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Abstract
To achieve promising results on blind image super-resolution (SR), some Unsupervised Degradation Prediction (UDP) methods
narrow the domain gap between the degradation embedding space and the SR feature space by fusing the degradation embed-
ding with the additional content embedding before multi-stage SR. However, fusing these two embeddings before multi-stage SR
is inflexible, due to the variation of the domain gap at each SR stage. To address this issue, we propose the Multi-Stage Degrada-
tion and Content Embedding Fusion (MDCF), which adaptively fuses the degradation embedding with the content embedding
at each SR stage rather than before multi-stage SR. Based on the MDCF, we introduce a novel UDP method, called MDCFnet,
which contains an additional Dual-Path Local and Global encoder (DPLG) to extract the degradation embedding and the
content embedding separately. Specially, DPLG diversifies receptive fields to enrich the degradation embedding and combines
local and global features to optimize the content embedding. Extensive experiments on real images and several benchmarks
demonstrate that the proposed MDCFnet can outperform the existing UDP methods and achieve competitive performance on
PSNR and SSIM even compared with the state-of-the-art SKP methods.

CCS Concepts
• Computing methodologies → Reconstruction;

1. Introduction

As a fundamental low-level vision problem, single image super-
resolution (SISR) aims at restoring the high-resolution (HR) im-
age from the low-resolution (LR) input with a pre-defined degra-
dation process (e.g., bicubic). However, as revealed in [GLZD19],
SISR methods are impractical due to the mismatch between the pre-
defined degradation and the real one. Therefore, more attention is
paid to SR with unknown degradations, also known as blind image
super-resolution (BSR). Typically, it is achieved by two sequen-
tial steps: (1) estimate the degradation from the LR input and (2)
fuse the degradation into the SR feature for image restoration. Ac-
cording to the form of degradation estimation, existing BSR meth-
ods can be divided into two groups: Supervised Kernel Prediction
(SKP) and Unsupervised Degradation Prediction (UDP).

Most existing SKP methods utilize the classic degradation
model [BKSI19, GLZD19] to represent the degradation. In gen-
eral, these methods explicitly estimate blur kernels from LR im-
ages and leverage the kernel stretching strategy to fuse degra-
dation information into non-blind SR networks. The main chal-
lenges they encounter are the ambiguity produced by downsam-
pling (e.g., bicubic) [LHY∗22] and the low robustness to incorrect
kernel estimation [GLZD19]. To address these issues, [GLZD19,
HLW∗20, FWX∗22] design alternating optimization algorithms,
and [BKSI19, LZG∗21, TJW∗21, LHY∗22] optimize the form of

kernel representations. Nevertheless, SKP methods are still unreal-
istic due to the unavailable real-world blur kernels.

Different from SKP methods, UDP methods learning abstract
degradation embeddings are more suitable for real applications
without supervision from the ground-truth kernel label. As the most
representative method, DASR [WWD∗21] utilizes contrastive lean-
ring to learn degradation embeddings. The main idea of DASR is
to distinguish various degradations in the embedding space rather
than explicit estimation in the pixel space. However, the inconsis-
tency between the degradation embedding and the SR feature is
still challenging. To address this issue, CDSR [ZLL∗22] observes
that content information can reduce the inconsistency. Specially,
CDSR fuses the degradation embedding with the content embed-
ding before SR and proposes a Domain Query Attention based
module (DQA) to adaptively reduce the inconsistency. Like most
BSR methods, CDSR reconstructs the SR features in a multi-stage
manner. Nevertheless, CDSR don’t consider that the SR features
varying at each SR stage cause the variation of the inconsistency
at each SR stage. Thus, the degradation embedding fused before
multi-stage SR is inflexible and limits the results.

In this work, we polish a UDP method, called MDCFnet, through
two aspects: (1) To adapt to the variation of the domain gap between
the degradation embedding space and the SR feature space, the
Multi-Stage Degradation and Content Embedding Fusion (MDCF)
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is proposed, which fuses the degradation embedding with the con-
tent embedding individually at each SR stage, as shown in Figure 1.
Moreover, MDCF adaptively calculates the weights of the degrada-
tion embedding and the content embedding by a self-attention-like
mechanism [XZS∗20,XCY∗21]. (2) In order to generate the degra-
dation embedding and the content embedding separately and effec-
tively before SR, a Dual-Path Local and Global encoder (DPLG)
is proposed, which contain a Multiple Receptive Fields Depthwise
Separable Convolution (MConv) and a Local and Global Combi-
nation (LGC) module, as shown in Figure 1. Specifically, in order
to enrich the degradation embedding, the MConv is applied in the
pixel-wise branch to diversify its receptive field without increasing
it. In order to optimize the content embedding, the LGC combines
the local and global features in the patch-wise branch.

