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Figure 1: Visualization of a magnetohydrodynamics (MHD) simulation. A: Visualization of one time step of the geomagnetic field (B̂) with
a filter (3.0 < ‖B̂‖ < 14.0). B: Geomagnetic field in normalized temperature (0.2 < T < 1.0), shown from the North Pole. C: Side view of
geomagnetic field with high temperature. D: Load-balancing dataset decomposition. One time step of sample data are 6.7 terabyte.

Abstract
To address the need of highly efficient and scalable parallel flow visualization methods, we developed a flow visualization
system for large unstructured simulation data using parallel 3D line integral convolution (LIC). The main consideration for a
parallel LIC implementation is a trade-off between the additional memory cost of replicating cells at sub-domain boundaries,
or the communication cost of exchanging those data among computation nodes. To improve scalability, we introduce a
load-balancing scheme that partitions datasets based on estimated LIC computation time. We also introduce a data-driven
sub-domain extension scheme that determines which external cells at sub-domain boundary need to be added based on
current boundary cells, which reduces memory overhead because the same visual quality can be achieved with a significantly
smaller number of replicated external cells. We evaluate our visualization method by first comparing its parallel scalability to
traditional integral field lines methods. Next, we compare our cost-driven domain decomposition method to existing methods to
verify that ours leads to more balanced computation and improved scalability. Finally, we compare our data-driven sub-domain
expansion method to traditional layer-based expansion methods in terms of memory overhead and visual quality. We conclude
that our parallel 3D LIC method is an efficient and scalable approach to visualization of large and complex 3D vector fields.

CCS Concepts
• Human-centered computing → Scientific visualization; • Software and its engineering → Parallel programming lan-
guages; • Computing methodologies → Concurrent algorithms;

† ygliao@ucdavis.edu

1. Introduction

Flow visualization has been an active field of scientific visual-
ization for decades. Practical methods need to address the large

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

DOI: 10.2312/pgv.20191106 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0003-3954-9693
https://orcid.org/0000-0001-9088-1451
https://orcid.org/0000-0003-0017-525X
https://orcid.org/0000-0001-5874-0472
https://doi.org/10.2312/pgv.20191106


Y. Liao et al. / Scalable Parallel Flow Visualization Using 3D Line Integral Convolution for Large Scale Unstructured Simulation Data

size of flow datasets, and the complex computational processes
that generated them. Thus, computation performance is a key
factor driving new directions in flow visualization. Many well-
established methods are based on the extraction of representative
information from large scale data in order to meet the perfor-
mance and memory requirements of personal computers, such as
feature extraction [PVH∗03], partition-based clustering [SJWS08],
and topology-based approaches [WTS∗05, LHZP07]. However, to
view flow datasets in their entirety and at full resolution, visualiza-
tion methods typically need to be executed on massively parallel
supercomputers, often on the same computers that generated the
datasets. Depending on the architecture of such supercomputers,
different approaches can be applied to improve the parallel effi-
ciency of flow visualization in shared memory, distributed memory
and hybrid parallel systems [YWM07, PCG∗09, PRN∗11].

Many flow visualization methods are based on integral curves,
i. e., the paths of mass-less particles seeded in a dataset’s domain
and advected by one of its defined vector fields. Examples of such
methods are direct particle tracing [KL96], integral curve-based ge-
ometry primitives [BMP∗90], and texture-based line integral con-
volution [CL93]. One fundamental approach to parallel visualiza-
tion is data parallelism, where each computation node only holds
a sub-domain of the full dataset, depending on some decomposi-
tion strategy. However, inappropriate decomposition can result in
high load imbalance and poor scalability. While several algorithms
to minimize load imbalance have been presented, there is no single
approach that can handle all the different flow visualization meth-
ods. Another fundamental approach is task parallelism. The tasks
involved in particle tracing integration are independent, so multi-
ple tasks can be parallelized across the entire domain. Hence, the
demands of changing data can result in either a burden of commu-
nication or I/O operations. Considering various aspects of parallel
system setting, neither parallelization model can be universally op-
timal for parallel flow visualization. In other words, for most flow
visualization parallelization models, load balance and communica-
tion are crucial factors for optimizing overall performance.

