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Abstract

Quadruped robots have emerged as an evolving technology that currently leverages simulators to develop a robust controller
capable of functioning in the real-world without the need for further training. However, since it is impossible to predict all
possible real-world situations, our research explores the possibility of enabling them to continue learning even after their
deployment. To this end, we designed two continual learning scenarios, sequentially training the robot on different environments
while simultaneously evaluating its performance across all of them. Our approach sheds light on the extent of both forward and
backward skill transfer, as well as the degree to which the robot might forget previously acquired skills. By addressing these
factors, we hope to enhance the adaptability and performance of quadruped robots in real-world scenarios.

1. Introduction

Quadruped robots are a rapidly developing technology that has
become commercially available and increasingly affordable. As
demonstrated by the recent DARPA Subterranean Challenge, these
robots possess the potential to autonomously explore subterranean
environments, thereby expanding their deployment possibilities
across various domains. In addition, they are already finding prac-
tical applications in areas such as construction surveying, oil rig
maintenance, and search and rescue operations.

Quadruped robots offer immense potential as interactive and
semi-autonomous platforms, wherein users provide velocity com-
mands, and the robot responds by adjusting its gait to the best of its
abilities. This adaptability would allow the robot to respond to dy-
namic situations, such as ceasing movement towards a commanded
direction upon detecting potential hazards like the edge of a cliff,
or navigating around obstacles encountered along the way. The de-
velopment of controllers to achieve such functionality remains an
active area of research.

In recent years, reinforcement learning (RL)-based approaches
have emerged as promising methods for developing robust con-
trollers capable of executing dynamic gaits. These methods often
necessitate substantial interaction with the environment, leading to
an initial utilization in simulation before being transferred to real-
world scenarios (known as sim2real robot learning). To address
this, NVIDIA introduced Isaac Gym [MWG∗21], a framework that
combines physics simulation, and neural network model learning
into a single GPU. This integration enables significant accelera-
tion, achieving orders of magnitude speedup compared to CPU-
based frameworks. For instance, [RHRH22] successfully trained
quadruped robots to walk in just 20 minutes, marking a substantial

reduction in wall-clock time when compared to CPU-based coun-
terparts.

The approach of Rudin et al. [RHRH22] requires the robot
trainer to anticipate all possible scenarios the robot may encounter
in its lifetime. This approach trains a deep neural network (NN)
policy through parallel simulations spanning diverse environments
(e.g., flat terrain, sloped terrain, stairs, etc.). Then during deploy-
ment the policy is fixed, even if scenarios never seen before are
encountered, missing opportunities for improvement.

What if we do extend the training process presenting new chal-
lenges to the agent? Would the robot acquire the new skill, while
still retaining its previous abilities? The answer is probably no: if
there is absence of mechanisms to retain old information while
adapting to new data, NN models may lose previously learned
knowledge, a phenomenon known as the catastrophic forgetting
problem [MC89]. A typical way to teaching a new skill (scenario)
to the robot using such an approach, while retaining its older skills,
would be to include the new simulated environment in the list of
the previously simulated environments and retrain.

Our ultimate goal is to develop continual reinforcement learn-
ing algorithms [KRRP22] for robots capable of adding new skills
to their repertoire without forgetting and without retraining from
scratch. In this preliminary study, we empirically investigate the
performance of the proximal policy optimization (PPO) algorithm
[SWD∗17], a state-of-the-art RL method (used in [RHRH22]), in
the context of environment-incremental learning. Our hypothesis is
that by presenting environments sequentially rather than in parallel,
PPO will prioritize the current situation at the expense of forget-
ting previously acquired skills due to its lack of a built-in continual
learning mechanism [PKP∗19, HRRP20].
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Figure 1: Easy-to-hard sequence of terrains for robot locomotion training. From left to right: flat, negative slope, stairs down, tiles, flat,
positive slope with random roughness, stairs up, tiles. 4096 robots are trained sequentially from easier to harder terrains. After each iteration,
512 robots for each type of terrain are evaluated in parallel.

