OpenSG Symposium (2003)
D. Reiners (Editor)

Preserving Realism in real-time Rendering of Bidirectional
Texture Functions

Jan Meseth and Gero Miiller and Reinhard Klein

Computer Graphics Group, Bonn University, Germany

Abstract

The Bidirectional Texture Function (BTF) is a suitable representation for the appearance of highly detailed sur-
face structures under varying illumination and viewing conditions. Since real-time rendering of the full BTF data
is currently not feasible, approximations of the six-dimensional BTF are used such that the amount of data is
reduced and current graphics hardware can be exploited. While existing methods work well for materials with low
depth variation, realism is lost if the depth variation grows. In this paper we analyze this problem and devise a new
real-time rendering method, which provides significant improvements with respect to realism for such highly struc-
tured materials without sacrificing the general applicability and speed of previous algorithms. We combine our
approach with texture synthesis methods to drastically reduce the texture memory requirements and demonstrate
the capabilities of our new rendering method with several examples.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Color, shading, shadow-

ing, and texture

1. Introduction

Realistic rendering of real-world objects incorporates com-
plex geometric models and sophisticated modelling of the
object’s surface reflectance behavior. In the field of real-time
rendering, for many years the latter task has been covered
by the well-known Phong-Model !° because of its simplic-
ity and computational efficiency. The (lambertian) diffuse
term of the model was allowed to vary spatially via tex-
ture mapping. Due to the dramatic development of render-
ing hardware in the last few years, it became possible to
render surfaces using more enhanced and physically plau-
sible approximations like the Lafortune '! or the Ashikhmin
model ! and even arbitrary bi-directional reflectance distri-
bution functions (BRDFs) 8 in real-time. Since the BRDF
captures only the physical reflectance behavior of a uniform
surface element, Dana et al. introduced the bidirectional tex-
ture function (BTF) which can roughly be interpreted as a
tabulated BRDF-per-texel representation. Due to the pure
size of a BTF (hundreds of megabytes) real-time rendering
of the full data is currently not feasible. Hence approxima-
tions of the 6D-BTF are used.

Existing approaches to real-time BTF rendering assume
common BRDF models on a per-texel basis. Implementing

(© The Eurographics Association 2003.

low-parameter but expressive models, this results in an ex-
traordinary data compression as recently shown by McAllis-
ter et al. 17. Although this kind of approach seems to work
well for materials with low-depth variation, it leads to un-
satistfying results if the depth variation grows. In fact, one
experiences a significant loss of 3D-structure of the surface
and therefore a loss of realism in the visualization of highly
structured surfaces.

As main contributions of this paper, we first provide an
in-depth analysis of fitting existing reflectance functions to
BTF datasets. Based on the results and further observations,
we devise a new fitting function that approximates a BTF
by a set of reflectance fields. We show that this approach
results in drastically reduced fitting errors and thus signif-
icantly improves the visual quality of rendered images, at
the expense of slightly higher texture memory requirements.
In addition, we propose a real-time rendering algorithm for
the fitted data and present a method to reduce the amount of
texture memory required by our data representation.

The rest of the paper is organized as follows: After re-
viewing related work in section 2 we analyze the BTFs of
highly depth-varying surfaces in greater detail in section 3.
In section 4 we present our new BTF approximation. In sec-

delivered by
[|

www.eg.org

- EUROGRAPHICS
DIGITAL LIBRARY

diglib.eg.org

http://www.eg.org
http://diglib.eg.org

Meseth and Miiller and Klein / Preserving Realism

tion 5 our hardware-accelerated rendering algorithm and its
integration within OpenSG are discussed. In section 6, we
describe our approach to texture memory reduction. Several
application examples of our method are shown in section 7.
Finally, we conclude and describe directions for future re-
search in section 8.

2. Related Work

Truly realistic renderings of real world materials have to
simulate the four-dimensional BRDF(l,v) for every surface
point of a material. Such an approach is infeasible given to-
day’s computing power and will likely remain in the near
future.

