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Figure 1: We present Text2Mat, a text-based material generation framework which can generate complex materials with only input texts.
Here, we show 8 materials generated by our proposed Text2Mat (left), and apply them to an indoor scene (right).

Abstract
Specific materials are often associated with a certain type of objects in the real world. They simulate the way the surface of
the object interacting with light and are named after that type of object. We observe that the text labels of materials contain
advanced semantic information, which can be used as a guidance to assist the generation of specific materials. Based on that,
we propose Text2Mat, a text-guided material generation framework. To meet the demand of material generation based on text
descriptions, we construct a large set of PBR materials with specific text labels. Each material contains detailed text descrip-
tions that match the visual appearance of the material. Furthermore, for the sake of controlling the texture and spatial layout
of generated materials through text, we introduce texture attribute labels and extra attributes describing regular materials.
Using this dataset, we train a specific neural network adapted from Stable Diffusion to achieve text-based material generation.
Extensive experiments and rendering effects demonstrate that Text2Mat can generate materials with spatial layout and texture
styles highly corresponding to text descriptions.

CCS Concepts
• Computing methodologies → Rendering;

† Corresponding authors: Jie Guo, guojie@nju.edu.cn; Yan Zhang,
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1. Introduction

Surface materials are often modeled by Spatially-Varying Bidirec-
tional Reflectance Distribution Function (SVBRDF) [Nic65] and
saved as parametric maps as digital assets. Some websites of digi-
tal asset are dedicated to providing material data designed by artists
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through relevant compositing tools, but these materials are often
limited in number and mostly consist of maps that cannot be edited
or modified. In recent years, diffusion probabilistic models (DMs)
[HJA20; SWMG15] have been applied with great success to text-
to-image (text2image) generation tasks, such as Glide [NDR*21],
Stable Diffusion (SD) [RBL*22] and other text2image generation
methods. We have observed that the material labels consisting of
texts are a powerful description of the material’s essential proper-
ties for both real-world materials captured by professional equip-
ment and synthetic materials designed by artistic tools, providing a
kind of high-level semantic information for guidance.

From the above observation, we aim to generate materials
through a text-to-image (text2image) framework, which depends
on data of images with matched text descriptions. Unfortunately,
there is no such a public dataset of materials for use. To drive the
task for generating materials with specified texts, we construct a
dataset of PBR materials with detailed text descriptions. For better
control of the texture of generated materials, we leverage the tex-
ture labels of DTD [CMK*14] and some common texture styles of
specific materials, such as tiles, paving stones, etc. Based on the
dataset and SD, we propose Text2Mat, a text-conditional genera-
tion framework which can generate highly matched material maps
according to specified colors, texture styles and material types by
user texts.

In summary, we make the following contributions:

• A PBR material dataset of more than 2500 samples is collected,
comprising detailed text descriptions of colors, texture styles,
and material types, as well as corresponding SVBRDF maps
ranging from 1K to 4K.

• A texture annotation method of material maps with the labels of
DTD is proposed, which can present the detailed visual proper-
ties of the corresponding material.

• A text to material generation framework based on Stable Diffu-
sion is designed, which can generate various kinds of materials
with specified colors and texture styles only by texts.

2. Related Work

2.1. Material Acquisition and Generation

The traditional approach for material generation is to capture
through hardware devices. Dong et al. [DWT*10] and Kang et al.
[KCW*18] proposed to use specialized hardware to capture ma-
terial properties. Although the captured material properties match
those in the real world, these works often require expensive
equipment, and the capture process is time-consuming and labor-
intensive, resulting in high costs and poor scalability.