The main contributions of this paper are as follows:

• We propose a novel UDP method, called MDCFnet, based on
the Multi-Stage Degradation and Content Embedding Fusion
(MDCF), which adaptively fuses the degradation embedding
with the content embedding at each SR stage rather than before
multi-stage SR.

• We present a Dual-Path Local and Global encoder (DPLG) to
extract degradation and content information separately and ef-
fectively. Specially, DPLG diversifies receptive fields to enrich
the degradation embedding and combines local and global fea-
tures to optimize the content embedding.

• Extensive experiments on real images and several benchmarks
demonstrate that the proposed MDCFnet can outperform the ex-
isting UDP methods and achieve competitive performance on
PSNR and SSIM even compared with the state-of-the-art SKP
methods.

2. Related Work

2.1. Non-blind Super-Resolution

Since the arising of SRCNN [DLHT15] which learns the map-
ping from LR to HR image with DNNs, plenty of DNN-based
elaborate architecture designs [SCH∗16,KLL16a,KLL16b,HSU18,
ZTK∗18, ZLL∗18, LCS∗21] and training strategies [LTH∗17,
BYT18, WYW∗18] are proposed due to their remarkable perfor-
mance. Nevertheless, these methods assume that degradation is
known and fixed (e.g., bicubic). When the assumed degradation de-
viates from the real one, SR reconstruction inevitably leads to infe-
rior results. To be more flexible, some methods [ZZZ18, ZZZ19,
XTT∗20, SCI18] handle multiple degradations by giving corre-
sponding priorities (i.e., blur kernels). However, these priorities are
unavailable in real world.

2.2. Blind Super-Resolution

Supervised Kernel Prediction. A feasible way to deal with un-
known degradations is that explicitly estimate blur kernels from
LR images and fuse them into SR feature. S2K [TJW∗21] esti-
mates blur kernels in frequency domain and demonstrates that fea-
ture representation in frequency domain is more conductive for
blur kernel estimation than in spatial domain. IKC [GLZD19] pro-
poses an iterative kernel correction method to estimate accurate

blur kernels. DAN [HLW∗20] adopts an alternating optimization
algorithm to estimate the blur kernel and restore the SR image in a
single network. MANet [LSZ∗21] uses a moderate receptive field
and exploits channel interdependence to estimate kernels. KXNet
[FWX∗22] integrates the learning process with the inherent physi-
cal mechanism to generate blur kernels with clear physical patterns.
DCLS [LHY∗22] introduces dynamic deep linear kernel to provide
more equivalent choices of possible optimal solutions for kernel
and fuses blur kernel into LR image in the feature domain to ob-
tain clean feature. Nevertheless, these SKP methods are sensitive
to kernel estimation errors and can’t deal with real-world degrada-
tions deviating from the training degradation distribution.

Unsupervised Degradation Prediction. Instead of requiring the
supervision from the ground-truth kernel label, UDP methods learn
abstract degradation embeddings to distinguish various degrada-
tions in the embedding space rather than explicit estimation in the
pixel space. DASR [WWD∗21] is the first to leverage contrastive
learning [CH21, HFW∗20, CFGH20, CKNH20, DSRB14, HCL06]
to learn degradation embeddings based on the assumption that the
degradation is the same in each image and varies for different im-
ages. CDSR [ZLL∗22] demonstrates that content information can
serve as a cue to narrow the domain gap between the degradation
embedding space and the SR feature space. Although existing UDP
methods develop a more suitable manner for real-world applica-
tions, the strategy of fusing the degradation embedding with the
content embedding is still inflexible.

3. Method

We now formally introduce the MDCFnet, which consists of two
newly-established modules: the Multi-Stage Degradation and Con-
tent Embedding Fusion (MDCF) and the Dual-Path Local and
Global encoder (DPLG). Besides, the SR network is based on the
DQA module [ZLL∗22] and the RRDB module [WYW∗18]. As
shown in Figure 1.