Although simple texture and bump map representations
lead to impressive results for very simple materials, more
complex models are required to simulate the real appear-
ance of natural materials. Early results approximated a sin-
gle BRDF by a Ward 2* or Lafortune '' model. In 8 Kautz
and McCool approximate the four-dimensional BRDF by
a product of two two-dimensional functions g(1) and A(v)
which are stored as textures and combined during the ren-
dering step. McCool et al. '8 improved the above method by
employing homomorphic factorization, leading to approxi-
mations with user-controllable quality features. The above
approaches were further improved by 20, 2! and '3, which
all enable the BRDF to be lit by image-based lighting while
relying on different approximation functions.

In the context of rendering spatially varying materials,
the polynomial texture maps (PTM) method by Malzbender
et al. 15 proved suitable for rendering scenes under varying
lighting conditions, as long as the viewpoint remains fixed.
Chen et al. 2 presented a different method for fixed illumina-
tion and variable viewpoint based on factorization methods.

Rendering spatially varying materials under varying light
and view conditions was made possible with the six-
dimensional BTF representation introduced by Dana et al.
3. Due to the enormous amount of data in a BTF, only few
real-time rendering algorithms have been published so far.
Kautz and Seidel ° proposed to factor the pixelwise BRDF
- given as factors of simple reflectance models - into two-
dimensional functions and storing the values in textures that
are evaluated with hardware supported operations and de-
pendent texture lookups. Unfortunately, their rendering al-
gorithm yields unsatisfying results for more complex re-
flectance models which are not easily separable. In an ap-
proach similar to 2! Kautz et al. '° rendered spatially vary-
ing BRDFs by simply employing higher-dimensional look-
up tables. McAllister et al. '7 published a method that ap-
proximates the BTF by pixelwise Lafortune models, which
can efficiently be evaluated in current graphics hardware.
Daubert et al. 4 use a similar approach in rendering synthetic
cloth BTFs, but additionally modulate the pixelwise Lafor-
tune models with a view-dependent factor in order to cope
with occlusion effects.

3. BTFs of Highly Depth-Varying Surfaces

The BTF can be defined as 2D RGB-texture that varies with
4D light and view direction. A high-quality sampling of this
function consisting of 256x256 texels in size and 81x81
poses for light and viewing direction contains more than
1.2GB of data. Even with today’s most powerful graphics
hardware real-time BTF rendering via linear interpolation of
the measured data is rather intractable. Thus, some kind of
lossy compression has to be used

If the per-texel data is assumed to exhibit a BRDF-
like behavior, one can simply apply every known BRDF
model/approximation, e.g. spherical harmonics 27, spheri-
cal wavelets '? or analytical models like generalized cosine
lobes -1 to name a few, to each texel independently. The
demand of real time rendering rules out linear-basis decom-
positions, since they tend to use too many coefficients in
modelling specularities or may not yet be implementable in
hardware. Unfortunately, analytical models are not always
suitable either, especially in the case of rough and highly
depth varying surfaces, for the following reasons:

e Forcing reciprocity - a basic assumption in analytic BRDF
models - leads to significant errors, since the BTF of a
rough surface captures also asymmetric effects like sub-
surface scattering. The measurement process and the re-
quired rectification of the reflectance images introduce ad-
ditional asymmetry (see also section 4).

e The physical motivation of analytical models relies on
the fact that the micro geometry of the surface can be
modelled with a certain distribution of microfacets (see
e.g. 1), which is modulated by a shadowing and a Fres-
nel term. The (implicit) shadowing term of simple cosine-
lobe models is insufficient to express the discontinuous
shadowing and masking effects occurring on rough sur-
faces (see figure 1). In particular, they are not capable
of modelling the view-dependent effect of changing per-
ceived normals which is experienced for materials with
high depth variation (see figure 2).

Figure 1: Spherical plot of a knitted wool BTF texel for two
different view directions (solid surface: measured data, red
wireframe: two-lobe Lafortune-fit). The model is not expres-
sive enough to model the discontinuous changes in the data
and is bound to some average non-directional lobe.

Since neither linear interpolation of measured values nor
fitting of simple BRDF-style models can achieve both high

(© The Eurographics Association 2003.

