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Abstract
Style transfer of images develops rapidly, however, only a few studies focus on geometric style transfer on 3D models. In this
paper, we propose a style learning network to synthesize local geometric textures with similar styles on source mesh, driven
by specific mesh or image features. Our network modifies a source mesh by predicting the displacement of vertices along the
normal direction to generate geometric details. To constrain the style of the source mesh to be consistent with a specific style
mesh, we define a style loss on 2D projected images of two meshes based on a differentiable renderer. We extract a set of global
and local features from multiple views of 3D models via a pre-trained VGG network, driving the deformation of the source
mesh based on the style loss. Our network is flexible in style learning as it can extract features from meshes and images to
guide geometric deformation. Experiments verify the robustness of the proposed network and show the outperforming results of
transferring multiple styles to the source mesh. We also conduct experiments to analyze the effectiveness of network design.

CCS Concepts
• Computing methodologies → Shape analysis;

1. Introduction

Visual style transfer is a long-standing objective in the field of
computer vision. There has been a lot of research on image style
transfer [GEB16, JAFF16, IZZE17, ZPIE17, CCK∗18, CUYH20,
KLA19], but style editing and learning on 3D data remains to be
deeply explored due to the irregular and unordered representation.
The core of 3D mesh style transfer is to edit the mesh model to
conform to a desired style while maintaining the underlying con-
tent. Usually, we consider content as the global shape and topology
prescribed by a mesh, and style as the object’s fine-grained local
geometric details.

With the rapid development of style learning in the image field,
some works studying the style transfer on mesh models are pro-
posed. There are some traditional methods that optimize the defor-
mation energy to generate a specific style for the mesh, such as cu-
bic stylization [LJ19, LJ21, KFDA21] and legolization [LYH∗15].
These methods treat shapes as geometric styles, and only one shape
style can be learned. In recent years, some style learning networks
have been proposed [YAK∗20, HHGCO20] to transfer surface de-
tails to the mesh from the feature of other mesh. These studies lead
to more options for mesh editing and stylization, but they are lim-
ited to geometric style learning between meshes.

† Zhonggui Chen is the corresponding author.

Mesh stylization is an important mesh editing and creation tech-
nique. In many cases, the model creator hopes to edit the current
model to show some existing style that comes from a model or from
a texture image. This mesh editing method provides creators with
powerful applicability and functionality. For the above purpose, we
need a unified style learning method that can transfer styles from
both meshes and images to a target mesh.

We design a deep learning framework for synthesizing local geo-
metric structures, which can generate high-quality 3D mesh models
with rich local geometric details. The style source can be a specified
mesh or an image with a certain style. Taking style transfer between
meshes as an example, our network first deforms the input mesh by
predicting the displacement of mesh vertices. We then compare the
current style of the deformed mesh with the style mesh. To evaluate
the style of a mesh, we adopt a differential renderer to project the
mesh to a set of 2D images from multiple views, and then extract
the latent features of images with a pre-trained feature encoder. Our
network iteratively optimizes the predicted displacement of the in-
put mesh to obtain the final model with a specific style under the
guide of style loss. Our specific contributions are summarized as
follows:

• We propose a deep style transfer network that transfers the ge-
ometric texture of a style mesh to an input mesh. Our network
defines a style loss on images generated by a differentiable ren-
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derer and guides the deformation of the input mesh by predicting
the displacement of the mesh vertices.

• Our stylization network is more generic than the existing meth-
ods as it can learn multiple styles from both 3D meshes and 2D
images. We prove the network’s effectiveness for learning sur-
face texture styles and demonstrate the results of multiple geo-
metric styles.

2. Related Work

3D mesh stylization is a popular research topic, and current meth-
ods include traditional methods based on energy constraints and
deep learning methods that use networks to learn deformations.
Based on different understandings of geometric styles, some works
focus on changing the shape and size of the model, and some works
concentrate on editing the model’s surface texture. We here review
the related methods according to different style types.