Line integral convolution (LIC) was originally introduced by
Cabral and Leedom [CL93]. It is a texture-based visualization
method conveying both local and global vector field features in a
dense representation. In particular, LIC is controllable, stable, and
generates visualizations over a dataset’s entire domain with rich
local features. Due to its reliance on densely-packed short inte-
gral curves, LIC is computationally expensive, and several paral-
lel methods were proposed to reduce its total computation time for
large-scale time-varying 2D data. However, we are not aware of ex-
isting parallel visualization methods for 3D vector fields using an
extension of LIC to three dimensions (3D LIC). We propose such
a method, in order to provide high-performance 3D visualization
with full spatial coverage of local flow features for large-scale 3D
flow data.

We demonstrate and evaluate our method on a state-of-the-art
numerical model of a planetary dynamo [MKB14, MHA∗16]. This
model performs a magnetohydrodynamics (MHD) [MHLE17] sim-
ulation in a rotating spherical shell modeled on the Earth’s outer
core. The shell (the computational and data domain) extends from
the Earth’s inner core boundary (ICB: ri = 1215km) to the core-

mantle boundary (CMB: ro = 3485km), in a rotating frame with
constant angular velocity. The inner core is solid and considered
to be an electrical insulator. The numerical model uses governing
equations to investigate how convection of the electrically conduc-
tive fluid can continuously regenerate the magnetic field. The dy-
namo simulation is performed by a pseudo-spectral method and
outputs visualization data as a set of multi-dimensional fields de-
fined on a finite element method (FEM) mesh. Although we use
a specific MHD simulation as a test case, our proposed 3D LIC
method also applies to general flow field data defined on arbitrary
domains.

We propose an innovative parallel visualization system using
3D LIC to show flow field features, motivated by the need to visu-
alize vector field data with rich local features and full spatial cover-
age, which is not addressed by geometry-based flow visualization.
Specifically, the main contributions of this paper are: 1. A parallel
texture-based 3D LIC visualization method with strong scalabil-
ity. 2. A new data partition method guided by estimates of total
LIC computation time per sub-domain to improve load balance. 3.
A data-driven sub-domain expansion algorithm to significantly re-
duce memory overhead to represent external cells while retaining
high visual quality.

We review previous work on LIC and parallel LIC methods,
and summarize solutions for parallel efficiency in the next section.
Our proposed parallel 3D LIC visualization method is introduced
in Section 3. In Sections 4 and 5, we present our workload-based
domain decomposition and our data-driven sub-domain expansion,
respectively. We analyze our visualization results and evaluate our
method’s performance, including load imbalance and scalability
analysis, in Section 6. We discuss the motivation behind and bene-
fits of using parallel 3D LIC, and how to improve data decomposi-
tion for load balancing, in Section 7. Finally, in Section 8, we draw
conclusions from the presented analyses and list possible future ex-
tensions to our method.

2. Background and related work

A comprehensive survey summarizing significant research on
texture-based flow visualization is provided by [LHD∗04]. Line in-
tegral convolution (LIC) was first introduced by B. Cabral and L. C.
Leedom [CL93]. The LIC method was originally introduced for 2D
vector fields and used a white-noise texture. Texels are convolved
by gathering noise values along the path of field lines by using a
filter kernel function to generate a dense visualization of the vector
field. Specifically, in a steady vector field, given a field line σ, the
pixel located at x0 = σ(s0) is calculated as [SH95]:

I(x0) =
∫ s0+L/2

s0−L/2
k(s0− s)T (σ(s))ds, (1)

where I is the intensity of the pixel, T represents the noise tex-
ture, which is usually a white noise or random texture, k denotes a
kernel function to smoothly taper off contributing field lines, L is
the length of the filter kernel and also the length of the field line
for convolution, and s stands for the arc length parameterization of
the field line curve. Falk and Weiskopf extend this method into 3D
domains [FW08], using a volume-rendering process that computes
LIC on-the-fly only when needed for a respective sample point. We
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apply a similar on-the-fly computation idea to a hybrid parallel vol-
ume renderer based on MPI and OpenMP [HBC10].