2. Methodology

The core idea behind continual learning in our setting is to ex-
pose the agent to a structured sequence of environments for a fixed
amount of time in order to develop one skill after the other. Follow-
ing this approach we are interested in the measurement of the de-
gree of forward transfer (i.e., whether learning in one environment
bootstraps learning in the environment presented next), backward
transfer (i.e., whether learning in one environment helps develop
better skills for a previously seen environment), and forgetting (or
negative transfer; i.e., when learning in one environment harms the
performance of a previously learned skill).

2.1. Scenarios

Building on the work of Rudin et al. [RHRH22], we adopted five
types of simulated terrains to test locomotion skills: flat, rough,
sloped, stairs, and tiles. The flat terrain was considered the easiest,
while the tiles terrain was viewed as the most challenging. Then, by
mixing the order of presentation of these terrains, we created two
continual learning scenarios: easy-to-hard, and hard-to-easy. The
easy-to-hard scenario (shown in Fig. 1) introduced the terrains in
the following progression: flat, negative slope, stairs down, tiles,
flat, positive slope with random roughness, stairs up, tiles. The
hard-to-easy reverses this order of increasing terrain difficulty.

2.2. Training and Evaluation

The training process involves sequentially deploying non-colliding
robots on each terrain type. Specifically, the robots start training
on one terrain, following random velocity commands, until com-
pletion, then are relocated to the next terrain in the predetermined
order. For the reward function details we refer the reader to the pre-
vious work of Rudin et al. [RHRH22].

To evaluate the performance of the learned policy in a way that
allows observing forward transfer, backward transfer, and forget-
ting, we establish a validation protocol. During each iteration, we
save the learned policy, and in the subsequent iteration, we deploy
validation robots with learning switched off. These robots use the
policy saved from the previous iteration and operate simultaneously
across all terrains alongside the training agents. The performance of
the validation robots is assessed by calculating the moving average
of the total rewards obtained by the last 100 terminated agents.

2.3. Experimental setup

In this setting, we use a modified version of the PPO algorithm that
can recognize restarts in the batches. Collecting 24 steps per agent,
we split the samples in 4 mini-batches and iterate the learning for
5 epochs. We set a total of 4,000 learning iterations, progressing
through the curriculum every 500 iterations. The maximum dura-
tion of the agents is set to a constant value of 20 seconds, after
which they are restarted to avoid random walkers in the map. Both
the actor and the critic are implemented with DNNs composed of
three fully connected hidden layers of size 512, 256 and 128 respec-
tively. The networks’ input comprises of 48 sensory control mea-
surements, commands, and the previous action, along with terrain
height measurements sampled in a square area beneath the agent.
These measurements add up to a total of 235 values. The output of
the policy network (i.e., the actions) is 12D which corresponds to
desired joint positions (the robot’s degrees of freedom).

3. Results

We conducted experiments using the NVIDIA Isaac Gym simula-
tor with a Unitree A1 quadruped robot model. For each experiment,
we collected results from 5 independent runs, executing the simula-
tions on NVIDIA RTX A5000 GPUs. The training phase used 4096
robots in total, with robots dynamically switched between different
terrains every 500 iterations. An additional 4096 robots considered
for the validation phase were distributed across all terrains, result-
ing in 512 robots used to validate individual terrain types.

3.1. Easy-to-hard scenario

As we observe in Fig. 2, in the easy-to-hard scenario, whenever
there is a change in terrain during training, the performance of the
agent drops and starts increasing again; the exception is when the
flat terrain is presented again at iteration 2000, where the perfor-
mance rises beyond 20 (performance on flat terrain at 500 iter.).