2.1. Geometric stylization on shapes

Several traditional methods have been proposed for stylizing 3D
models. Xu et al. [XLZ∗10] introduced a style-content separation
method that analyzes the part correspondence of 3D objects, treat-
ing anisotropic part scales as shape styles. Liu et al. [LJ19] pre-
sented a cubic stylization algorithm that transforms objects into
a cubic style by aligning rotated vertex normals with coordinate
axes using an As-Rigid-As-Possible (ARAP) energy optimization.
Kohlbrenner et al. [KFDA21] generalized the possibilities of cu-
bic stylization by choosing a set of preferred normals from Gauss
sphere and their optimization algorithm, similar to ARAP, main-
tains a constant linear system in the global optimization. Liu et
al. [KFDA21] proposed the spherical shape analogies method that
is also based on optimizing surface normals. Specifically, they opti-
mize a set of rotations that align the normals of the input mesh with
the desired normals. Furthermore, Luo et al. [LYH∗15] devised a
Legolization method that employs force-based analysis to estimate
the physical stability of a given sculpture and automatically gener-
ates a LEGO brick layout from a 3D model.

In recent years, several network-based stylization methods
have been proposed. Inspired by traditional cage-based meth-
ods [JMD∗07, LLCO08], Wang et al. [YAK∗20] proposed a neu-
ral network with cage-prediction and deformation-prediction mod-
els to warp source shape to target shape. 3DStyleNet [YGS∗21]
predicts a part-aware affine transformation that naturally warps the
source shape to imitate the geometric style of the target, while a dif-
ferentiable renderer facilitates the transfer of texture style.Huang et
al. [HLZ∗22] proposed a network to learn 3D shape style based
on the decomposition of shape style representation from the latent
space.

2.2. Geometry stylization on textures

Some researchers focused on transferring surface textures rather
than shapes to the target 3D mesh. In earlier work, mesh editing al-
gorithms were based on Laplacian coordinates [SCOL∗04, BH11]
could transfer texture or coating style to the target mesh. In re-
cent years, many research works have focused on transferring spec-

ified styles to target meshes. The source of style can be texture im-
ages, meshes, or even text prompts. We introduce related stylization
methods according to different style sources in the following.

In terms of image-to-mesh style learning, some work [YHBZ01,
Tur01] proposed to synthesize a texture directly on the surface of
a model, including color, transparency, and vertex displacements.
Wang et al. [WSH∗16] proposed a solution for transporting texture
images to 3D models, by factoring out geometric and perspective
distortions from illumination effects and compensating for both.
Oechsle et al. [OMN∗19] proposed Texture Fields for texture re-
construction of 3D objects based on regressing a continuous 3D
function parameterized with a neural network. Liu et al. [LTJ18]
developed a network that allows users to edit an input 3D surface by
simply selecting an image processing filter that can back-propagate
the changes in the image domain to the mesh vertex positions.

In terms of mesh-to-mesh texture transferring, Berkiten et
al. [BHS∗17] proposed a method that calculates a displacement
map to transfer details from high-quality models to simple shapes
without textures. Hertz et al. [HHGCO20] introduced a deep net-
work that learns geometric texture from local triangular patches and
generates vertex displacements to synthesize local geometries.

Text-to-mesh stylization has been motivated by the in-
creasing utilization of cross-modal supervision in the CLIP
model [RKH∗21]. Michel et al. [MBOL∗22] introduced
Text2Mesh, a method that predicts a 3D mesh with color and
geometric details that conform to a given text prompt. To achieve
photorealistic appearances for meshes, Chen et al. [CCL∗22] pro-
posed a disentanglement approach that separates the appearance
style into reflectance and scene lighting. These components are
jointly optimized using supervision from the CLIP loss.

In our work, we shift the focus of stylization towards surface
texture details and explore diverse sources of style to produce a
variety of stylized outcomes. Given a styled mesh or texture image,
our network employs a progressive refinement approach to adapt
the input mesh to the desired style. This makes our method more
versatile compared to prior works in the field.