Advances in deep learning have enabled some works [LDPT17;
DAD*18; LSC18] to predict the corresponding SVBRDF from a
single image, which is typically an image taken with a cell phone
under flash. Under the condition of using only a single image
taken by a cell phone, Guo et al. [GLT*21] modified the archi-
tecture of the neural network and trained it using a GAN-based
approach. Zhou and Kalanntari [ZK21] performed mixed data en-
hancement by GAN, which allowed them to reconstruct reasonable
and smooth results. Henzler et al. [HDMR21] recover the corre-

sponding SVBRDF by sampling from a prior distribution, supervis-
ing the rendered image according to the SVBRDF with the target
image, center-flashed image, on a pixel-wised basis through differ-
entiable rendering, and matching the appearance of the target image
by depth optimization to obtain the corresponding SVBRDF. How-
ever, since their method only performs pixel-wised supervision on
the rendered image, the parameters of their predicted SVBRDF of-
ten do not match the real ones, and it cannot recover material prop-
erties with regular textures well. Zhou et al. [ZHD*22] used a vari-
ant StyleGAN2[KLA*20] as a backbone for optimization as well.
They can specify the pattern of generated material conditioned on
a binarized image and achieve tileable results by modifying the
padding way of the network architecture. But their method suffers
from diversity and more control due to that each trained model can
only generate a single type of materials.

The works of Hu et al. [HDR19] and Shi et al. [SLH*20] are
based on the node graph of procedural material synthesis tools.
These works are based on existing material node maps in the li-
brary and can generate SVBRDF parameter maps with unlimited
resolution and seamlessness. However, these works are based on
existing material node maps and are not scalable enough. Material-
GAN [GSH*20] train an unconditional material generation model,
which allows the potential of the material to be used in the gen-
erator. However, this model entangles spatial layout and style and
does not allow explicit control over the generated materials. Based
on Adobe Substance Designer [Ado], a procedural material gen-
eration tool, MatFormer [GHS*22], performs material node graph
generation through a multi-stage transformer-based model that se-
quentially generates nodes, node parameters, and edges while en-
suring the validity of the graph semantics.

2.2. Text to Image Generation

Latent Diffusion [RBL*22] chooses to perform step-wised de-
noising on the low-dimensional latent space instead of the high-
dimensional original data (image) space in order to reduce the
computational overhead in denoising. It makes use of the Cross-
Attention mechanism [HZL*17], which enables it to be applied
to tasks guided by data of different modalities. Stable Diffusion
is a large generative model based on Latent Diffusion proposed
by Rombach et al. [RBL*22], and trained specifically on the
text2image task, which is an application of Latent Diffusion on the
text2image task with good generalization performance by fitting a
large amount of generic data during training. SD consists of a per-
ceptual compression module and a conditional generation module.
The first module is an AutoEncoder (AE), which compresses the
input image into the latent space to obtain the latent feature, and
recovers the reconstructed image from the latent space. The second
consists of a DM and a text encoder CLIP [RKH*21], which uses
the U-Net [RFB15] structural network as the backbone to diffuse
and denoise in the latent space, and uses the text encoded by CLIP
as a condition to guide the denoising process.

3. Text-Material Dataset

For each material sample, whether it is captured by an instrument
or synthesized, matches a certain type of objects in the real world,
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and owns a corresponding material label, e.g., brick, jeans, leather,
metal, etc. The material label mostly consists of keywords, which
are already general semantic representations of the essential prop-
erties of the material, but lacks a complete representation of the
rich textural features of the material surface. In contrast, a string of
text usually contains multiple keywords and relationships between
them, which can express more specific meaning and show more
comprehensive information. In multi-modal tasks, the CLIP model
[RKH*21] learns the common semantics of images and texts to
perform image classification, target detection, and other tasks more
accurately with good robustness and generality. For a material, a
string of text is able to show its appearance and physical properties
more specifically and accurately than just keywords, and also can
represent the rich texture of its surface, thus containing more effec-
tive semantic information and feeding more important feature to the
model. This section details the process of creating a text-material
dataset based on the above perspective.

3.1. Composition of Dataset

In this work, we focus on generating materials from text, which
drive us to build a material dataset with text description. Our text-
material dataset contains 2500+ synthetic PBR materials with com-
plete text descriptions. Each sample contains 4 SVBRDF parame-
ter maps and a text label, where the SVBRDFs are albedo, normal,
roughness, and metallicity respectively. The text labels of the sam-
ples in this dataset match the visual effects shown by the materials
after shading, i.e. the center-flashed image, and the focus is on the
visual characteristics of the materials. From this point of view, in
order to describe the material accurately, we introduce the color
and texture labels in addition to the original material labels in the
dataset. The final text labels are a specific combination of the three
labels, with additional detailed descriptions added.