Meseth and Miiller and Klein / Preserving Realism

Figure 2: Changing perceived normals. The perceived nor-
mal is averaged over all normals in the area of the beam
passing through a pixel on the screen. For varying view di-
rection, completely different normals are perceived.

quality and real-time rendering, we propose in the following
a combination of the memory inefficient but high quality lin-
ear interpolation strategy for rendering the full BTF data and
the efficient yet low-quality fitting strategy.

3.1. 4D BTF-Slices

Fixing the incident direction 1 of a measured BTF dataset,
we arrive at a 4D function called the surface light field:

LR(x,v) :=BTF(x,l,v)

Surface light fields have been used in the task of 3D-
photography, enabling the rendering of novel views of real-
world objects under a complex but fixed illumination 28 2,

Otherwise, fixing exitant direction v, the resulting func-
tion is the patch’s surface reflectance field:

RFy(x,1) := BTF(x,1,v)

As expected, reflectance fields are used in rendering of real
world objects under a fixed view with arbitrary illumination
7 and allow very compact representations !° in the case of
mainly diffuse reflection. Matusik et al. captured a set of
sparse reflectance fields of an object enabling rendering of
arbitrary views under arbitrary (but low-frequency) illumi-
nation 16,

Now we propose to implement BTF rendering as map-
ping and rendering a discrete set of discrete light fields or re-
flectance fields of the measured surface onto arbitrary geom-
etry. Employing either light- or reflectance fields, the color
of a BTF-textured surface element with texture coordinate x
given local light and view direction (1,v) can be computed
as follows:

e Approximate the BTF by a set of independently fit
light/reflectance fields.

e Compute the color of x according to every fitted
light/reflectance field and interpolate the final color from
the partial results.

4. Reflectance Field BTF Approximation

During our research, we tested both reflectance field and
light field approximation and we found that the surface re-

(© The Eurographics Association 2003.

E 0,45 1

1 2
04 | ‘ - {E"(V)}VEM, = M}?[\ZRR(XJ)

.
1

H —— {E(= — Y LRxv)

035 | {EWhew, ‘M"vgh, 1(x,v)

0.3 A
0.25 1
02 |
0,15 1

0,1

0,05 -

O L e M ABmmE]

DD o> ® DAL D DD DD DD DD D O
TP e VS @ WIS O T B W T
PR S NN SR LN

Light/View Directions (spherical coordinates)

Figure 3: Plot of the Er, E; series for one texel of the cor-
duroy dataset.

flectance field is better suited for approximation in our ap-
proach. This can be explained by inherent BTF asymmetry,
which will be discussed in the following subsection.

4.1. BTF Asymmetry

Figure 3 depicts a plot of the energy contained in a single
texel in each light- or reflectance field of the corduroy BTF,
where M;, M, denote the sets of measured light/view direc-
tions respectively. Note, that both series would be identical
in the case of a reciprocal BRDF at the texel (and M; = M,).
In our case, E, exhibits much more discontinuities (arising
from depth variation) than E; especially for grazing angles.
There are two main reasons for that:

e Interreflections and subsurface-scattering from neighbor-
ing texels and the fact that it is not possible to build a
purely directional light source for the measurement pro-
cess let the light act like a low-pass filter on the surface
structure. In contrast, the small aperture of the camera
provides a fairly directional view direction.

e Due to the rectification process the images of a light field
are convolved with different, view-dependent smooth-
ing kernels of increasing size. This increases the light-
integration domain even further.

We conclude, that changes in light direction are smoother
than changes in view direction. This was also noted by
Malzbender et al.'> in the case of mainly diffuse surfaces.
Therefore the reflectance field is better suited for fitting by
compact functional representations (e.g. polynomials) than
the light field. The discontinuous view-dependence will be
preserved by our approach, since the piecewise linear func-
tion as induced by the linear interpolation captures this high-
frequency content of the data.

