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Abstract
Audio-driven talking head generation has wide applications in virtual games, hosts, online meetings, etc. Recently, great
achievements have been made in synthesizing talking heads based on neural radiance fields. However, the existing few-shot
talking head synthesis methods still suffer from inaccurate deformation and lack of visual consistency. Therefore, we propose
a Generalizable Dynamic Radiance Field (GDRF), which can rapidly generalize to unseen identities with few-shot. We intro-
duce a warping module with 3D constraints to act in feature volume space, which is identity adaptive and exhibits excellent
shape-shifting abilities. Our method can generate more accurately deformed and view consistent target images compared to
previous methods. Furthermore, we map the audio signal to 3DMM parameters by applying an LSTM network, which helps get
long-term context and generate more continuous and natural video. Extensive experiments demonstrate the superiority of our
proposed method.

CCS Concepts
• Computing methodologies → Reconstruction; Animation; Shape representations;

1. Introduction

Audio-driven talking head generation has wide application and
development prospects in VR/AR, virtual hosting, online video
conferences, etc. Synthesizing continuous and high-fidelity audio-
driven talking head videos is highly challenging due to the dif-
ficulty of using audio signals to control facial expressions and
poses. Currently, many works have been proposed to synthesize
talking heads. With the rise of Generative Adversarial Networks
(GAN) [GPAM∗20], the GANs-based driven face method [KLA19,
DBSB20, TET∗20a] has been widely used. However, these 2D-
based approaches cannot generate realistic and vivid talking heads
due to the lack of 3D structure of the head.

Recently, the neural radiance field (NeRF) [MST∗21], which
models the geometry and appearance of a specific person as a func-
tion, has shown excellent performance in synthetic photo-realistic
talking head [GCL∗21, YZY∗22]. However, these methods strug-
gle to generalize to new scenes, requiring a large number of in-
put frames and training for a long time, which limits the appli-
cation in practice. There are some few-shot NeRFs [WWG∗21,
YYTK21, CXZ∗21] that generalize to new scenes with few inputs
by extracting pixel-aligned features from the reference images as
prior information of the radiance field. However, these methods
are only suitable for synthesizing static scenes. On the other hand,
some works [GTZN21, PSB∗21, ZAB∗22] have been proposed
to construct dynamic radiance fields by introducing 3D deforma-
tion fields, and thousands of frames of images are still required.
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)
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)
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)

Figure 1: Synthetic results of talking head on different meth-
ods for fine-tuning 5k iterations with only 5s video input. (a)
NeRF [MST∗21]. (b) ADNeRF [GCL∗21]. (c) DFRF [SLZ∗22].
(d) Ours.

Therefore, it is contradictory to construct a 3D neural deformation
field with few-shot. As shown in Figure 1, the faces synthesized
by [MST∗21] and [GCL∗21] are incomplete and blurred due to few
input frames and short optimization time. While DFRF [SLZ∗22]
generalizes novel identities with 15s clips by proposing a 2D warp-
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Figure 2: The framework of our proposed generalizable dynamic radiance field (GDRF).

ing module at the image level, the synthesized image still has arte-
facts such as inconsistency and blurriness. In contrast, we intro-
duce a warping network with 3D constraints to conduct warping in
the deep feature space instead of the image space, which exhibits
a more robust and precise deformation performance. As shown in
Figure 1, our proposed warping strategy synthesizes sharper facial
details (such as teeth, wrinkles, and mouth contours) than DFRF.
In addition, prior works [GCL∗21, SLZ∗22] directly extract au-
dio features to implicitly drive the target face, which cannot learn
long-term context, so the generated video lacks continuity between
frames and has a time delay relative to the input video.

To address the abovementioned problems, we propose a general-
izable dynamic radiance field, synthesizing the high-fidelity audio-
driven talking head with a few-shot. Our method achieves more
accurate lip movement and higher-quality generated images and
videos than previous methods. First, We extract feature volumes
from reference images as priors on the radiance field for fast gener-
alization to different identities. Then, we introduce a warping net-
work with 3D constraints that perform warping in the feature vol-
ume space. This helps infer precise lip movement and generate vi-
sually continuous images with only a 5s clip. Unlike previous 2D
warping methods [RLC∗21, HZL22], our warping module is con-
strained by the 3D geometry in the radiance field, which makes
the warped frame view consistent. Besides, our deformation model
has lower degrees of freedom, making it easier to infer deformation
with few-shot than the 3D deformation field. More importantly, the
warping module acts on the feature volume space instead of the im-
age space, making it faster to build the deformation field of the new
identity and improve the quality of generated images [ZLW∗22].
Subsequently, based on an LSTM module, we map audio features
to expressions and poses as the warping network’s motion descrip-
tors. This helps generate view-consistent and natural target talking
head videos [YYZ∗20]. Finally, a multi-layer perceptron (MLP) is
exploited to estimate attributes of spatial query points, and the clas-
sic volume rendering method is used to generate the target image.