3.2. Collection and Processing of Dataset

To date, there is no publicly available dataset of textures contain-
ing text descriptions. We first collected high-quality PBR materi-
als from 4 publicly online resource sites [Dem23; Hav23; Tex32;
Sha23]. Then, we checked the parameter maps of each material,
filtering out materials that were not obviously seamless and part of
the PBR workflow. The data from ambientCG [Dem23] and Poly
Haven [Hav23] were also checked for labels containing a main key-
word (called label) and several keywords (called tags) describing
the content of the material and other information, which were re-
tained to enrich the text and assist in the creation of text labels.
The above filtering process resulted in 2500 high quality material
samples. Most of samples were tagged with single or combined
keywords associated with real-world physical objects to represent
the material, e.g. brick wall, marble, wood floor, etc. For a specific
material data, it is hard to represent the details of the material re-
lated to visual perception using only labels that represent high level
semantic information. At the same time, it is also difficult to dis-
tinguish between material samples of the same type using only a
single keyword label due to its various textures. To address these
issues, we introduced two new labels related to visual perception,
color and texture, to enrich the description of material properties
and to more accurately characterise the material.

Texture usually refers to the detailed parts of an image. The fea-
tures of texture can be used to identify and classify different objects
in order to improve the accuracy of classification tasks. As a rather
important visual property, texture patterns have semantic connota-
tions, and adding descriptions of texture patterns can provide more
detailed descriptions of the content and characteristics of materi-
als. In order to represent the rich variety of texture patterns using a
common set of texture property descriptions, we resort to the DTD
[CMK*14] dataset, a publicly available multi-label dataset for de-
scribing common texture attributes of natural objects. DTD was
used to research on the issue of texture description, which describes
texture attributes. The generic texture attributes of the DTD dataset
are also applicable to the material data we collected. To describe
the texture of the material, we introduced a multi-label texture at-
tribute classifier to assist in the annotation of the current texture at-
tributes of the material. This classifier uses a pre-trained ResNet101
[HZRS16; DDS*09] as the backbone network and CSRA[ZW21]
as a enhancement module for multi-label classification on the DTD
dataset. The module structure enhances the model’s perception and
classification ability for key regions by introducing an attention
mechanism to weight different regions of the input image to dif-
ferent degrees. As the resolution of the DTD dataset varies from
256 to 600, and the resolution of the center-flashed image rendered
by our material data is 512, the use of ResNet101 can be adapt well
to image inputs of different resolutions.

However, when using the trained classifier for auxiliary anno-
tation of texture attributes, we observed that the texture attribute
labels in the DTD dataset were mostly descriptions of some non-
regular textures and patterns, and lacked descriptions of regular
spatially structured ones such as brick wall, tiles, pavement, etc.
Secondly, The texture attributes of the DTD contain descriptions
that are strongly related to material properties and are a subset of
this material dataset. Finally, the DTD also contains some semanti-
cally similar texture attributes that are somewhat repetitive, as well
as some texture attributes that are not applicable to the representa-
tion of this material dataset. Considering the lack of regular texture
attributes and the potential for ambiguity and repetition, we elimi-
nated texture attributes with highly similar semantics to the related
materials, texture attributes with overlapping semantics, and texture
attributes that deviate significantly from the present material data,
such as gauzy, marbled, potholed, bumpy and freckled. By looking
at the texture attributes of the material dataset and referring to the
corresponding material generation websites, we introduced 9 new
texture attributes that are strongly correlated with regular shapes
and texture patterns. The new textures images are collected via the
Internet and finally merged with the DTD dataset to obtain a multi-
label texture classifier, which is trained to infer the corresponding
texture attribute labels for the center-flashed images corresponding
to the material data. At last, we made 41 labels for classification.
More information about our dataset and processing are included in
the supplemental document.