Original LIC proved well-suited for 2D flow visualization, and
sparked many advancements and optimizations. For example, fast
LIC minimizes redundant computation [SH95]; surface LIC is cal-
culated on a 2D surface embedded in a 3D vector field [MKFI97],
and volume LIC [IG97] visualizes 3D vector fields over arbitrary
domains. As data scales and simulation scales grow, researchers
have focused on parallelizing LIC to support complex and time-
varying datasets. Parallel fast LIC [ZSH97] was the first parallel
LIC implementation for distributed systems. Later Shen and Kao
[SK97] introduced UFLIC to visualize time-varying 2D flow data.
A value-scattering approach was developed to increase tempo-
ral coherence between animation frames when visualizing time-
varying data. To accelerate the computation process, Liu and Moor-
head introduced accelerated UFLIC (AUFLIC) to save and reuse
results from the value-scattering process along the same pathline
[LM05]. Recently, Ding et al. [DLYC15] use an idea similar to
UFLIC to implement an accurate parallel unsteady flow LIC for
large time-varying flows. Another similar texture-based method,
FTLE (the Finite-Time Lyapunov Exponent) is also well paral-
lelized in [NLL∗12]. Although there are numerous studies of par-
allel LIC on both steady and unsteady 2D flows, we are not aware
of prior work on parallel 3D LIC on a distributed parallel systems.

Data partitioning, the problem of distributing data logically
or physically between processing elements for parallel compu-
tation, can be optimized along two dimensions: parallel perfor-
mance and load balancing. Several intuitive data partitioning meth-
ods are geometry-based, such as recursive coordinate subdivision
[BB87], recursive inertial subdivision [Sim91], and space-filling
curves [PB94]. Partitioning strategies can be carried out either stat-
ically, once before the process [PRN∗11], or dynamically, repeat-
ing at process intervals [PCG∗09]. Moloney et al. [MWMS07] ap-
ply dynamic load balancing to a sort-first parallel volume method
based on predicted load imbalance between computation nodes.
Advanced data structures like the kd-tree [ZGH∗18] are used to
accelerate re-partitioning for load balance. Nouanesengsy et al.
[NLS11] propose a workload estimation algorithm to help their
partitioning method to achieve better load balancing. Chen et al.
[CF08] exploit flow features by applying a dynamic spectral mesh
partition to reduce communication and synchronization overhead
to improve performance.

Overlapping external cells around sub-domain boundaries, also
known as ghost cells, are supported in widely-used parallel visu-
alization platforms like ParaView [AGL∗05] and VisIt [CBW∗12]
to avoid visualization artifacts arising from missing neighborhood
information from adjacent sub-domains. External cells are used to
generate stitch cells for resolving grid resolution differences in We-
ber et al. [WCM12]. Isenburg et al. [ILC10] present a scheme for
decomposed structured grids that works in a parallel distributed
system to stream the needed external cells that are preserved. Patch-
ett et al. [PNP∗17] introduce an algorithm to generate external cells
in parallel distribution system with no global cell or point IDs.
However, as the amount of required external cells depends on visu-
alization algorithms and their parameters, it is desirable to develop
methods to minimize the number of external cells, and therefore

memory overhead, based on the needs of the algorithm, in this case
parallel 3D LIC.

3. Parallel 3D LIC flow visualization

Our parallel 3D LIC visualization method treats every time step of
a time-varying dataset as a static flow field. The rendering model
is based on a hybrid parallelization of volume rendering on a
distributed system, where the ray-casting volume rendering algo-
rithm’s scalar field sampling step is replaced with on-the-fly LIC
computation. Final image result is generated by using direct send
image compositing method [EP07]. As 3D LIC only requires local
data to compute each voxel value, it can be parallelized trivially by
decomposing a dataset into sub-domains and computing the image
contribution of each sub-domain on separate computation nodes.
In detail, our algorithm divides per-pixel rays into segments lying
inside individual sub-domains and calculates LIC voxel values at
evenly-spaced sample position along those ray segments. Ray seg-
ments for the same sub-domain are processed in parallel using mul-
tiple threads, and samples along each segment are processed seri-
ally, using early ray termination and empty-space skipping to avoid
evaluating the LIC integral where possible. As usual, LIC values
are calculated as the convolution of a noise texture along a field
line segment, modulated by a kernel function, and LIC samples
along a ray segment are converted into per-segment image con-
tributions via application of a transfer function and back-to-front
compositing. After all parallel processes have finished calculating
their ray segments’ image contributions, those are assembled into
the final image in a second parallel compositing step. Our hybrid
parallelization approach, employing the MPI framework for paral-
lelization over sub-domains and the OpenMP framework for paral-
lel computation inside each sub-domain, is shown in Figure 2