3.1. Multi-Stage Degradation and Content Embedding Fusion

The Multi-Stage Degradation and Content Embedding Fusion
(MDCF) is proposed to adaptively fuse the degradation embed-
ding Ed ∈ R1×L with the content embedding Ec ∈ R1×L at each
SR stage. The MDCF can be divided into the Multi-Stage Fusion
(MSF) strategy and the Adaptive Embedding Fusion (AEF) mod-
ule.

Multi-Stage Fusion Strategy. In order to handle the domain gap
between the degradation embedding space and the SR feature space
varying at each SR stage, the MSF is proposed to fuse the degra-
dation embedding with the content embedding individually at each
SR stage. Specifically, as shown in Figure 1, each SR stage contains
three sequential operations: (1) adaptively fuse Ed with Ec to gen-
erate the fused degradation embedding E f by the AEF; (2) fuse E f
into the SR feature by DQA [ZLL∗22]; (3) further restore image
by RRDB [WYW∗18]. It should be mentioned that the previous
work, CDSR [ZLL∗22], fuses the degradation embedding Ed with
the content embedding Ec before multi-stage SR and then feeds the
fused degradation embedding E f to all SR stages. Due to each SR
stage in CDSR only containing operation (2) and (3), it can’t adapt
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Figure 1: The overall architecture of MDCFnet. Top: Dual-Path Local and Global encoder (DPLG). DPLG includes degradation embedding
generation and content embedding generation. Bottom: SR network composed of proposed Multi-Stage Degradation and Content Embedding
Fusion (MDCF). The output degradation embedding Ed and content embedding Ec are adaptively fused at each SR stage.

Figure 2: The architecture of Adaptive Embedding Fusion (AEF).

to the variation of the domain gap between the degradation embed-
ding space and the SR feature space.

Adaptive Embedding Fusion Module. The AEF is designed to
adaptively calculate the weights of degradation and content em-
beddings. As shown in Figure 2, like self-attention mechanism,
the AEF first generates a query Qdc = [Qd ,Qc] ∈ R2×L, a key
Kdc = [Kd ,Kc] ∈ R2×L and a value Vdc = [Vd ,Vc] ∈ R2×L from the
stacked degradation and content embedding Edc = [Ed ,Ec]∈R2×L,
which can be formulated as follows:

Qdc = fq(Edc),

Kdc = fk(Edc), (1)

Vdc = fv(Edc),

where fq(·), fk(·) and fv(·) represent a simple single-layer MLP
(Multi-Layer Perceptron) to project the input embedding to another
embedding space. An important step for AEF to work is to adap-
tively calculate the weights of degradation and content embeddings.
The main idea of AEF is to learn a mapping from the embedding
to its importance. The feed-forward networks (i.e., fq(·) and fk(·))
can be considered as the learnable parameters, and the similarity

between the query and the key can be regarded as the importance.
Therefore, AEF implements the weight α̂ ∈ R2×1 as:

α̂ = [
< Qd ,Kd >√

L
,
< Qc,Kc >√

L
], (2)

where < ·, · > denotes the dot product and L represents the length
of embedding. The weight α̂ is then normalized to α ∈ R2×1 by
softmax as:

α = so f tmax(α̂,dim = 0). (3)

Finally, Vd and Vc are combined to form a optimal fused degrada-
tion embedding E f ∈ R1×C via the weight α:

E f = SUM(Vdc ⊗α,dim = 0), (4)

where ⊗ denotes the element-wise multiplication with broadcast.

3.2. Analysis on Encoder

We first investigate the key point on: what kind of encoder is really
needed for the generation of degradation and content embeddings?
As shown in Table 1, we conduct experiments based on the encoder
LPE [ZLL∗22] to further investigate the effect of the patch-wise
branch and the pixel-wise branch.

In Table 1, LPEL, which only extracts local degradation features
by the pixel-wise branch, achieves the highest degradation clas-
sification accuracy [ZLL∗22]. Although there exists the inconsis-
tency between the degradation embedding space and the SR fea-
ture space, it can be solved by adding content information. Thus,
the best way to generate degradation embeddings is to learn local
features. Due to the extraction of content information, LPE and
LPEP achieve a higher SR performance than LPEL by reducing the
inconsistency. Moreover, LPE achieves a higher degradation clas-
sification accuracy and SR performance than LPEP by extracting
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Table 1: Degradation classification accuracy of embedding (Acc.)
[ZLL∗22] and PSNR of ×2 SR. We conduct experiments on three
different encoders. LPE (used in CDSR): containing both pixel-
wise and patch-wise branches. LPEL: only containing pixel-wise
branch. LPEP: only containing patch-wise branch.