Experimental visualization results and quantitative indicators ver-
ify the superiority of the proposed method.

In general, our work mainly makes the following contributions:

• We propose a generalizable dynamic radiance field for synthesiz-
ing visually continuous and high-precision audio-driven talking
head with only 5s video input;

• We introduce an audio-guided warping module with 3D con-
straints performing on the feature volume, which is identity
adaptive and shows accurate deformation in short iterations with
few-shot;

• We utilize an LSTM module to map audio into expression and
pose to guide further the warping network, which contains long-
term context, making the facial movement more continuous and
natural.

2. Related Work

Speeching head generation driven by audio. Audio-driven
speeching head generation requires convincing facial motion
learned from audio signals. There are some works [ZLL∗19,
SLZ∗22] learn lip motion directly from audio features, while
Prajwal et al. [PMNJ20] focus on lip movements by utilizing
the Wav2Lip model. Some works [GZZ∗23, YZC∗22, ZZH∗21,
ZNF∗21, ZSW∗21] utilize GAN-like architecture to generate
more generalizable interim results to reinforce overall qual-
ity. Transformer-based models [WQZ∗23, MWH∗23, WLDY22,
SZW∗22] also perform greatly benefited from well-designed ar-
chitecture and the perception ability of cross-attention. Besides, Ji
et al. [JZW∗21] focus on disentangling audio into emotion-related
parts and content-related parts to achieve better results, especially
around the mouth area. Nevertheless, because most of the above-
mentioned methods abandon parametric representation, these ap-
proaches face challenges and lack long-term context.

In order to avoid the interference of irrelevant factors in the audio
and enhance the continuity of the generated target video, several
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works [TET∗20a, CCL∗20, LCC21, ZLDF21, ZCW∗23, XZZ∗23,
ZFC∗23] explicitly control the target face synthesis by mapping
audio to face parameters, such as landmarks and 3DMMs [BV99].
Wang et al. [WLD∗21] generate videos with spatial and tempo-
ral continuity by introducing key points estimated by motion field.
Huang et al. [HZL22] learn more continuous and precise lip move-
ments by 3DMM parameters learned from a transformer model.
Therefore, smooth and realistic videos are easier to synthesize by
utilizing 3DMM parameters.

Neural radiance field with few-shot. Recently, much work has
been done on reconstructing static scenes from a few images. For
instance, PixelNeRF [YYTK21] extracts the pixel-aligned feature
from one or few reference images as a prior condition and syn-
thesizes new perspectives. IBRNet [WWG∗21] realizes the gen-
eralization of NeRF for unseen scenes through a generic view
interpolation function. What’s more, MVSNeRF [CXZ∗21] per-
forms 3D convolution on the cost volume constructed by the MVS-
Net [YLL∗18] and then obtains an encoding volume containing
per-voxel neural features, thereby realizing the generalization of
different scenes with only three images. Besides, there are also
some works [HPX∗22, ZZSC22] proposing parametric nerf mod-
els to achieve photo-realistic face synthesis with free-view images.
However, these works are only suitable for reconstructing static
scenes and cannot achieve the generalization of dynamic scenes.

Dynamic radiance field. NeRF is only applicable to the recon-
struction of static scenes. In order to extend NeRF to dynamic
scenes, [PSB∗21, PSH∗21, PCPMMN21, LXW∗22] deforms the
query point from the observation space to the canonical space by
optimizing a backward 3D deformation field. NerFace [GTZN21]
and RigNeRF [AXS∗22] control the expression and pose of the hu-
man face through a morphable model to model the dynamics of
the face. Moreover, SNARF [CZB∗21] proposes forward deforma-
tion fields that improve generalization and show better deformation
performance. However, these mentioned methods all require many
input frames, so building a dynamic field suitable for a small num-
ber of inputs is challenging.