Meseth and Miiller and Klein / Preserving Realism

4.2. A Non-Linear Reflectance Field Approximation

An implementation of our approach can now be obtained by
applying view interpolation and a suitable reflectance field
approximation. This fit should be efficiently renderable on
today’s consumer graphics hardware and minimize the ap-
proximation error. At a first glance, PTMs appear to be a
suitable candidate, since their hardware implementation is
straight-forward. But the use of PTMs has a few shortcom-
ings concerning realism:

e Specular peaks and hard shadows are blurred significantly
(as mentioned in 19).

e The polynomial doesn’t fade away for grazing incident
angles (compare figures 4 and 5).

Instead we propose the following non-linear approximation
for the reflectance field:

k k ayi(x)
RFy(x,]) & ;sw(x,l) = Z (| byi(x)

i=1 Cvi(X)

]

, l> 1y (X) (1)

with sy ;(x,1) similar to a Lafortune lobe discarding the
exitant direction. (,) denotes the scalar product. This model
is well suited for fitting specularities and directional diffuse
lobes. The parameter k controls the number of lobes. We
have found k = 2 as being sufficient for satisfying results
(see table 1 and figure 5 for comparisons of fitting errors,
and figure 4 for results of the 2-lobe fit). Since the fit is per-
formed on the luminance data, the final color is computed
as in 5. A Levenberg-Marquardt algorithm is used for the
fitting!! 17- 14, Convergence is improved via detecting princi-
pal directions with a high-pass filter and using the recovered
directions as an initialization for the optimization.

2 lobes difference PT™M difference

original

Figure 4: Comparison of the fitting methods: results for dif-
ferent view directions (bottom: 0; = 90°). While our 2-lobe
model generates some specular highlights, the PTM shows
the grazing angle problem.

Figure 5: Spherical plot of a reflectance field and the fit
(In red wireframe. Left: PTM, Right: Non-linear, 2 lobes)
for one texel. Note the undesirable behavior of the PTM at
grazing angles and how well the non-linear method fits the
directional lobe.

Data set | Lafortune(2 lobes) | PTM | Non-linear(k=2)

curdoroy | 0.11658 0.06176 | 0.04176
wool | 0.08201 0.05183 | 0.03334
Proposte | 0.12033 0.07459 | 0.06549

Table 1: Average luminance difference between data and
model. Applying our reflectance field approximation, the
error is significantly reduced compared to fitting a single
Lafortune model to the whole data set.

5. Real-Time Rendering

Rendering BTF approximations in real-time still imposes
a challenge both on the rendering method and the graph-
ics hardware used for visualization. The advent of graphics
processing units (GPUs) implementing the Pixel Shader 2.0
specification opened up new possibilities for pixelwise real-
time rendering by introducing new operations and increas-
ing the amount of operations that can be processed per pixel.
An additional, huge improvement for the quality of real-time
rendered images was the introduction of a full floating point
pixel pipeline, which omits frequent rounding and clamping
errors in the processing stage.

In the first following subsection, we will describe the
formula that our hardware-accelerated real-time render-
ing algorithm has to evaluate. Then we describe our data
representation and present the rendering step for a sin-
gle reflectance field. Afterwards, we introduce our view-
interpolation scheme and point out its implications on the
full rendering step. Finally, we describe how we combined
our rendering method with the open source scene graph
OpenSG.

5.1. Rendering Equation

The task of the rendering algorithm is to evaluate, for each
surface point x, the following formula:

L(x,v) = / Fur (DL (n-1)d1 @)
Q;

(© The Eurographics Association 2003.

Meseth and Miiller and Klein / Preserving Realism

where f,x is the BRDF in point x, L; is the incoming ra-
diance, €; is the incident hemisphere over the surface point
X, n is the surface normal and L, is the exitant radiance.

In the presence of a finite number of point light sources
only, the integral reduces to a sum. Substituting frx by our
reflectance fields approximation from equation 1 and inter-
polating the view direction, we obtain the final equation:

L/(x,v) = Z(Z wv(v)RR(X,l)> Li(1)(n-1)

IEL \vEN(v)

Y, w() Y (RE(x,DLM)(n-1)) (3)

VEN(V) leL

where L represents the set of light sources, N(v) denotes
the index set of view directions from the measured BTF data
that are neighboring v, and w, denotes the weight for the
reflectance field RFy. Please note that the current view direc-
tion v denotes a different entity than the index v to the view
directions from the measured data.