Encoder Acc. Set5 Set14 B100 Urban100

LPE 55.70% 37.48 33.23 31.92 31.12
LPEL 64.20% 37.36 33.12 31.79 31.00
LPEP 17.80% 37.42 33.17 31.85 31.06

additional local degradation features. Therefore, the combination
of local and global features is more suitable for the generation of
content embeddings than global features alone, due to a better ca-
pability of degradation classification.

3.3. Dual-Path Local and Global Encoder

As shown in Figure 1, we introduce the Dual-Path Local and Global
encoder (DPLG), which contains a pixel-wise branch and a patch-
wise branch to produce degradation embeddings and content em-
beddings, respectively. Moreover, a codebook [ZLL∗22] is em-
ployed to constrict the basis of embedding space.

Degradation embedding generation. As shown in Section 3.2, the
best way to generate degradation embeddings is to learn local fea-
tures. As claimed in [LSZ∗21], a moderate receptive field (22×22)
on the LR image input keeps the locality of degradation. To en-
rich degradation embeddings, a Multiple Receptive Fields Depth-
wise Separable Convolution (MConv) is proposed to diversify the
receptive field without increasing it. As shown in Figure 3, there
exist three parallel groups of a pointwise convolution (PWConv)
and a depthwise convolution (DWConv) with different kernel sizes
(3×3, 5×5 and 7×7). Then the concatenated features are fused by
two sequential pointwise convolutions. Specifically, the depthwise
separable strategy is applied to reduce the computation and param-
eters. The parallel depthwise convolutions diversify the receptive
field of pixel-wise branch, which is ranged from 9× 9 to 22× 22,
as shown in Figure 1.

Content embedding generation. As mentioned in Section 3.2, the
best way to generate content embeddings is to learn the combina-
tion of local and global features. We propose a Local and Global
Combination module (LGC). As shown in Figure 1, the patch-wise
branch first extracts the global features through a patch embedding
layer and three standard convolution layers. Then, LGC concate-
nates the global features with the local features extracted by the
pixel-wise branch and merges them into a content embedding Ec
by a MLP with two layers. The content embedding Ec generated
by LGC not only contains global content information but also local
degradation information to enhance the capability of degradation
classification.

3.4. Unsupervised Degradation Representation Learning

To conduct degradation representation learning in an unsuper-
vised way, followed by DASR [WWD∗21], we apply MoCov2

Figure 3: The architecture of Multiple Receptive Fields Depthwise
Separable Convolution (MConv).

[CFGH20] to conduct the contrastive learning based on the as-
sumption that the degradation is the same in an image but can
vary for different images. In detail, given B HR images, we first
randomly crop two patches from each HR image and degrade
them with random blur kernels. It is worth noting that the two
HR patches cropped from the same image are degraded with the
same blur kernel. Then, these 2B LR patches are encoded into
{d1

i ,c
1
i ,d

2
i ,c

2
i ∈ R256} using DPLG, where d j

i is the degradation
embedding Ed of the jth patch from the ith LR image and c j

i is
the content embedding Ec of the jth patch from the ith LR image.
For the ith LR image, we refer to p1

i and p2
i as query and positive

samples, where p j
i = d j

i + c j
i . The contrastive loss Lc is defined as:

Lc =
B

∑
i=1

−log
exp(E(p1

i ) ·E(p2
i )/τ)

∑
Nqueue
j=1 exp(E(p1

i ) ·E(p j
queue)/τ)

, (5)

where E(·) is the projection head [CKNH20], Nqueue denotes the
number of negative samples in the queue, p j

queue represents the jth

negative sample and τ is a temperature hyper-parameter. Further-
more, the total loss function L is defined as L = Lc +Lsr, where Lsr
denotes the L1 distance between SR result and the HR ground-truth.