3.3. Sample Annotation

We generate complete text labels for each material sample based on
the above three types of labels to accurately represent the visually
perceived properties and characteristics of the material. After the
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previous round of annotation, each material sample contains three
types of attribute labels, namely: color label c, material label m and
texture label t. The specific annotation steps for the text label T
are as follows. Firstly, the three labels are combined to obtain the
initial form T1 which is expressed as follows:

T1 = C(c,m, t) (1)

where C denotes the keyword combination function, which specif-
ically checks the syntax of the combined phrases and filters the
semantic duplicates or contradictory keywords. The initial form T1
is obtained after the first round of combination, and its content is
mainly in the form of "[color] [material] with/arranged in [texture]
pattern". Afterwards, all material samples are retrieved and the tags
ta retained during data collection are combined into the initial form
according to the content and properties of the material sample to
obtain the form T2:

T2 = C(ta,T1) (2)

Finally, referring to Textures [Tex] and Poliigon [Pol], two major
digital asset sites for material classification labels tc on the form T2
for content additions to obtain the text labels:

T = C(tc,T2) (3)

Specific examples of text label with materials are included in the
supplemental document.

4. Text2Mat

Our goal is to generate a material according to the input text. To
this end we have constructed a dataset of text-material pairs, and
we present Text2Mat, a material generation framework based on
Stable Diffusion(SD) [RBL*22] that can generate materials highly
matching the material type, texture style and color specified in the
input text.

Text2Mat mainly comprises two stages. In the first stage, we aim
to generate representation of a material in the latent space condi-
tioned on the input text. In the second stage, we perform SVBRDF
reconstruction of PBR material in the latent space. Both stages
share the same latent space, which allows the stage II of Text2Mat
to decode the latent space features generated in the stage I to obtain
the corresponding SVBRDF parameters.

4.1. Stage I: Text2Image Generation

In this stage, the Diffusion Model (DM) [HJA20] is denoised by
text bootstrapping to obtain the corresponding latent space features.
In addition to the textual information from the material dataset with
text constructed above, we also need the corresponding image data.
As the pre-trained DM is trained on the large-scale text-image pair
dataset Laion-5B [SBV*22], the fitted data distribution is mainly
that of natural data, while the diffusion and denoising process of
the DM is performed in the hidden space. Therefore, in order to fit
the natural data distribution, we rendered each material according
to the simplified Disney BRDF model[BS12] with 4 SVBRDF pa-
rameters: albedo (or base color), normal, roughness and metallicity.

As illustrated in Fig. 2, based on the BRDF model, we render
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Figure 2: Overview of Stage I. In Stage I, we fix the pre-trained
encoder of AE, aiming to generate the representation of center-
flashed image in the latent space of the material specified in the
input text.

the shading image with a point light source at center, i.e. a center-
flashed image, and then resize the image to 512×512, using this
image and the text label as input. When training the text to the
image generation module, we encode the shading image of the ma-
terial sample into the latent space with the pre-trained encoder of
AutoEncoder (AE), which is fixed due to the need to adapt it to the
second stage. At the same time, the input text is encoded by CLIP
to obtain the text features, and the DM is trained to diffuse and de-
noise in the latent space conditional on the text features, allowing
it to fit the distribution of the material dataset corresponding to the
shading images under the guidance of the text.

4.2. Stage II: BRDF Reconstruction

Material reconstruction is an ill-posed and fundamental problem
in computer graphics that aims to infer the physical properties
of a real-world material based on its interaction with a light sur-
face, usually expressed as SVBRDF parametric maps. Common ap-
proaches to material reconstruction fall into two categories: one is
a modelling method, which fit large-scale data through neural net-
works and infer the SVBRDF parameters of the material backwards
from the data distribution. The other is a combined procedural mod-
elling method, where only a small number of parameters are pre-
dicted using the neural network and the final BRDF parameters are
generated from procedural node graphs with the predicted param-
eters. Text2Mat is based on SD, and the SVBRDF reconstruction
of the PBR is performed on the latent space features generated by
DM.