5.2. Data Representation

Since the evaluation of our rendering equation requires the
lookup of several, reflectance field dependent values, we
store them in textures that can be accessed by the pixel
shaders. In order to lookup the weights w,, for the specific
reflectance fields given a view direction v, we utilize cube
maps storing pairs of weights and identifiers for the re-
flectance fields.

The parameters a,, b, ¢y, and n,; that determine the
shape of the k-th lobe for a given reflectance field RF, are
stored in 2D textures. Gathering all those 2D textures for
a predefined lobe k over all reflectance fields and stacking
them, we arrive at a 3D texture. Using this 3D texture rep-
resentation, we can access all reflectance fields in the pixel
shader program by binding a single texture only. In an analo-
gous way, we store the average per pixel color per reflectance
field in a 3D texture with the fourth texture component re-
maining for an additional alpha component.

Since the evaluation of our lobes requires the view vector
to be transformed into a local coordinate system, we pre-
compute these transformation matrices for the triangles, in-
terpolate them at vertices and pass them as multitexturing
coordinates. The mesh is compiled into a display list.

5.3. Rendering a Single Reflectance Field

Our rendering equation is evaluated completely in the pixel
shaders. First the view-vector and the light-directions (ei-
ther point or directional light sources) are transformed into
the local coordinate system interpolated from the local co-
ordinate systems specified per vertex. Next, we determine
the identifiers of the closest reflectance fields for the current

(© The Eurographics Association 2003.

pixel by using the view direction as index into the above
mentioned cube maps. By assigning the identifier value to
the z coordinate of our current 2D texture coordinates, we
get 3D texture coordinates which can be used to lookup the
color and parameters for the surface point from the 3D tex-
tures. We evaluate the pixel’s luminance following equation
1 and additionally check for every light source, whether the
angle between the triangle’s normal and the light direction
is greater than 90°, in which case we neglect the contribu-
tion of this light source. After summing up the contributions,
we multiply with the surface point’s average color to get the
final output of the fragment shader.

5.4. Reflectance Field Interpolation

One main task that remains for rendering is the computation
of the weights w,(v) and the selection of the number of re-
flectance fields to interpolate from. We found that a simple
scheme interpolating the four closest measured view direc-
tions yields excellent results.

As mentioned above, we utilize cube maps to lookup clos-
est measured view directions and their interpolation weights.
For every pixel (i.e. view direction) in the cube map, we first
transform the view vector from cartesian to spherical coordi-
nates (0y, 0y). We then choose the closest 0 values from the
existing measurement data. Next, for each such 0, we deter-
mine the closest ¢ values. These four samples determine the
four closest measured view directions and their reflectance
fields. The according weights w, are computed via bilin-
ear interpolation (please note that the measured samples are
non-uniformly spread). Two pairs (wy,v) are stored in each
cube map, resulting in a total number of two cube maps for
storing the four closest entities.

This implies that we have to repeat the above rendering for
a single reflectance field four times. During the first step, we
compute the pixel’s color according to the first and second of
the four closest reflectance fields, multiply the resulting lu-
minances by the average colors for the reflectance field and
the weights w,, and add them. In the second step, the pixel’s
color according to the third and fourth closest reflectance
field are computed and added to the previous result, either
by a direct sum or by blending if multi-pass rendering has to
be employed. Since our interpolation scheme guarantees the
weights to accumulate to one and since the weights change
smoothly with varying directions, the result looks very con-
vincing.

5.5. Rendering within OpenSG

Integrating our rendering algorithm into OpenSG unfortu-
nately poses various problems on the developer, since nei-
ther multipass-rendering nor floating-point image formats
are currently supported. Despite these challenges, we de-
cided to use it as the rendering environment since this way
we can easily utilize the already implemented features of the

Meseth and Miiller and Klein / Preserving Realism

Figure 6: Results from texture synthesis (left: Proposte, middle: corduroy, right: knitted wool). The small images represent
exemplary views of the samples, the large images the according views from the synthesized images.

scene graph system. In order to implement BTF rendering,
we derived several classes from the OSGStateChunk, one
for each fitting method that we tested. Since the OSGImage
class does not support floating-point valued images so far,
we extended our chunks by the ability, to read their own file
format (the number of parameters is different every time)
and to manage the textures by themselves. In addition, the
chunks are used to load and manage the cube map data.