a b c

Figure 2: a) one partition of an entire data domain. b) paralleliza-
tion over rays to render one sub-domain (marked as red in panel a).
Along each ray, like the one shown in panel c, LIC computation is
executed serially at each sampling point.

Our LIC computation is based on a cell-based field line integral
method to construct an integral curve segment as a succession of
line segments limited to the data set’s unstructured grid cells. To
compute each such line segment within a hexahedral cell, a local
vector field is interpolated from that cell’s nodes, and the segment
is determined by the entry position and exit position on the surfaces
of each cell. We use a second-order iterative estimation method,
the midpoint method, to estimate the line segment in one data cell.
Higher-order methods can also be used if a more precise result is
required. In our case, since the vector field in each cell is linearly
interpolated, the second-order method is sufficient. The method is
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explained in Figure 3, where an unstructured grid cell is represented
by square cell in 2D.
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Figure 3: The midpoint method to calculate line segments of a vec-
tor field’s integral curves. Right images show the three steps of mid-
point method: Step 1 calculates the first ray from the entry point P1
of the cell by using the interpolated vector at this point. The first ray
~P1P2 exits current cell at P2. Step 2 uses the midpoint PM of ~P1P2

and its corresponding interpolated vector to calculate the second
ray ~PMP3. This ray exits current cell at P3. At step 3, the final line
segment is decided by the entry point of the cell and the end point
of the second ray, which is ~P1P3.

The main benefit of parallel 3D LIC over other parallel flow visu-
alization methods such as geometry-based methods is that 3D LIC
is more easily optimized for load balancing due to its embarrass-
ingly parallel nature, and the workload of each parallel process be-
ing approximately proportional to the total volume of each sub-
domain. This means that per-process workloads can be equalized
by applying different domain decomposition methods.

4. Adjustment of partitioning for load balancing

One of the most important considerations in parallel computation
is keeping workloads balanced between processes, as, typically,
total computation time is determined by the longest-running pro-
cess. There are two basic data partitioning approaches: partition-
by-volume and partition-by-nodes (vertices of a dataset’s unstruc-
tured grid). In 3D LIC’s core volume rendering algorithm, we use
a fixed step size for sampling steps along each cast ray. The num-
ber of samples on a ray is thus proportional to the length of the
ray, and the total length of the ray is defined by its intersection
with the dataset’s domain. Therefore, the total number of samples
is proportional to the volume of that domain. In the case of un-
structured grids representing FEM mesh datasets, as used in the
present study, volumes of individual cells vary across the domain.
Due to varying cell volumes and sub-domain shapes, partition-by-
node methods cannot determine the total number of sampling steps
just based on a sub-domain’s number of nodes. Instead, since the
number of samples is proportional to a sub-domain’s volume, we
use a partition-by-volume method to decompose the dataset. We
first compute the volume of each cell in the unstructured grid, and
subsequently are able to partition the dataset by sub-domain vol-
ume. The effects of different domain decomposition schemes on
load balance are shown in Figure 5.

As can be seen in Figure 5, the total workload of 3D LIC is not
fully balanced even when the number of samples computed in each
sub-domain is balanced. This is due to the volume rendering algo-
rithm’s sampling step being replaced by on-the-fly LIC computa-
tion. Unlike the original sampling step’s constant cost, LIC com-
putation requires tracing and convolving along a fixed-length field
line segment to avoid artifacts, as pointed out in [CL93, FW08].
Since we trace integral curves by assembling line segments limited
to unstructured grid cells, the number of LIC tracing steps per sam-
ple depends on the size of the grid cells in a sample’s neighborhood.
Consequently, if cell sizes vary greatly across the unstructured grid,
an equal-volume partitioning scheme still leads to an unbalanced
computation process.