3. Method

The overall framework of our proposed model is shown in Fig-
ure 2. Unlike previous methods, we map the audio features into
3DMM [BV99] parameters based on the LSTM module, which is
essential to generate precise and continuous lip movements. Sub-
sequently, we introduce a warping network with 3D constraints
guided by the 3DMM parameters to warp the feature volumes. Be-
low are the implementation details.

3.1. Audio Mapping Network

Learning precise lip movements directly from audio features re-
quires many frames and lacks long-term context, resulting in dis-
continuous and delayed video generation. In order to extract time
dependencies and reduce latency, we use an LSTM module to learn
the facial parameters from the audio and then use the parameters
to drive the target image, which helps generate a more natural and
smooth audio-driven video.

Based on 3DMM, each face can be represented as a linear com-
bination of shape and texture vector, and the face shapes S can be
represented as:

S = S+αBid +βBexp (1)

where S represents the average face, and Bid , Bexp are the PCA
basis for identity and expression seperately. Where α ∈ R80 and
β ∈ R64 are the coefficient of identity and expression. Besides, the
head poses P ∈ R6 is the inverse of camera pose [R,T ], where R and
T are the rotation and translation matrix. In this paper, we utilize the
face tracking method [TZS∗16] to estimate the facial parameters of
input frames.

Firstly, to obtain the time dependence, we use a fixed-length win-
dow to extract the Mel-frequency cepstral coefficients (MFCC) fea-
tures of adjacent audio frames as the inputs of the LSTM network.
Subsequently, we input the MFCC feature sequence of each frame
into the LSTM network and then output the predicted facial ex-
pression and pose parameters sequence, which can be formulated
as follows: 

[β̃t , P̃t ,ht ,ct ] = L (E (at) ,ht−1,ct−1)

a = {a1,a2, . . . ,aT }
β̃ =

{
β̃1, β̃2, . . . , β̃T

}
P̃ =

{
P̃1, P̃2, . . . , P̃T

} (2)

where E represents the module that encodes the MFCC features
and L represents the LSTM network. Besides, each time, ct and ht
represent the cell and hidden states. Where a, β̃ and P̃ represent the
input MFCC feature sequence, predicted expression coefficient se-
quence and pose sequence by LSTM separately, and T is the length
of the window.

In this paper, we fine-tune the mapping from audio features to
facial parameters based on a pre-trained LSTM model trained on a
large video corpus. In addition, we use a mean squared error loss
between the ground truth and the predicted parameters to constrain
the training process, which can be denoted as:

Lβ,P = ∥β− β̃∥2 +λ1∥P− P̃∥2 (3)

where β and P are the ground-truth expression and pose param-
eters estimated by face2face [TZS∗16]. We set the weight factor
λ1 = 0.2, and extra loss constraints are added between consecutive
frames to enhance the continuity between frames:

Lc = λ2

[
T−1

∑
t=1

(
β̃t+1 − β̃t

)2
]

+λ3

[
T−1

∑
t=1

(
P̃t+1 − P̃t

)2
] (4)

where we set λ2 = 0.01 and λ3 = 0.001. Therefore, the total loss
function of the LSTM network is formulated as follows:

Ll = Lβ,P +Lc (5)

3.2. Warping Network with 3D Constraints

Feature extraction. Firstly, randomly select N frames from the in-
put video as reference images. After that, a feature encoding net-
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Table 1: Performance comparison of different methods on videos of different lengths.

Method
NeRF AD-NeRF DFRF Ours

3s 5s 10s 3s 5s 10s 3s 5s 10s 3s 5s 10s
PSNR ↑ 14.36 15.80 14.28 24.76 23.38 23.89 28.61 29.18 29.28 29.18 29.26 29.32
SSIM ↑ 0.337 0.377 0.337 0.807 0.767 0.795 0.909 0.912 0.912 0.912 0.915 0.916
LPIPS ↓ 0.691 0.540 0.607 0.145 0.176 0.164 0.067 0.065 0.064 0.062 0.060 0.060

SyncNet ↑ - - - 0.918 0.780 0.724 2.760 3.273 3.325 3.153 3.900 4.037

work Ec is used to extract the feature volume Vi of each reference
image Ii, which can be formulated as:

Vi = Ec(Ii),(i = 1,2, · · · ,N) (6)

Semantic mapping. It is recognized that audio has a strong corre-
lation with lip movements. However, it is also necessary to consider
head movements to make the talking head more natural. According
to Eq.(1), the position of the face mesh points is determined by the
expression and identity coefficients, which represent identity and
expression coefficients associated with lip movements. Besides, the
identity parameters are related to the person’s speaking style, so the
identity parameter can help synthesize high-quality images. So we
concatenate the relevant parameters and utilize a semantic mapping
network M to map them into high-dimensional motion descriptor z:

z = M(α⊕ β̃⊕ P̃) (7)

where α, β̃ and P̃ are the identity parameter, predicted expression
parameter, and head pose, respectively. Where ⊕ denotes the con-
catenation operation. The descriptor z is further used to guide the
warping network by AdaIN [HB17] operator:

AdaIN(mi;z) = γ
z
(

mi −µ(mi)

σ(mi)

)
+β

z (8)

where mi is the feature map of each convolutional layer, and µ(·),
σ(·) are the average and variance calculation of the statistic mi sep-
arately. Where γ

z and β
z represent the affine parameter, calculated

by performing an affine transformation on the latent code z, respec-
tively.

Warping network. Afterwards, we employ a warping network
W to estimate the deformations between feature volumes Vi and
target feature volumes Ṽi. Guided by the latent code z, the warping
module generates a flow field w = W (Vi,z), which denotes the co-
ordinate offset between the source and the target. Based on w, we
obtain the warped feature volumes Ṽi by interpolated sampling S:

Ṽi = S(Vi,W (Vi,z)) (9)

3.3. Modeling Facial Radiance Field

Subsequently, we construct a radiance field to reconstruct the target
image based on pixel-aligned feature vector [YYTK21].

Feature aggregation. For the sampling point x, we project it into
the reference image coordinate system through the intrinsic matrix
K and camera pose [R,T ]. After that, the warped pixel-aligned fea-
ture vector fi corresponding to the reference image is calculated by
bilinear interpolation:

fi = Bil(Pro j(x,Ki,Ri,Ti),Ṽi),(i = 1,2, · · · ,N) (10)

where Pro j represents the projection from the world coordinate sys-
tem to the reference image coordinate system, and Bil represents
the bilinear interpolation operator. Then we aggregate the N fea-
ture vectors { f1, f2 . . . , fN} with an attention model [LWU∗20] to
form the final warped feature vector f .

Volume properties prediction. Finally, the facial radiance field
fθ is realized as a multi-layer perceptron (MLP). In addition to the
spatial coordinates x and the viewing direction d of the query point,
we further add the latent code z and the aggregated feature vector f
to the radiance field. Then we estimate density σ and color c of the
query point by fθ:

(σ,c) = fθ(γ(x),γ(d),z, f ) (11)

where γ(·) is the position encoding employed by NeRF.

3.4. Volume Rendering

Color prediction. After that, we calculate the color of each ray
r(t) = o+ td by volume rendering:

C(r) =
∫ d f

dn

c(r(t),d)σ(r(t))T (t)dt,

T (t) =exp
(
−

∫ t

dn

σ(r(s))ds
) (12)

where o and d are the starting point and direction of the ray. Where
T (t), dn, and d f represent the cumulative transmittance along the
camera ray and the near and far boundaries of the ray, respectively.
Following DFRF, we render the background, neck, and shoulders
as the image’s background, making the talking head more natural.

Loss Function. We use the mean squared error between the
ground truth colour Cg(r) and the rendered colour C(r) to compute
the loss:

Lr = ∑
r∈R

∥Cg(r)−C(r)∥2
2 (13)

Where r represents the collection of training rays for each batch.
Finally, the total loss function is as follows:

L= Lr +λl ·Ll (14)

4. Experiments

4.1. Implementation Details

In this section, we present the experimental details and demonstrate
the superiority of the proposed method.

Dataset. We select face videos with a duration between 40s and
50s, containing different languages. Then, process the video to a
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Figure 3: Comparison of visualization results of different methods for fine-tuning 1k and 10k iterations with 5s input.

resolution of 512×512 and a frame rate of 25 FPS. We select sev-
eral videos from the dataset to train a basic model, including dif-
ferent languages. To verify the generalization, we divide the video
of unseen identities into 3s, 5s, and 10s, and the remaining video
length is used for testing.