During validation, we observe the following. In the initial iter-
ations (0-500) when the agent is trained on the flat terrain, there
is an increase in the performance of all skills, more for the sloped
terrains and less for the stairs and tiled terrains. When the negative
slope is presented (500-1000 iter.), there is some backward trans-
fer, as the skill of walking on flat terrain gets slightly improved; at
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Figure 2: Performance over time of locomotion policies for easy-to-hard (left column) and hard-to-easy (right column) training. Last row
shows training, other rows validation on each terrain, with colored bands highlighting when training occurred on that terrain. The blue line
represents reward as average over 5 runs, with shaded region as min-max interval. The graphs demonstrate the effects of forgetting and
knowledge transfer at different stages of training, the intensity of which is affected by previously acquired skills.
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the same time, this helps improve the skill of walking on a posi-
tive slope. When stairs-down is presented (1000-1500 iter.), there
is some forgetting of the previous skills as the performance of flat
and negative slope decreases; we observe a similar trend for the
positive slope and stairs up terrains. Training on tiles (1500-2000
iter.) worsens flat and downward stairs walking, improves upward
stairs and slope walking, and insignificantly affects negative slope
and downward stairs skill.

When flat terrain is presented again (2000-2500 iter.), the skills
of walking on negative and positive slopes significantly improve.
Positive slope (2500-3000 iter.) also improves the skill of walking
on a negative slope and slightly on stairs up. On the other hand,
the stairs up terrain (3000-3500 iter.) negatively impacts the flat,
positive and negative slope terrain walking skills. Finally, training
on tiles for the 2nd time (3500-4000 iter.) negatively impacts the
skills in the flat, negative and positive slope, and stairs up terrain,
while the skill in the stairs down terrain does not get affected.

3.2. Hard-to-easy scenario

In the hard-to-easy scenario, interestingly, the performance of the
agent during training gets progressively increased; the exception is
when the tiles terrain reappears after the flat terrain. In addition,
when the agent trains on the flat terrain for the 1st time (1500-
2000 iter.), its performance does not increase, as it is already at a
high level. When it trained for the 2nd time (3500-4000 iter.) its
performance becomes even better.

During validation we observe the following. The skill on flat ter-
rain generally improves over time with the exception of switching
from flat to tiles (2000-2500 iter.) where we observe some forget-
ting. The negative slope and positive slope walking skills start im-
proving, but when flat terrain is presented (1500-2000 iter.) they
start being forgotten, and when the tiles terrain is presented next
(2000-2500 iter.) the performance drops even more, which, how-
ever, starts increasing afterwards. The stairs down skill improves
steadily; at 2500-3000 iterations it increases quickly due to being
trained on that terrain, but gets forgotten later as the agents are
trained on the negative slope and flat terrains. The stairs up skill
gets forgotten when switching to positive slope, but steadily im-
proves later, with the exception of flat terrain at the end (3500-4000
iter.) which negatively (but not significantly) impacts it. Finally, the
skill of walking on tiles improves slightly with stairs-up training,
but declines with negative slope training followed by flat terrain.

3.3. Discussion

We observed that learning to move on positive or negative slope
generally results in positive transfer. This might be because ran-
dom velocity commands on a sloped surface might cause the direc-
tion to be either uphill or downhill. We did not observe the same
when learning to walk up or down the stairs. The most variance is
observed when the agent is trained on the stairs and tiles terrains.

In our observations, we find that the agent exhibits forgetting in
both scenarios, which confirms our initial hypothesis. Although the
extent of forgetting is lower in the hard-to-easy scenario compared
to the easy-to-hard one, it is still evident. To mitigate forgetting,

incorporating continual learning mechanisms into the learning al-
gorithm could be a potential solution. Rehearsal, regularization and
architectural strategies could be explored. However, implementing
these mechanisms is not straightforward with PPO as this is an
on-policy algorithm. It might be worth considering complement-
ing such mechanisms with off-policy algorithms (e.g., [ESM∗18]),
or model-based RL (e.g., [WEH∗23]).

4. Conclusion

Our research explores the potential adaptability of quadruped
robots during deployment. We analyzed the effects of exposure
to novel situations measuring forgetting and knowledge transfer
between skills when agents are trained with the PPO algorithm.
Adopting two continual learning scenarios, we provided a compar-
ison of the learning dynamics by highlighting how learned skills
affect one another at each point in time. Our results emphasize
the importance of developing RL algorithms with explicit continual
learning mechanisms in order to enable robots to efficiently adapt
to new real-world situations.
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