To get around the multi-pass rendering problem, we de-
rived a class from OSGDrawableMaterial, which switches
the state between the two different rendering passes. Unfor-
tunately, this becomes only possible by handling the display
lists of the BTF textured models ourselves. The second task
of this class is to compute the local texture coordinate sys-
tems for every triangle of the model and to specify these as
multi-texture coordinates in the display lists.

6. Memory Reduction

Due to the frequent use of 3D texture maps and floating-
point entries in the texture slices, our rendering method turns
out to be rather memory consuming (about 400 MB for a
256 x 256 BTF with 81 reflectance fields). In addition, the
BTF renderer has to cope with the problem of applying ma-
terials of large extent in the presence of small samples only
without introducing neither noticeable cracks or seams nor
obvious repetitions.

The solution for both problems are texture synthesis al-
gorithms, which generate textures of arbitrary size similar in
appearance to example textures, which are provided as input.
Several such algorithms were published in the past, most for
synthesis of flat 2D textures (e.g. 256 30), others directly syn-
thesize on geometric models (e.g. 23 26:29). Recently, Tong et
al. 22 published a specialized texture synthesis algorithm for
BTF data, which we used in our implementation.

In their analysis step, the BTF is considered a 2D tex-
ture with entries of dimension n, where n equals the number
of different view- and lighting conditions during the mea-
surement process. To reduce this huge amount of data, the

m most significant view- and lighting conditions are deter-
mined and only their values are used for future computa-
tions. With a k-means clustering algorithm, r so called tex-
tons are computed that represent the cluster centers. Similar-
ities among these textons are precomputed. Every entry in
the 2D texture representing the BTF is finally assigned its
closest texton.

The synthesis step presented originally directly works on
arbitrary objects, but for our purpose, a planar synthesis is
sufficient. Like in other texture synthesis algorithms, a new
texture is generated by starting with a random texton and
subsequent addition of textons that fit their already synthe-
sized neighborhood. Other than texture synthesis algorithms,
Tong’s algorithm does not copy texton values from the ex-
ample to the new texture but instead stores texture coordi-
nates referencing the example texture. This indirection ne-
cessitates an additional dependent texture lookup during ren-
dering but saves huge amounts of texture memory especially
for large BTF textures.

For the materials we measured, we found that even us-
ing small samples only, the overall structure and appearance
was well preserved in the synthesized BTF textures (Pro-
poste and corduroy require samples of size 64> while the
higher structured knitted wool requires 962). Fi gure 6 shows
synthesis examples for the three different materials. While
the algorithm achieved good results for knitted wool and
Proposte, the random component of the algorithm destroys
the uniformity of the corduroy sample which contains a sin-
gle, uniform orientation direction. Even the hierarchical ap-
proach from 22 is not powerful enough to solve this problem.
Since the underlying algorithm used to generate the synthe-
sis result does not directly influence our rendering method,
we still expect our approach to texture memory reduction to
be useful for all kinds of materials.

The additional indirection from the synthesized texture re-
duces the memory requirements per material to about 25 MB
(24 MB for a 64> BTF base texture including 81 different re-
flection fields and floating-point precision values; less than 1
MB for a 2567 index texture from the texture synthesis step).

(© The Eurographics Association 2003.

Meseth and Miiller and Klein / Preserving Realism

7. Results

We implemented our fitting framework on an Intel Pentium
IV 1.4 GHz machine with 512 MB RAM. Fitting times for
the different methods varied from few minutes to several
hours, depending on the either linear- or non-linear fitting-
algorithm. These times can easily be reduced utilizing mul-
tiple computers in parallel. Unfortunately, the results of the
fitting procedure sometimes lead to floating point overflows
in the graphics hardware during rendering, which is partially
due to the specific graphics hardware and partially to the
rather high exponents for spatially restricted lobes. These
overflows lead to single incorrect pixel colors (either black
or white). Using 16 bit floating point values, these problems
occurred more frequently.