Table 2: Performance comparison of different methods on different
iterations.

Method PSNR↑ SSIM↑ LPIPS↓ SyncNet↑

NeRF
1k 17.03 0.647 0.566 -
5k 17.28 0.640 0.528 -

10k 17.05 0.627 0.526 -

ADNeRF
1k 22.36 0.825 0.234 0.110
5k 22.07 0.822 0.231 0.399

10k 24.55 0.824 0.215 0.732

DFRF
1k 28.45 0.885 0.122 1.989
5k 28.74 0.886 0.113 2.650

10k 28.85 0.894 0.106 3.165

Ours
1k 28.59 0.889 0.090 2.664
5k 29.04 0.902 0.083 3.548

10k 29.15 0.903 0.076 3.765

Table 3: Metric comparisons with non-NeRF methods Synthesizing
Obama [SSKS17] and NVP [TET∗20b] on two test sets (A and B)
collected from the demos of these two methods, respectively.

Method
SyncNet↑

Test set A Test set B
Synthesizing Obama - 4.713

NVP 4.286 -
Ours 5.230 5.441

Setup. The experiment is conducted on NVIDIA Tesla V100
GPUs and trained end-to-end. We use the Adam optimizer [KB14]
to train the basic model for 300k steps with an initial learning rate
of 0.0001. We set the number of reference images to 4 frames so
that in the case of limited computing resources, the whole model
has the best performance, which has been verified in the ablation
experiments.

Evaluation metrics. To evaluate the quality of synthesized im-
ages, we utilize peak signal-to-noise ratio (PSNR), structural simi-
larity index measure (SSIM), and learned perceptual image patch
similarity (LPIPS) as the evaluation metric. In addition, Sync-
Net [CZ16] is used to evaluate the synchronization quality between
audio and visual.

4.2. Overall Comparison Results

In this section, we choose NeRF and NeRF-based audio-driven
talking head synthesis methods as the baseline. Nerface is the
method of reconstructing 4D facial avatars by constructing dy-
namic radiance fields, but it requires long-time videos to train for
new identities. ADNeRF and DFRF are the methods of construct-
ing the audio-driven radiance fields, and DFRF is able to generalize
to unseen identities with few-shot.

Different training video lengths. To verify the performance of
our proposed method with few-shot , we divide the unseen identity
face video into 3s,5s, and 10s. Then, we fine-tune the pre-trained
models for 15k iterations with videos of different lengths sepa-
rately. To keep it fair, we use the same data to optimize the same
steps based on the basic model released by DFRF. Since NeRF and
ADNeRF cannot be generalized to different identities, the same
data is directly used for training. The quantitative results of the ex-
periment are shown in Table 1. From the results in Table 1, we
know that due to the small number of input frames, NeRF and AD-
NeRF have poor synthesis performance. Compared with the DFRF,
our proposed method performs better on the input of each length.
Since the PSNR score favours blurry images [PSB∗21] and cannot
represent the sensory quality, we pay more attention to the LPIPS
score and Syncnet confidence.

Different iteration steps. In this section, to compare the impact
of different optimization times, we choose another 5s training data
to iterate 1k, 5k, and 10k steps on different methods separately. The
quantification results on the test set are shown in Table 2. Quanti-
tative results demonstrate the superior performance of our method
in short iterations. Especially in LPIPS and SyncNet scores, there
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is a significant improvement compared to DFRF. In Table 3, we
follow AD-NeRF and DFRF to compare with non-NeRF meth-
ods NVP [TET∗20b] and Synthesizing Obama [SSKS17] to show
our superiority. We train our model for 40k iterations. Notice that
both of them are not few-shot methods. According to Figure 3,
NeRF and ADNeRF methods fail to generate complete and clear
images due to insufficient input images and short training time, es-
pecially in the torso and face contour. In contrast, our proposed
method generates acceptable images for 1k iterations and high-
quality images for 10k iterations. What’s more, We zoom in on the
details of the DFRF and our visualization results for 10k iterations,
as shown in Figure 4. Figure 4 shows that our proposed method
synthesizes sharper high-frequency details such as tooth edges and
earring lines. In contrast, DFRF has poor synthesis quality at high-
frequency details.