To solve this problem, we propose a method to estimate the total
required computation time for 3D LIC in each sub-domain. First,
we create a set of equal-volume sub-domains by grouping nodes
from the unstructured grid. Before reconstructing the grid’s con-
nectivity and assembling corresponding field data, we seed a set
of particles to simulate the line integration process. By seeding
a sufficient number of particles, we approximate the average cal-
culation time of one single LIC computation in each sub-domain,
and estimate the total computation time for each sub-domain as the
product of that time and the sub-domain’s volume. Afterwards, we
re-partition the entire dataset so that every sub-domain’s volume
is inversely proportional to its estimated per-sample LIC computa-
tion time. While this adjusted decomposition scheme is still only
an estimate of total computation time and can therefore not guar-
antee perfectly balanced workloads, our experiments indicate that
the adjusted method is a significant improvement over the original
equal-volume scheme in the context of 3D LIC visualization.

5. Vector-driven external cell expansion

In the traditional layer-based external cells expansion method, ex-
ternal cells are generated from boundary cells by their adjacency
relation and expanded by layers: Layer 0 is initialized to the sub-
domain’s boundary cells, and layer n+ 1 is created by collecting
all neighbors of cells in layer n that are not yet part of any layer.
As the external cell layers expand, some collected cells may not be
used in the LIC computation. In the field line integration of LIC, we
compute one line segment in each cell from face to face by using a
second order iterative method. Most field lines entering a cell will
have similar paths and are very likely to exit through the same face
and enter the same next cell. Even in a two-way iteration in both
the forward and backward direction, one step of the line integration
will enter at most two of neighboring cells.

In our vector-driven external cell expansion method, we selec-
tively expand external cells that have a high probability of being
used in line integration to reduce memory cost. Initializing external
cell layer 1 as above, we then, for all cells in layer n, cast a ray
from the center position of each cell with a vector that is interpo-
lated from that cell’s nodes. The ray will hit two faces, in forward
and backward direction, respectively, or more faces if the ray hits
a cell edge. We choose the adjacent cells sharing those faces as
candidates for layer n+ 1. This operation provides an estimation
of which cells the next line integration segment will pass through.
After casting rays for all external cells of layer n, we will collect
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all marked candidate cells as external cell layer n+1. This vector-
driven external cell expansion is a subset of traditional layer-based
expansion and therefore not uniform. The difference between our
vector-driven expansion method and the traditional layer-based ex-
pansion method is shown in Figure 4.

Figure 4: A 2D abstract diagram illustrating the difference be-
tween vector-driven external expansion method and traditional
layer-based expansion method. Each square cell represents an un-
structured grid cell in our case. (a) is an example of 3 layers expan-
sion by using the traditional layer-based method and pictures from
(b) to (g) show the procedure of our method to expand the external
cells by the vector features of each cell. The 0 cells are internal
cells on the boundary, and the numbers 1 to 3 indicate external cell
layers expanded by order.

6. Results

We developed our parallel 3D LIC visualization system to visual-
ize data from a magnetohydrodynamics (MHD) simulation of the
Earth’s outer core [MHLE17]. This visualization system is built
on a hybrid parallel foundation, using the Message Passing Inter-
face (MPI) for distributed memory parallelism and OpenMP for
multi-threading parallelism in each computation node. The test
dataset used in this analysis has 31,236,480 (Nr × Nθ × Nϕ =
255×384×319) nodes, where Nr,Nθ,Nϕ are the radial, elevation,
and azimuthal directions, respectively. Due to the dataset’s high
number of variables, each timestep weighs in at about 36 GB. We
set the pixel count of each output image to be 1600×1200. We ran
our experiments on the Intel Xeon Platinum 8160 (“Skylake”) skx
nodes in Texas Advanced Computing Center’s (TACC) Stampede2
cluster. Our experiments used up to 768 skx nodes with 6144 cores
total.

The visualization system comprises two separate pieces of soft-
ware: a data partitioning pre-processor for static data partitioning,
and the main visualization program for parallel 3D LIC visualiza-
tion. The data partitioner is in charge of generating mesh data, ex-
panding external cells and constructing field data. The outputs of
the data partitioner are used as the inputs of visualizer to generate

the final result. The final visualization is returned to the user as a
bitmap or PNG format file.