4. Experiments

4.1. Datasets and Implementation Details

Following [FWX∗22], we collect 800 HR images from DIV2K
[AT17] and 2650 HR images from Flickr2K [TAVG∗17] as the
training dataset. Furthermore, we synthesize the corresponding LR
images via two different degradation kernel settings: (1) isotropic
Gaussian kernels with noise-free and (2) anisotropic Gaussian ker-
nels with noise. With the two settings, we can fully study the influ-
ence of degradations and the performance of the proposed method
which is evaluated by PSNR and SSIM on only the luminance chan-
nel of the SR results (YCbCr space).
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Figure 4: Visual results of img 002 and img 019 in Urban100 [HSA15], for scale factor 4 and kernel width 2.4. Best viewed in red color.

Table 2: Quantitative comparison on different test sets with isotropic Gaussian kernels. The best two results are marked in red and blue
colors, respectively.

Method Scale
Set5 Set14 B100 Urban100

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic

x2

28.82 0.8577 26.02 0.7634 25.92 0.7310 23.14 0.7258
CARN 30.99 0.8779 28.10 0.7879 26.78 0.7286 25.27 0.7630
Bicubic + ZSSR 31.08 0.8786 28.35 0.7933 27.92 0.7632 25.25 0.7618
DASR 37.22 0.9513 32.72 0.8979 31.64 0.8829 30.29 0.9022
CDSR 37.48 0.9526 33.23 0.9044 31.92 0.8867 31.12 0.9116
MDCFnet(Ours) 37.55 0.9550 33.41 0.9088 32.00 0.8905 31.37 0.9160

Bicubic

x4

24.57 0.7108 22.79 0.6032 23.29 0.5786 20.35 0.5532
CARN 26.57 0.7420 24.62 0.6226 24.79 0.5963 22.17 0.5865
Bicubic + ZSSR 26.45 0.7279 24.78 0.6268 24.97 0.5989 22.11 0.5805
DASR 31.52 0.8805 28.00 0.7540 27.29 0.7140 25.12 0.7417
CDSR 31.83 0.8850 28.39 0.7667 27.49 0.7216 25.72 0.7641
MDCFnet(Ours) 31.99 0.8874 28.50 0.7686 27.52 0.7246 25.82 0.7693

Isotropic Gaussian Kernels with Noise-Free. The blur kernel size
is set as 21× 21 for all scales. During training, the kernel width
is uniformly sampled from the ranges [0.2, 2.0] and [0.2, 4.0] for
scale factors 2 and 4 respectively. For evaluation, we use Gaussian8
[GLZD19] kernel setting to synthesize the testing dataset from four
benchmarks: Set5 [BRGM12], Set14 [ZEP10], B100 [MFTM01]
and Urban100 [HSA15].

Anisotropic Gaussian Kernels with Noise. The blur kernel size is
set as 11×11 and 31×31 for scale factor 2 and 4 respectively. Dur-
ing training, the kernel width at each axis is uniformly distributed
in (0.6, 5) and randomly rotated by an angle uniformly distributed
in [-π, π]. Moreover, we apply uniform multiplicative noise (up to
25% of each pixel value of the kernel) and normalize it to sum to
one. During testing, we evaluate our method by then benchmark
DIV2KRK proposed by [BKSI19].

Implementation Details. The size of LR patch is set to 48×48 for
all scales (×2 and ×4). Thus the size of HR patch cropped from HR
image is 96 and 192, respectively. The batch size B is set to 32. The

MDCFnet is trained end-to-end. The SR network employs T = 10
SR stages. Each stage contains a AEF, two DQA and a RRDB. The
length of codebook is set to 1024. The channel number of embed-
ding L is set to 256. As for MoCov2, the τ and Nqueue in Equation 5
is set to 0.07 and 8192, respectively. The Adam optimizer with the
momentum of β1 = 0.9, β2 = 0.999 is adopted to train out network
with the learning rate being initially set to 1e−4. The learning rate
will decay by half after every 125 epochs by the multi-step decreas-
ing strategy. The training process takes 600 epochs.

4.2. Comparison with State-of-the-arts

Evaluation of isotropic Gaussian kernels with noise-free. Fol-
lowing [GLZD19], we evaluate our method on datasets synthe-
sized by Gaussian8 kernels. We compare our method with state-
of-the-art UDP-based blind SR approaches: DASR [WWD∗21]
and CDSR [ZLL∗22]. We also conduct comparison with CARN
[AKS18] and ZSSR [SCI18] (with bicubic kernel).

