of incident beam and impacted surface (Figure 7, right). The pulse

Figure 7: Left: accurate projection of a beam’s cross section onto
a pedestal. Right: rendering of a partially reflected beam. In-game
screenshot.

interruption detection algorithm is executed once per frame for ev-
ery pulse, resulting in a high iteration count. For performance rea-
sons, instead of tracking collisions with the actual volumetric shape
of the beam, a simple line is cast from the center of its origin to the
surface of the hit target. If the length of the line is smaller than in the
previous frame, the pulse is considered interrupted. On the down-
side, this approach can only detect intersections by objects that at
least cross the central axis of the beam resulting in specific partial
obstructions not being properly identified. However, partial interac-
tions of beams with non-optical elements, such as the user’s hand,
have negligible relevance to the experiment analysis. A potential
impact may be on the perceived realism of the VR experience, but
as the beam radius is limited by design to a few centimeters due
to safety requirements, inaccurate details of volumetric features are
not visually noticeable on a VR device. Most available game en-
gines currently utilize float precision for internal physics calcula-
tions to simulate the movement and interactions of objects within
the game environment. With a maximum beam propagation length
of 10m, achieving a precision of approximately one hundredth of a
wavelength, denoted as λ

100 , is necessary to accurately observe the

interference pattern generated by overlapping pulses. The wave-
length of femtosecond pulses is around 500nm which consequently
requires a precision of 5nm (5 · 10−9m). Despite that the C# float
datatype encompasses the desired range (10−45 to 1038), it is still
inadequate. This is because it can only guarantee accuracy without
floating point errors for numbers with a maximum of 9 significant
digits, which is one digit less than required [Mic]. Therefore, the
pulse transformation requires positional data of optical devices and
pulses to be in double precision to simulate interferometric opti-
cal phenomena with sufficient accuracy (Fig. 8). We addressed this

Figure 8: Inaccurate (left) vs. accurate (right) depiction of pulse
interference patterns with float vs. double precision positional data.
The y axis denotes the intensity of overlapping pulses measured at
specific sampling points (x axis). In-game screenshots, retouched
for visual clarity.

issue by storing and maintaining the positional data of optical de-
vices in both float and double precision, using the latter specifically
for the pulse transformation calculations. When an optical device is
not fixed to the table or other surfaces, its location and orientation
is provided by the physics engine as float values. These values are
upcast to double precision upon change caused by external forces
such as gravity, pushing, or pulling. When locked, an optical de-
vice is unaffected by physics. Its positional data can only be altered
indirectly through alignment screws or the position of the object it
is attached to, such as a motorized platform. The crank-like inter-
action system used for screw rotation maps coarse movements to
fine adjustments, meeting the accuracy requirements of the simula-
tion. Likewise, the linear movement steps of a motorized platform
is defined in double precision through numeric input fields of the
user interface, allowing to derive the accurate position of any op-
tical elements attached to it. This approach ensures the required
simulation accuracy while leveraging the performance and conve-
nience of the float-based physics engine for coarse positioning and
other interactions, effectively combining the best of both worlds.
The simulation rendering system is responsible for visualizing the
shapes of the pulses as well as their projection onto hit surfaces.
Even though the actual propagation path of a laser beam through
air is not visible to the naked eye, we chose to include its visu-
alization as an optional feature to improve understanding of the
simulation and enhance its educational value. The beam is repre-
sented as a simplified 3D mesh to balance performance and visual
fidelity. Therefore, we approximated Gaussian-shaped beams by a
mesh composed of linked rings with 16 vertex points placed at reg-
ular intervals. Additionally, a mesh clipping algorithm ensures that
a pulse exactly ends at a hit surface, regardless of its incident angle
and without any mesh overlaps or noticeable gaps between surface
and pulse. The rendering of the beam’s cross section is realized by
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a performant shader program run on the GPU (Figure 7, left). Game
engines usually provide specific projector materials, also called de-
cals, for similar problems such as the projection of spotlights to
a surface. However, we noticed a significant drop in performance
when used for beams that constantly move, which is rather common
during the alignment phase of an experiment. As another drawback,
the rendering capabilities of standard projector materials are very
limited for mobile and VR platform development. It is important to
note that the spectral composition of the beam determining its color
is accurately mapped and displayed within the given 32-bit color
space. Furthermore, the beam’s intensity profile is visualized by a
gradual decrease in opacity towards the edges of the pulse’s vol-
umetric shape and its cross-section. Both effects are realized with
the shader script calculating color and alpha values for each pixel
with a predefined look-up table as well as given pulse properties
and positional data as input. We further implemented object pool-
ing [Gre18] for pulse meshes to improve performance, particularly
when a user interacts with the experiment. Instead of creating and
destroying meshes every time the positions of pulses change dur-
ing the alignment process, we simply update the vertex positions
of reusable mesh instances stored inside a pool, resulting in a sig-
nificant reduction of memory allocations. To further improve per-
formance, the mesh and cross-section of a pulse are only updated
when its properties have changed, preventing numerous unneces-
sary calculations in an unaltered state. During play-tests on the tar-
geted standalone VR platforms, simulation rendering accounted for
only a small portion of the entire frame time – even during peak
workload with continuous changes to the entire laser path – sug-
gesting that it has been optimized effectively for those platforms.