As shown in Fig. 3, the input shading image is first passed
through a fixed encoder of AE to generate the corresponding la-
tent representation, after which the latent representation is recon-
structed by the introduced parameter decoder to obtain 4 SVBRDF
parameters. Our SVBRDF decoder adopt the same architecture as
decoder in AE, but output parametric maps of 8 channels.

4.3. Loss Function and Training Details

The input image during training of Text2Mat can be denoted as
x ∈ RH×W×3, where H = W = 512. In Stage I, x is encoded as a

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

Zhen He et al.  / Text2Mat: Generating Materials from Text92



Latent Space

Denoising

text

CLIP

𝑧𝑧𝑡𝑡 𝜖𝜖𝜃𝜃

U-Net

light blue tiles with dense
white four-leaf flowers pattern

center-flashed image

E Re-
parameterize

𝑧𝑧 Sample 𝑡𝑡 from
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑚𝑚 0,𝑇𝑇

Text-conditional Generation

skip connection cross attention latent feature

E D

center-flashed image

𝑧𝑧

SVBRDF maps

differentiable
rendering

rendered image

Render 
loss

L1 
norm

random  3-channel 
perceptual loss

+ +

AE-encoder

latent featureAE-encoder SVBRDF-decoder

𝜖𝜖~𝑁𝑁 0,1

L2 
norm

Figure 3: Overview of Stage II.In Stage II, we fix the encoder of
AE to share the same latent space of SD, which makes the SVBRDF
decoder directly deocde the latent representation of shading mate-
rial to output SVBRDF parameters.

representation z ∈ R
H
f ×

W
f ×4 in latent space through the fixed en-

coder of AE, where f = 8 represents the compression rate. The
DM then performs a diffusion and denoising training process in the
latent space, and the loss function can be simplified as:

LDM = Ez,ε∼N(0,1),t

[
∥ε− εθ (zt , t)∥2

2

]
(4)

where ε is the noise sampled from the standard Gaussian distribu-
tion and εθ represents the noise predicted by the DM. During train-
ing, t is sampled from a uniform distribution (0,T ), denoting the
steps of the forward diffusion process, and T = 1000. We denote zt
as the image at step t of the forward diffusion process.

In Stage II, we fix the pre-trained encoder of AE and feed it
with the input image x to obtain the latent space feature z. Then, 4
parametric maps, albedo (3), normal (3), roughenss (1) and metal-
licity (1), with total 8 channels will be output after sending z to
the SVBRDF decoder. We use the same network architecture as
the SD perceptual compression module for SVBRDF decoder, and
change the last convolutional layer to output 8 channels with an
accompanying Sigmoid function to normalize the output to range
from 0 to 1. In training, We adopt a pixel-wised L1 loss function
on each SVBRDF parametric map, i.e. reconstruction loss. Mean-
while, we also apply a perceptual loss function based on VGG. To
ensure consistency between different SVBRDF parameters, we ran-
domly select 3 channels within the 8 channels’ output for each step
in training. Moreover, a differentiable render loss function is added
to further supervise the generation of parametric maps. The final
loss function is as follows:

L= Lrec +λ3perL3per +λrenderLrender (5)

where Lrec and L3per calculate the pixel-wised loss between ev-
ery predicted map and ground truth map. Lrender denotes the pixel-
wised loss between the image with differentiable rendering and the
input image. λ3per = 0.1 and λrender = 0.05 denote the weight for
the perceptual loss and differentiable rendering loss, respectively.
Both stages of Text2Mat were trained on our dataset, with 500
samples, randomly selected, for testing and 2000 samples for train-
ing. The training is conducted on one NVIDIA A6000 GPU, taking
about 15000 steps on Stage I with a learning rate of 1e-5 and 25000

Figure 4: Results of user study on 21 texts. Each text is shown as
a column, where different colors indicate that users preferred the
corresponding method instead of the other.

steps on Stage II with a learning rate of 1e-4 for a total training time
about 3 days.