3. Method

3.1. Network architecture

We illustrate the architecture of the style transfer network in Fig. 1.
The network takes a source mesh and a style mesh as input. The
surface texture of the style mesh serves as a representation of the
desired geometric style that we aim to transfer to the source mesh.

As shown in Fig. 1, to make the smooth source mesh learn the
bumpy surface texture of the style mesh, we calculate the nor-
mal direction for each vertex and feed all vertices into a position-
encoded network. The network predicts the displacement of each
vertex along its corresponding normal direction, resulting in a syn-
thesized mesh with new vertex positions. It is worth noting that the
connectivity of the mesh remains unchanged throughout the train-
ing process. We use a differentiable renderer to project generated
mesh and style mesh to get 2D images from different viewpoints.
In addition, we partition the global image into smaller local images
to capture geometric styles at different scales. To ensure faithful
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Figure 1: The overall architecture of the neural style transfer network for 3D meshes.

style transfer, we compare the latent style features extracted from
a pre-trained VGG [SZ14] of the generated mesh and style mesh.
The style loss considers both global and local features of the model.
Finally, Our network optimizes the surface texture of the generated
mesh by minimizing the image style similarity loss. The training
process iteratively updates the vertices of the generated mesh along
the normal direction until the desired style is achieved.

3.2. Position-encoded network

We denote the input source mesh as C, which consists of nv ver-
tices represented by V ∈ Rnv×3 and nt faces represented by T ∈
{1, . . . ,nv}nt×3. The source mesh remains fixed during the training
process. We use S to represent the style mesh and M to represent
the generated mesh.

The position-encoded network generates a style attribute for
each vertex, which is expressed as the displacement of that vertex
on the mesh surface. This displacement occurs along the normal di-
rection and is constrained within a small range. This design tightly
couples the style field to the source mesh, resulting in subtle geo-
metric modifications on the surface. Adjusting the vertex positions
of the mesh surface generates texture details that represent a spe-
cific geometric style. In our approach (Fig. 1), we take the vertex
coordinates as input and use a lightweight MLP network to predict
the displacement along the vertex normal. This network only mod-
ifies the vertex positions while keeping the mesh topology fixed.
As a result, the shape of the generated mesh remains largely un-
changed, but the surface texture becomes rich and stylized.

We attempted to feed the vertex coordinates to the position-
encoded network. However, we noticed that the MLP network
struggled to learn high-frequency texture details directly from

this low-dimensional input. To address this issue and gener-
ate high-frequency details, we utilized a position encoding tech-
nique [TSM∗20]. This technique involves feeding the network with
Fourier features to enable learning of high-frequency functions in
low-dimensional domains. Instead of directly providing the 3D ver-
tex coordinates to the MLP, we utilized a Fourier feature mapping
to featurize the input coordinates. For each vertex v ∈ V , its posi-
tional encoding γ(v) is given as follows:

γ(v) = [cos(2πBv),sin(2πBv)]T, (1)

where B is a random Gaussian matrix with dimension nv × 3, and
each entry follows a normal distribution N

(
0,σ2

)
. We use σ as a

hyperparameter to control the frequency function of learning styles.
In experiments we compare the effect of different σ values on the
network’s ability to learn high-frequency features.

After applying Fourier feature mapping, the position-encoded
features are transformed from three dimensions (vertex coordi-
nates) to a h f dimensional space, here h f = 256. The resulting
high-dimensional feature γ(v) serves as the input to the first layer
in MLP. In our MLP network, we use 8 fully connected layers with
different feature channels. For each vertex vi, the last layer outputs
a single value, which represents the displacement di of the vertex
along its normal direction n̂i. We calculate the new position of vi by
formula d · n̂i. Since the connection between vertices of the mesh
remains unchanged, the network gives fine-grained adjustments to
the surface geometry of the generated mesh M.

3.3. Style feature learning based on differentiable rendering

We evaluate the style similarity between styled mesh and generated
mesh by comparing their projected 2D images. We then encode tex-
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Figure 2: Different local geometric stylized results. The first row
shows the style meshes, the first column shows the source meshes
and the rest are the stylized meshes generated by our network.

ture images to get latent style features with a pre-trained encoder.
We will introduce each stage in detail.