Figure 9: Laser card showing the properties of an incident pulse.
In-game screenshot, retouched for visual clarity.

In accordance with standard lab procedures, a laser alignment
card with non-reflective coating can be used to detect the presence
and location of a laser beam. To foster learning, we augmented the
laser card with optional analysis capabilities: the properties of a hit
pulse at its intersection are displayed on the card itself as numerical
values that are automatically updated, rounded, and scaled (Figure
9). But the virtual laptop serves as the primary interface for detailed
experiment configuration and analysis. Each laser source, measure-
ment device, and motorized moving platform has its own UI panel
that can be selected from a dropdown list in the header menu. It is
important to highlight that all information displayed is gathered and
processed in real time. This creates a responsive feedback loop, en-
hancing the user experience and promoting the effective assessment
of experiments. The laser source UI panel allows for adjusting pa-
rameters of generated pulses, including their duration, wavelength,
and intensity. With multiple laser sources present, each source can
have its own individual settings, expanding the scope of possible

experiment designs. The spectrometer is a sensing device that mea-
sures the intensity of incident pulses across a range of wavelengths.
The spectrometer UI panel presents this spectral distribution in the
form of a line graph (Fig. 10). Therein, the x axis represents a pre-
defined range of wavelengths, and the y axis corresponds to the
measured intensity at each respective wavelength. This informa-
tion plays a crucial role in understanding the behavior of incident
pulses, enabling users to properly align and evaluate specific exper-
iments.

Figure 10: UI panel: Spectrometer. In-game screenshot.

The delay stage is a motorized platform that can be controlled to
precisely move optical elements, such as mirrors or beam splitters,
along a linear path. When the “Start” button is clicked on its UI
panel (bottom-left of Fig. 11), the delay stage moves automatically
in equidistant steps from a starting position to a destination accord-
ing to the settings defined by the user, here converted to time delays
using the speed of light. At each step, the delay stage pauses for
the duration of a simulation cycle, enabling measurement devices
such as a power meter to collect data for further analysis. Users
can make coarse adjustments using sliders corresponding to the ac-
tual and projected positions on the delay stage (top-left in Fig. 11).
Fine-tuning can be achieved using numerical input fields, which
can display values in different orders of magnitude. However, in-
ternally all values are processed in the smallest available unit with
double precision accuracy to ensure reliable simulation results (see
Section 4.2). The interface also displays the output of measurement
devices as a line graph for further analysis (bottom-right of Fig.
11). In this graph, the x axis represents the step number, while the y
axis displays the measured value at each step, which in this case is
pulse intensity. Overall, the interface enables users to comfortably
conduct and analyze a series of measurements captured automati-
cally at predefined sampling points, making it a valuable tool for
accurately assessing experimental data.

5. Conclusion and Future work

In this paper, we detailed how the event system and the separation
of simulation logic and experiment instances contribute to femto-
Pro’s modular and maintainable project structure. We laborated on
the importance of custom-tailored interaction mechanisms and UI
panels to enhance productivity and authenticity. We explained how
we struck a balance between performance demands and simulation
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Figure 11: UI panel: Delay Stage. In-game screenshot.

accuracy in a real-time VR environment. Our approach involves
simplifying aspects not critical to didactic objectives, such as re-
stricting optical calculations to the experiment setup only, applying
conservative optimization methods like path caching for resource-
intensive core features, and enhancing accuracy where necessary,
e.g. relying on double precision numerals for the fine-alignment
of optical devices. Looking ahead, we aim to enhance femtoPro’s
educational value by incorporating a multiplayer feature that en-
ables cloud collaboration and remote assistance. We also have al-
ready gathered extensive usage data that we want to evaluate with
respect to educational benefits and shortcomings. In order to bet-
ter harness the simulation model and to foster free exploration, we
also plan to introduce a save game system and a fabricator for in-
game creation and customization of optical elements. We are also
working on the integration of more resource-intensive non-linear
optics that incorporates resonant four-wave mixing processes such
that time-resolved spectroscopy with molecular systems could be
modeled.
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