Our rendering algorithm was implemented using a ATI
Radeon 9700 graphics board for visualization, whose limited
number of dependent texture lookups requires two separate
rendering passes. Figures 7 and 8 show example images of
models that were rendered in real-time.

8. Conclusions

In this work, we presented an in-depth analysis of the real-
time rendering problem for highly depth varying BTF mate-
rials. We demonstrated why existing algorithms have prob-
lems with such materials and proposed a new method that
achieves high-quality results at the expense of consuming
more texture memory than existing real-time methods. To al-
leviate the memory problem, we showed how our algorithm
can easily be combined with existing texture synthesis algo-
rithms to significantly reduce the memory requirements.

Unfortunately, the memory reduction approach is not suit-
able for materials with high-level structure like newspapers
or paintings, which are found frequently in the real world.
Nevertheless, virtual environments are usually dominated by
rather homogenous materials, for which the approach yields
good results.

For future work, we will combine our BTF rendering
method with image based lighting, test several different tex-
ture synthesis algorithms, try to further reduce the amount
of memory required by our method, and fully integrate our
method into OpenSG.

Acknowledgements

This work was partially funded by the European Union un-
der the project RealReflect (IST-2001-34744). We want to
thank André Nicoll and Marc BoB3erhoff for helping with the
implementation and Mirko Sattler for fruitful discussions.
Special thanks belong to Ralf Sarlette who provided the BTF
measurements.

(© The Eurographics Association 2003.

References

1.

10.

11.

12.

14.

15.

16.

M. Ashikhmin and P. Shirley. An Anisotropic Phong BRDF
Model. Journal of Graphics Tools: JGT, 5(2), pp. 25-32, 2000

W.-C. Chen, J.-Y. Bouguet, M. H. Chu, and R. Grzeszczuk.
Light field mapping: Efficient Representation and Hardware
Rendering of Surface Light Fields. In SIGGRAPH 2002, pp.
447-456, 2002

K. J. Dana, B. van Ginneken, S. K. Nayra, and J. J. Koen-
derink. Reflectance and Texture of Real World Surfaces. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 151-157, 1997

K. Daubert, H. Lensch, W. Heidrich and H.P. Seidel. Efficient
Cloth Modeling and Rendering. In 12th Eurographics Work-
shop on Rendering, pp. 6370, 2001

P. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker, W. Sarokin,
and M. Sagar. Acquiring the reflectance field of a human face.
In SIGGRAPH 2000, pp. 145-156, 2000

A. A. Efros and W. T. Freeman. Image quilting for texture syn-
thesis and transfer. In SIGGRAPH 2001, pp. 341-346, 2001

T. Hawkins, J. Cohen, and P. Debevec. A photometric ap-
proach to digitizing cultural artifacts. In 2001 conference on
Virtual reality, archeology, and cultural heritage, pp. 333-342,
2001

J. Kautz and M. McCool. Interactive Rendering with Arbitrary
BRDFs using Separable Approximations. In Tenth Eurograph-
ics Workshop on Rendering, pp. 281-292, 1999

J. Kautz and H.-P. Seidel. = Towards Interactive Bump
Mapping with Anisotropic Shift-Variant BRDFs. In SIG-
GRAPH/EUROGRAPHICS Workshop On Graphics Hard-
ware, pp. 51-58, 2000

J. Kautz, P-P. Sloan and J. Snyder. Fast, Arbitrary BRDF
Shading for Low-Frequency Lighting Using Spherical Har-
monic. In I3th Eurographics Workshop on Rendering, pp.
301-308, 2002

E. P. F. Lafortune, S.-C. Foo, K. E. Torrance, and D. P. Green-
berg. Non-linear approximation of reflectance functions. In
SIGGRAPH 1997, pp. 117-126, 1997

P. Lalonde and A. Fournier. A Wavelet Representation of Re-
flectance Functions. IEEE Transactions on Visualization and
Computer Graphics 3(4), pp. 329-336, 1997