3.3.1. Rendering and image feature augmentation

To render the 3D model, we begin by specifying an initial view
and utilize a differentiable renderer to project the model into a 2D
image. We render both the source mesh and style mesh at random
views based on a Gaussian distribution with a standard deviation
of σ = π/4, centered around the initial view, and then evaluate the
similarity of all the views between the two models. For a rendering
view Dθ, we first obtain a global projection ωglobal ∈ Ωglobal of
the model. Since our network focuses on learning local geometric
features, we augment the images by randomly cropping the global
image to obtain a local projection ωlocal ∈ Ωlocal . By simultane-
ously supervising the learning of both global and local views, our
network can more precisely guide the refinement of the local geom-
etry of the 3D model. Specifically, given the view Dθ, we denote the
global and local views as D̂θ1 and D̂θ2, respectively, i.e.,

D̂θ1 = ωglobal(Dθ), D̂θ2 = ωlocal(Dθ), (2)

where ωglobal involves a random perspective transformation on the
model. ωlocal generates a random perspective and a random crop,
yielding a local view representing 10% of the global view.

In our network, we render the model from multiple views Dθ,θ∈
Θ, where Θ is the set of all rendering views. The augmentation of
global and local views provides rich texture images for both style
mesh and generated mesh. This allows for improved supervision
and better control over the generation of local geometry in the gen-
erated mesh when predicting vertex displacement.

3.3.2. Style feature extraction

The global and local texture images of style mesh and generated
mesh are encoded into the implicit space F(·) ∈ Rhw×n using a

feature extractor. Here, h and w refer to the height and width of
the rendered images, and n is the total number of feature channels
in the implicit space. To compute the style loss, we select a set of
style layers ls =

{
l1
s , l

2
s , . . . , l

q
s

}
from the feature encoder. In the

subsequent definition, we omit the superscript and subscript and
use l to represent a feature layer.

In the study of image-to-image style transfer, researchers com-
monly employ pre-trained models such as VGG to extract features
from images [GEB∗17, LLKY19]. Our approach follows a simi-
lar strategy and utilizes VGG-19 as the image feature extractor to
guide the style learning process. To capture the style of images at
different resolutions, we choose a combination of some convolu-
tion layers as our style layer ls. In Sec. 4.3, we give experiments to
investigate the impact of selecting different style feature layers on
the quality of the final style transfer results.

The Gram matrix is a commonly used representation of the style
correlation between feature channels. Given a feature layer l with n
channels, let F l(·) represent the implicit features produced by that

layer. We compute the Gram matrix G
(

F l(·)
)
∈ Rn×n to measure

the spatial correlation of different feature channels in that layer.
Specifically, G

(
F l(·)

)
= (F l(·))⊤(F l(·)). The i j-th element cor-

responds to the inner product of the i-th column vector and the j-th
column vector of the feature layer F l(·).

The global style features extracted by the pre-trained encoder for
the style mesh S and the generated mesh M under the global views
can be expressed respectively as follows:

F1(S) = ∑
θ∈Θ

∑
l∈ls

G
(

F l(D̂θ1(S))
)
, (3)

F1(M) = ∑
θ∈Θ

∑
l∈ls

G
(

F l(D̂θ1(M))
)
. (4)

Similarly, we can extract the local style features of the style mesh
S and the generated mesh M under the local views as follows:

F2(S) = ∑
θ∈Θ

∑
l∈ls

G
(

F l(D̂θ2(S))
)
, (5)

F2(M) = ∑
θ∈Θ

∑
l∈ls

G
(

F l(D̂θ2(S))
)
. (6)

3.3.3. Style loss function

The style loss function evaluates the dissimilarity of geometric style
between the style mesh S and the generated mesh M, considering
both global and local features:

Loss(S,M) = L1(S,M)+λ∗L2(S,M), (7)

where global style loss is defined as follows:

L1 (S,M) = ∥F1(S)−F1(M)∥2
2, (8)

The local style loss is defined similarly. With the guidance of the
style loss computed on rendered images, the surface of the pre-
dicted mesh M gradually deforms, resulting in a geometric texture
similar to the styled mesh S.
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(a) (b) (c)

Figure 3: Multiple geometric style transfer results for the frog
model. (a) Style mesh; (b) source mesh; (c) style transfer results.