Speech-driven experiments in different languages. To verify
our method’s performance in different languages, we also selected
Chinese and French test sets for verification. Similarly, a 5s video
is taken from the test sets as input. In Table 4, we show the Sync-
Net [CZ16] scores for target videos in different languages driven by
source audio in different languages. The same id in the second col-
umn indicates that the source and target are from the same identity.
The source and target in other columns come from different iden-
tities. The quantitative results show that our proposed method has
excellent performance among different language generalizations.

Table 4: Comparison of driver performance in different languages.

Target
Source

Same id English Chinese French

English 4.221 4.089 3.804 2.997
Chinese 3.821 3.007 3.545 3.129
French 3.478 3.209 2.866 3.187

(a) DFRF (b) Ours

Figure 4: Detailed comparison of generation images on DFRF and
our method. It can be seen that our proposed method has sharper
generated images compared to DFRF.

4.3. Ablation Study

The impact of the number of reference images. In this part, to
choose the appropriate number of reference images, we set the

number of reference images to 2, 4, 6 and 8 frames, respectively,
and fine-tune 10k steps on the same test set. The quantitative com-
parison is shown in Table 5. The results show that our model is
stable when the number of reference images is 4. Although there
are higher PSNR and SSIM scores when the number of reference
images is set to 6, we choose to set it to 4, considering computation
consumption.

Table 5: Comparison of results with different numbers of reference
image inputs.

Number 2 4 6 8

PSNR ↑ 29.08 29.15 29.16 29.14
SSIM ↑ 0.901 0.903 0.904 0.902
LPIPS ↓ 0.077 0.076 0.076 0.077

The impact of different modules. To realize the face’s deforma-
tion, we introduce a deformation network with 3D constraints per-
forming on the feature volume. In addition, to improve the quality
of the generated video, we apply an LSTM network to map audio
features into 3DMM parameters to get long-term context. To ver-
ify the effectiveness of each module, we leverage the same data set
to train three different basic models, namely "WarpNet", "Wrap-
Net+LS", and our complete model. After that, we use these three
basic models to fine-tune 15k steps for the same 5s video, and the
experimental results are shown in Table 6.

In Table 6, the DFRF method is the baseline for comparison.
The "WarpNet" donates using the same audio feature as DFRF to
guide our proposed warping network instead of the 3DMM pa-
rameters learned from the LSTM module. The experimental re-
sults in the first and second rows demonstrate the superiority of
the proposed warping module. Obviously, our proposed warping
module outperforms DFRF on every measurement index. Besides,
the "WrapNet+LS" means introducing the LSTM module to map
features into expression and pose parameters and then using ex-
pression and pose parameters as the motion descriptor to guide the
warping network. Compared with the "WarpNet" model, the sig-
nificant improvement of the SyncNet score shows that LSTM helps
generate smoother and more natural videos. Our complete model
denotes that the "WarpNet+LS" model incorporates the identity pa-
rameters, which show the best performance and verify the impor-
tance of identity parameters for generating target faces.

Table 6: Performance comparison of different models.

Method PSNR↑ SSIM↑ LPIPS↓ SyncNet↑

DFRF 29.18 0.912 0.065 3.273
WarpNet 29.25 0.914 0.062 3.342

WarpNet+LS 29.28 0.914 0.060 3.858
Ours 29.26 0.915 0.060 3.900

5. CONCLUSION

In this paper, we have proposed a generalizable dynamic radiance
field for talking head synthesis with few-shot. We apply the warp-
ing network with 3D constraints to warp the feature volume ex-
tracted from reference images to eliminate the mismatch between
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the target and source images. By inputting warped feature vectors
and speech information as priors, the radiance field can well gener-
alize to different identities. Further, based on the LSTM network,
we map the audio signal to the 3DMM parameters to get long-term
audio context, which makes the generated video more continuous
and natural. A series of experiments demonstrate the superiority of
our method in synthesizing talking heads with few-shot.

Applications and broader impact. Our work achieves general-
izable dynamic neural radiance field reconstruction for speeching
heads with only a few inputs, making it a reality to widely put
speeching head synthesis technology into practical applications,
including digital avatars, virtual anchors, games, online confer-
ences, etc. However, we should also use this technology within
the scope of legal ethics to prevent the misuse and disclosure of
personal information.
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