5. Experiments

In this section, we evaluate Text2Mat and also show the comparison
of the effectiveness of Text2Mat and other methods on text-based
material generation tasks. To further validate the effectiveness of
the text labels for the datasets constructed by us, we validate them
with corresponding ablation experiments. In addition, more experi-
ments were conducted on discussing seamless material generation.
In all experiments, we used DPM-Solver [LZB*22] sampler for in-
ference with a sampling step count of 30 and a classifier-free guid-
ance (cfg) [HS21] of 3.0. It should be emphasised that the focus of
our work is on generating materials with simple and effective con-
trol, where we choose to make use of convenient texts. Although
we use the idea of reconstruction to reconstruct SVBRDFs from
latent space features in Stage II, it is still different from material
reconstruction directly from single image, and comparing the re-
construction performance is not our main purpose.

5.1. Evaluation for Text-to-image Generation

In this subsection, we compare SD with our Text2Mat for text-to-
image generation. In our experiments, we use version 2.0 of SD,
and Text2Mat is also fine-tuned on SD2.0. Since SD2.0 is trained
on generic text-image pairs and cannot directly generate textured
images, we specify that SD2.0 generates textured images by adding
"A texture map of" to the beginning of the text input of SD2.0 for
a fair comparison. A total of 21 text descriptions were selected and
a user study was conducted on the results generated by SD2.0 and
Text2Mat, where 28 users (most are graduate students researching
in CG and CV) were asked to select the result that better matched
the text among the images generated by the different models based
on the text. Fig. 5 shows the results of the user study, from which
it can be seen that the results generated by Text2Mat outperformed
SD2.0 on 20 of the samples, some of the generated results of which
are shown in Fig. 6. As can be seen in Fig. 6, the original SD2.0 was
unable to generate images with matching material styles directly
based on the description text, whereas Text2Mat was trained with
specific labels, allowing Text2Mat to generalise the original model
to generate material images with colors, texture styles and materials
that highly correspond to the input text, as evidenced by the results
of the user study, thus validating Text2Mat’s ability to move from
text to material style. The results of the user study also demonstrate
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Figure 5: Results of user study on 21 texts. Each text is shown as
a column, where different colors indicate that users preferred the
corresponding method instead of the other.
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Figure 6: Comparison to SD2.0 [RBL*22]. We show the results on
text-to-image generation of SD2.0 and our Text2Mat.

the ability of Text2Mat to control the generation of text-to-material
style images.

5.2. Evaluation for Material Generation

There is no publicly available method for generating materials
based on text, and for text-based material generation we chose to
compare Text2Mat with the text-to-material online generation site
Poly [Inf23]† on this task. In our experiments, we also selected 21
texts and did a corresponding user study, asking 28 users (same
people as above user study) to choose the result that better matched
the input text among the images generated by the different methods.
The results of the user study are shown in Fig. 4 and some samples
are shown in Fig. 7, where a, n, r, m, h, O and R denote albedo, nor-
mal, roughness, metallicity, height, ambient occlusion and Render
respectively. Based on the results of the user study and the com-
parison of the presented samples, our Text2Mat outperformed Poly
on all 20 of the samples, although Poly was able to generate PBR
parametric maps based on text: albedo, normal, roughness, height
and ambient occlusion. Poly does not generate textures that cor-
respond well to text with textural detail, and does not allow for
guided generation of spatial structure using common basic graphic
elements such as "I-shaped" and "diamond". Also the textures gen-
erated for simple generalised text do not have a regular texture.
In contrast, the model Text2Mat corresponds well to both simple

† Accessed in February, 2023.

black tiles

blue marble with cracked pattern

black ceramic tiles with red and white flower pattern

blue and white striped fabric

a n

r h OR

a n

r mR

clean red smooth tiles with I-shaped pattern

Poly [Inf23] Text2Mat

Figure 7: Comparison to Poly [Inf23]. We show the results on text-
to-material generation of Poly and our Text2Mat. The a, n, r, h, m,
O, R denote albedo, normal, roughness, height, metallicity, ambient
occlusion and rendering images, respectively.

and more complex descriptions and gives realistic results. More im-
portantly, Poly is not able to generate parametric maps that reflect
specular reflections such as specular or metallicity, and cannot use
text to guide the generation of metal-like materials. On the other
hand, Text2Mat can generate metallic and metal-like materials and
has good control over the base color of the metal, as illustrated in
Fig. 8. User studies have shown that Text2Mat outperforms Poly
for text-to-material generation.