4. Experiments

We discuss parameter settings, comparison experiments and abla-
tion study to show the effectiveness of our style transfer network.

4.1. Experimental setting

To facilitate style transfer learning, we gather a diverse collection of
triangular mesh models, encompassing various categories such as
animals, humans, artifacts and more. Prior to training, we perform
preprocessing on each mesh model by relocating it to the geometric
center and normalizing its scale to fit within a unit sphere.

Training settings For the position-encoded network, we encode
the 3D coordinates of each vertex using a Fourier feature encod-
ing, resulting in a 256-dimensional feature vector γ(v). We set the
standard deviation σ of the Gaussian matrix B to 5.0. The high-
dimensional feature γ(v) is processed by an MLP with 8 fully con-
nected layers to determine the new position of vertex v. To pre-
vent drifting vertices, we limit the displacement d of the vertex to
the range (−0.1,0.1). During differential renderer, we apply ran-
dom perspective transformations to both global (ωglobal) and local
(ωlocal) projections. In specific, we sample 5 global views for each
mesh and randomly crop each global view to obtain 4 local views
to augment texture images. The global image is rendered at a reso-
lution of h×w = 250×250, while the local image has a resolution
of 25×25. Before encoding the images with VGG, we apply mean
and standard deviation normalization to each channel. In practice,
we use the values (0.481,0.458,0.408) for mean normalization and
(0.268,0.261,0.276) for standard deviation normalization. In the
loss function, the weighting between the global and local feature
loss λ is set to 0.1 in experiments.

We utilize the NVIDIA Kaolin library [FTSL∗22] in PyTorch
that offers differentiable rendering capabilities. For training, we use
the Adam optimizer [KB14] with an initial learning rate 0.0005,

(a) (b) (c)

Figure 4: Stylized results of transferring 2D texture image to 3D
meshes. (a) Style image; (b) source mesh; (c) style transfer results.

and decay it by a factor of 0.9 every 100 iterations. The training
process is conducted on a single Nvidia GeForce RTX 3090 GPU
and takes around 25 minutes to complete for 1000 iterations.

4.2. Qualitative results

4.2.1. Style transfer from mesh

We present the style transfer results on various mesh models, in-
cluding animals and artifacts. Fig. 2 shows the style transfer re-
sults using the sheep model, small wave sphere model, and large
wave sphere model as style meshes. For the sheep model, the over-
all style is represented by the undulating features on the body as its
body takes up a large proportion on the rendered images. The sheep
model exhibits a small and dense undulation shape, and the small
wave sphere model has a relatively larger and sparser raised struc-
ture on its surface. The large wave model displays a more promi-
nent raised structure. The first row represents the style meshes, and
the first column represents the source meshes. The stylized meshes
exhibit different local geometries, demonstrating a strong ability of
our network to learn various geometric styles.

To demonstrate the style learning ability of our network, we
show multiple geometric styles transferred to a frog model in Fig. 3.
For buckyball style, the stylized frog exhibits a more rounded shape
overall while preserving the local spherical features such as the
eyes, paws, and fingers. For the rail sphere style, the back of the
frog model shows angular edges reminiscent of the surface of the
rail sphere model. For the stripe style, the stylized frog effectively
captures the striped structure, with varying degrees of stripes on the
head, back, and limbs, displaying a distinct layering effect. These
results prove the successful transfer of different geometric styles to
the frog model, resulting in visually appealing outcomes.