6.1. Load balancing

To show that our LIC-adapted volume-based partitioning method
achieves a more balanced workload, we compare it to two other
domain decomposition approaches: equal-nodes and equal-volume,
on the same test data. The dataset is decomposed into 24 sub-
domains and the result is shown in Figure 5. As the final image
can only be assembled once all parallel tasks have completed, the
slowest task will determine overall calculation time. As seen in the
bottom right of Figure 5, our method is more balanced based on
comparing the maximum and minimum computation time among
all tasks. The small standard deviation of the elapsed time for our
method shows an even distribution of work among tasks and better
parallel performance. However, as mentioned before, our method
is not optimal in terms of load balance because there are several
estimation errors that misguide the data partitioning scheme: first,
workload estimation is based on an initial equal-volume partition;
second, we divide sub-domains according to an estimate of cells’
volumes instead of their actual volumes; third, the workload esti-
mation result has unavoidable errors caused by the sample particle
seeding strategy.

Figure 5: A set of graphs for load balancing and data partitioning.
The equal-nodes method is colored red; the equal-volume method
is colored blue; our LIC-adapted volume-based method is colored
green. The top graph is the number of nodes in each sub-domain as
selected by the three methods. The bottom left histograms are the
performance of each task by using the three partition methods. On
the right, the top shows the maximum and minimum task time of
each method and the bottom shows the standard deviation of task
time of each method.

6.2. Scalability analysis

To evaluate our visualization system’s capability of handling grow-
ing problem scales, we conducted a scalability analysis on both the
MPI parallelization and the OpenMP Multi-threading paralleliza-
tion. In the following two sub-sections, we will discuss how the so-
lution time varies when the MPI process number is increased with
a fixed computation resources on each task, and how the solution
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time varies when the number of OpenMP threads is increased with
a fixed computation resources for entire tasks. This analysis can
predict the applicability of our parallel 3D LIC method for larger-
scale problems.

6.2.1. Scalability of MPI parallelization

The two major factors that could affect the parallel scalability are
load imbalance and communication among processing elements.
The 3D LIC rendering in each sub-domain is independent from that
in other sub-domains. Communication is only required during final
image compositing where the system needs to calculate final pixel
values by combining all ray segments computed by all tasks. Under
a reasonable dataset partition, we can expect our parallel 3D LIC to
scale well.

In this scalability analysis of MPI, we compare our parallel
3D LIC with a parallel streamline visualization (Streamline) by
applying both methods on the same geodynamo MHD simulation
data. The geodynamo simulation is designed to scale up on mas-
sively parallel computers, to enable the domain scientists to suf-
ficiently resolve features in the flow [MHA∗16]. Consequently, a
visualization method with good scalability is necessary to keep
up with the growth of the simulation scale. There are difficulties
to fairly comparing the efficiency of parallel 3D LIC and parallel
streamline without a consistent computation scale. Considering the
nature of their representation with different parameters, the visual-
ization quality is also not the objective of this comparison. How-
ever, we can compare these two methods’ parallel scalability to
show their potential to handle a growing data scale. Due to its lack
of required communication between computation nodes, parallel
3D LIC is expected to scale better than parallel Streamlines.

We conducted an experiment by using an increasing number of
processor cores on an increasing number of sub-domains to vi-
sualize one test dataset. To eliminate the influence from multi-
threading, we always keep the same number (8 in our case) of
OpenMP threads for each MPI process. The speed-up factors of
parallel 3D LIC and parallel Streamline are shown in Figure 6. The
scalability of 3D LIC is close to the ideal across all tested configura-
tions, while the scalability of Streamline is weaker (approximately
1

16 times the ideal scaling). Parallel 3D LIC mainly comprises a ray
casting sub-process and an image composition sub-process. As we
expected, ray casting achieves good scaling while image compo-
sition fares worse due to the need for ray segment data exchange
among processing elements. We noticed a sudden improvement in
speed-up factor around 96 MPI processes. We believe this is caused
by the total per-process memory footprint dropping below L3 cache
size as the dataset is decomposed into smaller sub-domains. On
the whole, we can conclude that the scaling efficiency of parallel
3D LIC is close to optimal and that 3D LIC scales much better than
Streamline visualization.