The quantitative results are shown in Table 2. It is obvious that
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Figure 5: The PSNR curves on Set14 for scale factor 4.

our method leads to the best performance over all datasets. The
SISR model suffers severe performance drop when the degrada-
tion deviates from the bicubic kernel. DASR learns unsupervised
degradation representations by contrastive learning and largely im-
proves the SR performance. Nevertheless, the domain gap between
the degradation embedding space and the SR feature space limits
the SR results. CDSR jointly extracts degradation and content fea-
tures to adaptively reduce the inconsistency. Although the SR per-
formance is improved in CDSR, the strategy of fusing degradation
and content features is still inflexible. The qualitative results shown
in Figure 4 illustrate that MDCFnet contains more useful textures
and sharper edges. To show the variable trend with the change of
kernel width σ, we also provide the various curves on Set14, as
shown in Figure 5.

Evaluation of anisotropic Gaussian kernels with noise. Degra-
dation with anisotropic Gaussian kernels and noise is more general
and challenging. Similar to isotropic Gaussian kernels, we firstly
compare our method with SOTA UDP-based blind SR approaches:
DASR [WWD∗21] and CDSR [ZLL∗22]. We also compare MD-
CFnet with some SOTA SISR methods such as EDSR [LSK∗17],
RCAN [KLL16a] and DBPN [HSU18]. In addition, we combine
a kernel estimation method KernelGAN [BKSI19] with a non-
blind SR method ZSSR [SCI18] to solve blind SR. Furthermore,
we compare our method with SOTA SKP-based blind SR meth-
ods: IKC [GLZD19], DANv1 [HLW∗20], DANv2 [WWD∗21],
KOALAnet [KSK21] and DCLS [LHY∗22]. For most methods, we
use their official implementations and pre-trained models.

Table 3 shows the quantitative results on DIV2KRK [BKSI19].
It can be seen that the proposed MDCFnet outperforms the existing
UDP models and achieves the competitive SR performance com-
pared with the SOTA SKP models. ZSSR performs better based on
the blur kernel estimated by KernelGAN. IKC iteratively corrects
blur kernels. However, the two incompatible sub-networks limit the
SR performance. To address this issue, DAN proposes a end-to-end
SR model to improve the results. DCLS proposes a more effec-
tive form of kernel representation. Although these SKP methods
achieves remarkable SR performance, the real world blur kernels

Table 3: Quantitative comparison on DIV2KRK. SK denotes
whether correspond method belongs to SKP. The best two results
are marked in red and blue colors, respectively.

Method SK
DIV2KRK

×2 ×4
PSNR SSIM PSNR SSIM

IKC ! - - 27.70 0.7668
DANv1 ! 32.56 0.8997 27.55 0.7582
DANv2 ! 32.58 0.9048 28.74 0.7893
KOALAnet ! 31.89 0.8852 27.77 0.7637
DCLS ! 32.75 0.9094 28.99 0.7946

Bicubic % 28.73 0.8040 25.33 0.6795
Bicubic + ZSSR % 29.10 0.8215 25.61 0.6911
EDSR % 29.17 0.8216 25.64 0.6928
RCAN % 29.20 0.8223 25.66 0.6936
DBPN % 29.13 0.8190 25.58 0.6910
DBPN + Correction % 30.38 0.8717 26.79 0.7426
KernelGAN + ZSSR % 30.36 0.8669 26.81 0.7316
AdaTarget % - - 28.42 0.7854
DASR % 32.24 0.8960 28.41 0.7813
CDSR % 32.68 0.9039 28.85 0.7901
MDCFnet(Ours) % 32.77 0.9119 28.98 0.7927

Table 4: Ablation study in the proposed main components on
DIV2K for ×2 SR and degradation classification accuracy (Acc.).

Model MConv LGC MSF AEF
Acc. DIV2K

Ed Ec PSNR SSIM

CDSR % % % % 54.00% 17.80% 29.36 0.8379
Model1 ! % % % 65.40% 18.20% 29.48 0.8402
Model2 ! ! % % 62.80% 33.20% 29.53 0.8413
Model3 ! ! ! % 64.00% 34.00% 29.63 0.8436
MDCFnet ! ! ! ! 63.60% 33.80% 29.71 0.8451

are still unavailable. To address this issue, some UDP methods,
such as DASR and CDSR, are proposed to train the degradation
prediction network without supervision from the ground-truth ker-
nel label. However, all of those methods are still inferior to our
MDCFnet, which can even achieve the competitive results com-
pared with the SOTA SKP methods.