4.2.2. Style transfer from image

Our network is capable of learning styles from images. Since the
style is provided by a texture image, we only need to render the
source mesh. We encode given style image using the VGG net-
work to obtain its latent features, which are then compared with
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(a) (b) (c) (d)

Figure 5: Comparison of our network with Hertz’s geometric tex-
ture synthesis network [HHGCO20]. (a) Style mesh; (b) source
mesh; (c) results of Hertz’s method; (d) results of our network.

the style of rendered images of the source mesh to calculate their
style loss. We design an image-to-mesh style learning module that
can be plugged into the network, allowing it to accept various style
sources and increase its versatility. The stylized results using given
texture images are shown in Fig. 4. The first image represents a
style with multiple bubbles of different sizes. As a result, the styl-
ized frog model exhibits bulbous shapes of varying sizes, resem-
bling the bubble style depicted in the image. The second row shows
a style image depicting a peeling surface with blocks of different
sizes and separations. Our network considers both global and lo-
cal features in style learning, thus the surface of the bunny shows
similar compartmentalized appearance.

4.2.3. Comparison experiments

Our network specializes in local geometric stylization. We com-
pare with two most relevant stylization works: Hertz’s method
[HHGCO20] and Text2Mesh [MBOL∗22]. Hertz’s method is a
mesh-to-mesh geometry synthesis network that uses a generative
adversarial network (GAN) to synthesize local mesh patches with
target style. Text2Mesh is dedicated to color and geometric tex-
ture generation of meshes driven by CLIP-based text. While those
methods focus on transferring geometric styles from style sources
to meshes, our network expands the range of style transfer applica-
tions by extracting styles from both mesh and image sources.

In Fig. 5, we give the comparison of our network and Hertz’s
method on sheep and buckyball style. Our method successfully cap-
tures the undulating shape of the sheep style, while Hertz’s method
fails. Our method also generates geometry that is consistent with
the spherical effect of the buckyball style, resulting in a more aes-
thetically pleasing output. Hertz’s network precomputes additional
style meshes of multiple resolutions given the buckyball mesh, and
selects certain scales for style learning. We observed a loss of sur-
face detail with multi-scale style meshes, so that Hertz’s method
did not learn the expected texture fluctuations on frog surface.

In Fig. 6, we present a comparison between Text2Mesh and our
network using the same image as the style. While Text2Mesh pri-
marily relies on text descriptions, the CLIP model’s correlation
alignment between images and corresponding text descriptors al-
lows for the use of images as style guidance as well. In the fig-
ure, we selected texture images featuring diagonal stripes as the

(a) (b) (c)

Figure 6: Comparison of our network with Text2Mesh
[MBOL∗22]. (a) Style image and source mesh; (b) results of
Text2Mesh; (c) results of our network.

style guidance. We can observe that our approach captures the
styles of the images with greater clarity and accuracy compared to
Text2Mesh. Since Text2Mesh relies on text descriptions for speci-
fying styles, it can be challenging for users to accurately describe
specific geometric styles, limiting its application. In contrast, our
network ensures faithful style transfer based on style meshes or
images, making it more versatile and user-friendly.

4.3. Parameter settings

Parameters in position encoding A random Gaussian matrix B
is used to map vertex coordinates v ∈ R3 to a high-dimensional
Fourier feature space in position-encoded network. Each entry in
B is sampled from a normal distribution N

(
0,σ2

)
, where σ is a

hyperparameter that controls the frequency function for position
encoding. We conducted experiments to compare the effect of style
transfer with different σ values, as shown in Fig 7. Increasing σ

resulted in more pronounced geometric styles, bumpy features, and
higher frequency details, while smaller values of σ had minimal
effect and fewer details. Based on empirical observations, we set σ

to 5.0 in implementation, as it produces a distinct stylistic output
without excessive focus on details.