6.2.2. Scalability of OpenMP Multi-threading

Our hybrid parallel model for 3D LIC applies not only MPI-
based parallelization on multiple data sub-domains, but also
OpenMP-based multi-threading parallelization inside each sub-
domain. Multi-threading can improve the performance and concur-
rency of each MPI process. We expect that increasing the number

Figure 6: Performance speed-up plot for different numbers of MPI
processes. Each process element is assigned a fixed number of
8 cores for multi-threading. The bottom horizontal axis is the in-
creasing number of MPI processes and the top horizontal axis is
the corresponding increasing number of cores.

of OpenMP threads while keeping the number of MPI processes
fixed will also achieve good scaling as the total number of proces-
sor cores is increasing with the number of threads used.

In our experiment, the dataset was divided into 192 sub-domains.
We measured the computation time of the entire solution while
increasing the number of threads in each MPI process from 1
to 24 (each chip socket has 24 cores); consequently, between 192
and 4608 cores were used in this experiment. The speed-up factor
of computation time as a function of number of threads is shown in
Figure 7. As seen in Figure 7, 3D LIC scales well with respect to
OpenMP parallelization. As in our analysis of MPI scalability, the
ray casting sub-process scales better than the image composition
sub-process because it does not require inter-process communica-
tion. But, as the number of sub-domains increases, image composi-
tion is taking up a larger portion of total computation time because
OpenMP can not parallelize data communication. It will become a
bottleneck for multi-threading performance.

6.3. Visualization with external cells

Although our parallel 3D LIC visualization method requires fewer
exterior cells than other integration-based flow visualization meth-
ods, the number of external cell layers around each sub-domain still
affects image quality at sub-domain boundaries. Consequently, the
memory cost to represent external cells can still be substantial if
a large number of external cell layers are used. Considering the
low utilization of external cells, it is necessary to apply an intelli-
gent expansion method that can selectively expand external cells to
minimize that memory cost.

Our external cell expansion method will not include external
cells that have lower likelihood of being used in the LIC compu-
tation. Ideally, the visualization result will be of similar quality
with our method while it is using many fewer external cells than
the traditional way. As it is hard to compare visualization quality
precisely by looking at the entire visualization, we highlight subtle
changes in the rendered images near the sub-domain boundary in
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Figure 7: Speed-up plots for OpenMP multi-threading paralleliza-
tion on TACC Stampede2. The data set is divided into 192 sub-
domains. As the number of assigned computation nodes increases,
the OpenMP multi-threading scale for each task is increased which
is shown in the bottom horizontal axis.

Figure 8. The figure shows the magnetic field at normalized tem-
perature range 0.3 < T < 1.0 to display how the magnetic field is
twisted by the upwelling flow from the inner core boundary. As
shown in the top table of Figure 8, our vector-driven method re-
quires much fewer external cells than the traditional layer-based
method. As seen in the result images in the bottom row, the horizon-
tal discontinuity is fading away as the number of external cell lay-
ers increases. Our method’s significant reduction in memory cost
creates a trade-off: comparing a vector-driven expansion to 9 lay-
ers and a layer-based expansion to 5 layers shows similar visual
quality, while the memory cost of the vector-driven expansion is
significantly lower. Overall, our method needs to expand more lev-
els than the layer-based method, but still requires much fewer cells.

7. Discussion

7.1. The benefit of using 3D LIC on simulation flow data
visualization

A main benefit of LIC-based visuaization methods is the freedom to
trade off feature density and visual complexity. The noise function
that is one of the inputs to LIC (the visualized vector field being
the other) will not directly affect the shape of vector features, but
the appearance of the final image. For example, LIC can be used
to visualize data at different levels of detail by changing the fre-
quency distribution of the noise function, as shown in Figure 9. In
addition, by applying different kernel functions for the LIC compu-
tation, LIC can show additional properties of the visualized vector
field. For example, by using an asymmetric kernel, the final LIC
image can indicate the direction of the vector field.