5.3. Discussion on Text Labels

The text labels in this dataset are based on the material labels and
other keywords, with the introduction of additional colour and tex-
ture labels. In order to provide a more comprehensive and detailed
description of the visual properties exhibited by the textures, a com-
parative experiment was conducted on the effectiveness of the ad-
ditional labels introduced, where -Texture denotes a model trained
without the additional texture labels and original denotes a model
trained with the original keywords. Fig. 9 shows that since the pro-
posed text labels can have more intuitive and richer descriptions
than the original labels, the model trained with the full labels can
generate the corresponding texture styles based on the correspond-
ing descriptions, thus generating a material mapping that better
matches expectations. The original labels lacked a complete rep-
resentation of the global and local style of the material, making it
difficult to generate a material map that would reasonably fit the
input text. As can be seen from Fig. 10, after removing the labels
from the texture property descriptions, the trained -Texture model
becomes less sensitive to the spatial structure in the image and has
difficulty generating texture maps with reasonable texture styles.
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Figure 8: The results of metal-like materials generated by
Text2Mat with only text inputs.
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Figure 9: Comparison of the text-to-material generation results
of Text2Mat after training with the original labels of constructed
dataset.

5.4. Seamless Materials Generation

As can be seen from Fig. 11, for materials such as bricks, tiles
and other textures that are regular, Text2Mat is able to generate the
corresponding materials and corresponding texture patterns freely
combined according to the description. At the same time, as the
materials such as bricks and tiles in the constructed dataset are
seamless, DM fits their corresponding distributions well, allowing
Text2Mat to generate seamless brick walls, tiles and other materi-
als.

5.5. Discussion on different format of text inputs

To seek the flexibility and complexity of input text that Text2Mat
can support, we set different formats of text with similar meaning
and one complex cases as the input. We show the rendering results
of generated SVBRDFs in Fig. 12. Our Text2Mat can generate fine
materials matching the different formats of text input with same
meaning, but it’s a little bit hard for this framework to generate a
quite precise material with more complex and out-of-distribution
text input, which is limited by the number and distribution of our
dataset.

light yellow leather with 
black lined grid pattern

clean red smooth tiles with I-
shaped pattern

a n

m

a n

r mR R

our
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-Texture
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Figure 10: Comparison of the text-to-material generation results
of Text2Mat after training without texture label.

blue ceramic tiles with white 
flower pattern

irregular yellow bricks with 
cracked pattern

a n

m

a n

mR R r

tiles with white and dark green 
chequered pattern

r

blue bricks with I-shaped pattern

Figure 11: We show the seamless materials of tiles and bricks gen-
erated by Text2Mat.

6. Conclusion

In this work, we have proposed a text-guided material generation
framework: Text2Mat. Based on the need of generating materi-
als from text descriptions, we have collected and produced a text-
material dataset with detailed text descriptions. After fully observ-
ing the spatial structure and texture of the materials in this dataset,
a multi-label texture classifier were trained for texture recognition
using the texture attributes from DTD [CMK*14] as a benchmark.
Meanwhile, we introduce differenct label and constructs a material
dataset with text labels by the combination of each label. Based on
the SD, we construct a training on proposed dataset through a two-
stage training strategy and buils an end-to-end material generation
framework guided by text descriptions.

light blue tiles arranged
in chequered pattern

tiles, blue, chequered a tile texture which has
white and blue che-
quered pattern

a tile texture which has
patterns of white and
blue chequer with a yel-
low dot at the center.

Figure 12: We show rendering results of generated materials on
different text inputs with similar meaning and one more complex
case.
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