4.3. Ablation Study

We conduct ablation studies on vital components of our method:
Multiple Receptive Fields Depthwise Separable Convolution
(MConv), Local and Global Combination module (LGC), Multi-
Stage Fusion (MSF) and Adaptive Embedding Fusion (AEF). The
quantitative results are shown in Table 4. All the experiments are
conducted on DIV2K validation set blurred by Gaussian8 with the
scale factor of ×2.

Effect of Multiple Receptive Fields Depthwise Separable Con-
volution. MConv diversifies the receptive field of the pixel-wise
branch to enrich degradation information. Based on the enriched
degradation information, we can enhance the degradation classi-
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Figure 6: Visual comparison on RealSRSet with scale factor as 4.

Figure 7: The average weights of degradation and content embed-
dings at each SR stage. The experiment is conducted for ×2 SR on
Set5 with Gaussian8.

fication capability of Ed to improve SR performance. To demon-
strate its effect, we replace standard convolution layers in LPEL by
MConv. In addition, other components in CDSR are maintained.
Shown in Table 4 "Model1", the degradation classification accu-
racy (Acc.) of Ed increases from 54.00% to 65.40%, and the SR
performance shows an increase of 0.12dB on PSNR.

Effect of Local and Global Combination Module. In order to
enhance the degradation classification capability of Ec, the LGC
is proposed to combine content embeddings with degradation em-
beddings in the patch-wise branch. To demonstrate that improving
the degradation classification capability of Ec benefits SR, we fur-
ther add LGC to "Model1". Shown in Table 4 "Model2", the degra-
dation classification accuracy (Acc.) of Ec increases from 18.20%
to 33.20%, and the SR performance shows a moderate increase of
0.05dB on PSNR though LGC only contains a trainable 2-layer
MLP.

Effect of Multi-Stage Fusion. In order to handle the domain gap
between the degradation embedding space and the SR feature space
varying at each SR stage, MSF is proposed to fuse the degrada-
tion embedding with the content embedding individually at each
SR stage rather than before multi-stage SR. To study its effect,
based on "Model2", we use a 2-layer MLP to fuse the degrada-

tion embedding with the content embedding at each SR stage. As
demonstrated in Table 4 "Model3", the SR performance shows an
increase of 0.10dB on PSNR.

Effect of Adaptive Embedding Fusion. AEF is designed to adap-
tively calculate the weights of degradation and content embeddings.
Based on the AEF, we can fuse the degradation embedding with
the content embedding flexibly. To demonstrate its effect, we re-
place the 2-layer MLP by the AEF. As shown in Table 4 MDCFnet,
the SR performance shows an increase of 0.08dB on PSNR. Fur-
thermore, we show the average weights of degradation and content
embeddings at each SR stage in Figure 7. It indicates that the do-
main gap between the degradation embedding space and the SR
feature space indeed varies at each SR stage, due to the variation of
the weights of the content embedding at each SR stage.

4.4. Performance on Real Degradation

To further demonstrate the effectiveness of our method, we con-
duct experiments on the real images. UDP methods trained on
anisotropic Gaussian kernels with noise is used for evaluation. Vi-
sualization results are shown in Figure 6. There are obvious arti-
facts in ESRGAN [WYW∗18] and BSRGAN [ZLVGT21], though
they may generate clearer textures. In the UDP methods, our MD-
CFnet can produce sharper edges and visual pleasing SR results.

5. Conclusion

In this paper, we propose the MDCF that adaptively fuses the degra-
dation embedding with the content embedding at each SR stage
rather than before multi-stage SR. Specifically, the AEF is pro-
posed to adaptively calculate the weights of degradation and con-
tent embeddings by a self-attention-like mechanism. To separate
degradation and content embeddings, the DPLG is applied. Spe-
cially, DPLG diversifies receptive fields to enrich the degradation
embedding and combines local and global features to optimize the
content embedding. Extensive experiments on real images and sev-
eral benchmarks demonstrate that the proposed MDCFnet can out-
perform the state-of-the-art UDP methods on PSNR and SSIM and
achieve visually favorable results. In the future, we will try to apply
similar unsupervised manners in other low-level vision tasks, such
as debluring and denoising.
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