Because the distribution of global vector features is difficult to
predict in geometry-based flow visualization, it is difficult to con-
trol the visualization to cover all features within a specific area. On
the other hand, as a texture-based method focusing on local fea-
tures, 3D LIC is able to provide results that fully cover the speci-

fied region of interest. For example, we show how magnetic field
changes in areas with different ranges of temperature in Figure 10.

For unsteady vector fields, animation is an useful method to
show dynamic features. LIC can generate more natural-looking an-
imations for unsteady or time-varying datasets. Due to its texture-
based nature, our method can limit the animation to any se-
lected area all times, while geometry-based methods can poten-
tially change their objects’ geometries as the vector field is vary-
ing. The local LIC volume streaks have simple and small structures
whose changes are easier to observe and understand. An example
of a 3D LIC animation for a time-varying dataset is provided in the
supplemental video.

7.2. Optimization of data partitioning

The output of MHD simulation consists of mesh data and field
data. In the present case, both components are not only used for
visualization but also to partition the dataset domain, and, after re-
partitioning the mesh data, field data needs to be re-associated with
the new partitions. Currently, we use a serial process to partition
mesh data when there is a need for re-partitioning, and a parallel
process to re-associate field data with the decomposed mesh. As
a result, mesh data partitioning is currently a bottleneck for time-
varying data which may require multiple re-partitioning operations
as visualization progresses through time. We plan to parallelize the
re-partitioning process to support dynamic data partitioning and
larger mesh data sizes in the future.

In our workload estimation algorithm, we seed particles to sim-
ulate the field line integration during LIC computation. The accu-
racy of the estimation increases with the number of particle sam-
ples. However, as the number of seed samples increases, so does
the cost for the estimation process. The trade-off between estima-
tion accuracy and estimation cost requires additional consideration.
In addition, we currently apply an evenly distributed seeding strat-
egy to sample particles. Other advanced seeding strategies could
potentially improve the accuracy of the result.

8. Conclusions and Future Work

We presented a novel parallel visualization system using 3D line
integral convolution to visualize flow data. We demonstrated our
parallel 3D LIC method’s scalability both in terms of number of
computation nodes as well as number of threads and cores per com-
putation node. Our system used a novel LIC-adjusted volume-based
partitioning method to achieve more balanced parallel workloads
and better parallel efficiency and scalability. In addition, we pre-
sented an optimized vector-driven external cell expansion method
specifically designed for 3D LIC, which significantly reduces the
amount of redundant external cells generated by traditional layer-
based expansion methods.

Future work includes to enable our system to handle sequence of
unsteady 3D flow data. an in-situ visualization with existing sim-
ulation process is one solution for improving the performance, for
example the MHD geodynamo simulation software. Since the sim-
ulation system is now well-parallelized, we anticipate an improve-
ment if the parallelization of the simulation and visualization can be
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Figure 8: Comparison of visualization quality for the vector-driven and the layer-based external cell expansion method. The top graph
shows the number of external cells generated by different methods using different numbers of layers. The blue bar is the total number of cells
in the dataset. The purple bar represents the number of external cells generated by the layer-based method, and the orange bar represents
the number of external cells generated by our vector-driven method. The images in the bottom row are a close-ups showing the same area
covering the boundary between two sub-domains, from images generated with different numbers of external cell layers. The left blue frame
image is the entire visualization result. Images with purple frame are layer-based results in different layers. Images with orange frame are
vector-driven results. There is a horizontal discontinuity in the middle of vertical direction.

Figure 9: An example of using different frequency of noise texture.
From left to right, pictures are magnetic field data whose amplitude
is between 5.0 and 14.0 by using from low to high frequency noise
textures.

combined without an intermediate I/O operation. We also expect a
parallel dynamic partition algorithm can be applied to improve the
parallelism efficiency. In addition to the geodynamo simulation, the
parallel 3D LIC method can be generally applied to other flow field
data.

Figure 10: An example of showing magnetic field in different tem-
perature range from the north pole. Vertical range is −0.195ro <
z < 0.0. From left to right, pictures are within normalized tempera-
ture range A:0.2 < T < 1.0, B:0.08 < T < 0.2, C:0.0 < T < 0.08.
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