Impact of different feature layers To extract the style of tex-
ture images generated by differentiable renderer, we adopt a pre-
trained VGG-19 as the feature extractor. VGG-19 model consists
of 5 convolutional blocks with 64, 128, 256, 512, and 512 feature
channels respectively. Each convolutional block contains multiple
layers, and there are 16 convolutional layers in total. The choice of
style feature representation layers plays a critical role. The first two
convolutional blocks have feature channels less than 256, which
we consider as low-level features. Therefore, we assign the con-
volutional layers [1, 2, 3, 4] to represent the low-level style of the
model. We select layers [10, 12, 13, 14] with 512 feature chan-
nels as the high-level style. In experiments we found that using
either low-level features or high-level features alone did not ad-
equately capture the local geometric features of meshes. As de-
picted in Fig. 8(b), when only lower layers are used, the shape of
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(a) (b) (c) (d)

Figure 7: Style transfer results of the Gaussian matrix B with differ-
ent values of σ in the position-encoded network. (a) source mesh;
(b) σ = 1.0; (c) σ = 5.0; (d) σ = 10.0.

(a) (b) (c) (d)

Figure 8: The results obtained by selecting different style feature
layers. (a) Source mesh; (b) style layers: [1, 2, 3, 4]; (c) style lay-
ers: [1, 3, 5, 9, 13] and (d) style layers: [10, 12, 13, 14].

the source mesh is significantly distorted, and the style has a greater
impact on the overall shape rather than surface textures. In contrast,
when only higher layers are used, as shown in Fig. 8(d), the mesh
is able to learn the geometric style, but the undulation of its surface
texture is not clearly visible, resulting in indistinct geometric tex-
tures. To better represent the geometric style, we extract one layer
from each of the five convolutional blocks with different resolu-
tions to combine low-dimensional and high-dimensional features.
In implementation, we select layers[1, 3, 5, 9, 13] for style rep-
resentation. Fig. 8(c) demonstrates the learned style. Our network
successfully preserves the shape structure of the original mesh and
synthesizes local geometry on the surface, resulting in smooth and
natural textures that are indistinguishable from the style mesh.

4.4. User study

We conducted a user study to evaluate the visual quality of the styl-
ized meshes generated by our network. The study consisted of 16
sets of source meshes, style meshes (or style images), and stylized
meshes. Participants were asked to rate how well the style transfer
results matched the target style on a scale of 1-5, where 1 repre-
sents "not a match" and 5 represents "perfect". A total of 43 gradu-
ate students with a background in computer science participated in
the study. In Fig. 9, we list the "source model-style model" pairs on
the x-axis, and the average rating on the y-axis. All stylized meshes
received a score higher than 3 and the majority of models achieved
an average score higher than 4, indicating that our network success-

Figure 9: Average scores (1-5) for stylized meshes in user study.
For each stylized mesh, we use "model-style" to denote the source
mesh and style mesh (image) respectively.

fully generates the specific geometric styles on the source meshes
that are similar to those of the style meshes.

5. Conclusion

We propose a neural style transfer network that leverages a differ-
entiable renderer to transfer geometric textures from style meshes
or style images. Our network utilizes the position-encoded mod-
ule to predict the vertex displacement along the normal direction,
facilitating the synthesis of local geometric structures. We project
3D mesh models with a differentiable renderer to get 2D images
and then extract style features with VGG module. The style loss
based on both global and local texture features helps the network to
generate fine-grained geometric textures on mesh surfaces. Com-
pared with previous work, our network is more generic since its
strong ability in transferring styles from meshes or images to the
target mesh. Our network can function as a stylization tool, which
provides great convenience in editing and styling mesh models.

Our network is unable to effectively learn holes on the surface of
the style mesh, as the frog-bucky model shown in Fig. 5(d), which
received the lowest rating in the user study. This limitation arises
from the fact that our network focuses on updating the vertex posi-
tions while keeping the original triangular surface connections in-
tact. As a result, topological changes are not possible within the
model. Consequently, although our network can successfully learn
and transfer local spherical shapes from the buckyball model to im-
prove the overall roundness of the frog model, it remains challeng-
ing to accurately capture and transfer high-genus structures that are
present in the style mesh. In future work, we aim to explore style
transfer involving high-level structures.
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