L. Latta and A. Kolb. Homomorphic factorization of BRDF-
based lighting computation. In SIGGRAPH 2002, pp. 509—
516, 2002

H. Lensch, M. Goesele, J. Kautz, W. Heidrich, and H.-P. Sei-
del. Image-Based Reconstruction of Spatially Varying Mate-
rials. In 12th Eurographics Workshop on Rendering, pp. 103—
114, 2001

T. Malzbender, D. Gelb, and H. Wolters. Polynomial texture
maps. In SIGGRAPH 2001, pp. 519-528, 2001

W. Matusik, H.P. Pfister, A. Ngan, P. Beardsley, R. Ziegler and
L. McMillan. Image-Based 3D Photography using Opacity
Hulls. In ACM Transactions on Graphics, 21(3), pp. 427-437,
2002

Meseth and Miiller and Klein / Preserving Realism

Figure 7: Comparison of our rendering technique (left) with approximated bump-mapping (right). The same light configurations
were used in both pictures. Using our technique, the 3D structure of the corduroy material on the car seat appears realistic,
while bump-mapping clearly misses the highlights for grazing light angles.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

D. K. McAllister, A. Lastra, and W. Heidrich. Efficient Ren-
dering of Spatial Bi-directional Reflectance Distribution Func-
tions. In Graphics Hardware 2002, pp. 78-88, 2002

M. D. McCool, J. Ang, and A. Ahmad. Homomorphic fac-
torization of BRDFs for high-performance rendering. In SIG-
GRAPH 2001, pp. 171-178, 2001

B. T. Phong. Illumination for computer generated pictures.
Communications of the ACM, 18(6), pp. 311-317, 1975

R. Ramamoorthi and P. Hanrahan. Frequency space environ-
ment map rendering. In SIGGRAPH 2002, pp. 517-526, 2002

P-P. Sloan, J. Kautz, and J. Snyder. Precomputed radiance
transfer for real-time rendering in dynamic, low-frequency
lighting environments. In SIGGRAPH 2002, pp. 527-536,
2002

X. Tong, J. Zhang, L. Liu, X. Wang, B. Guo, and H.-Y. Shum.
Synthesis of bidirectional texture functions on arbitrary sur-
faces. In SIGGRAPH 2002, pp. 665-672, 2002

G. Turk. Texture synthesis on surfaces. In SIGGRAPH 2001,
pp. 347-354,2001

G. J. Ward. Measuring and modeling anisotropic reflection. In
SIGGRAPH 1992, pp. 265-272, 1992

L.-Y. Wei and M. Levoy. Fast texture synthesis using tree-
structured vector quantization. In SIGGRAPH 2000, pp. 479—
488, 2000

L.-Y. Wei and M. Levoy. Texture Synthesis Over Arbitrary
Manifold Surfaces. In SIGGRAPH 2001, pp. 355-360, 2001

S.H. Westin, J.R. Arvo, and K.E. Torrance.
flectance functions from complex surfaces.
1992, pp. 255-264, 1992

D. N. Wood, D. I. Azuma, K. Aldinger, B. Curless,
T. Duchamp, D. H. Salesin, and W. Stuetzle. Surface Light
Fields for 3D Photography. In SIGGRAPH 2000, pp. 287-296,
2000

Predicting re-
In SIGGRAPH

29.

30.

L. Ying, A. Hertzmann, H. Biermann, and D. Zorin. Texture
and Shape Synthesis on Surfaces. In /2th Eurographics Work-
shop on Rendering, pp. 301-312, 2001

S. Zelinka and M. Garland. Towards Real-Time Texture Syn-
thesis with the Jump Map. In Eurographics Workshop on Ren-
dering 2002, 2002

s .
P e Y
e riasiyeniy

ecIIIIIIIEER.

i
{
i
H

Figure 8: Examples: left knitted wool, right Proposte. Note
the desired flattening effects for grazing viewing angles on
the bunny and the specular highlights on the fish, which
are both experienced in reality. Flattening effects (see fig-
ure 2) occur because the small creases in the material are
no longer visible for grazing viewing angles.

(© The Eurographics Association 2003.

