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Abstract

Using the Eulerian paradigm, accurate flow visualization of 3D time-varying data requires a high temporal resolution resulting
in large storage requirements. The Lagrangian paradigm has proven to be a viable in situ-based approach to tackle this large
data visualization problem. However, previous methods constrained the generation of Lagrangian basis flows to the special case
of fixed duration and fixed placement (FDFP), in part because reconstructing the flow field using these basis flows is trivial.
Our research relaxes this constraint, by considering the general case of variable duration and variable placement (VDVP)
with the goal of increasing the amount of information per byte stored. That said, reconstructing the flow field using VDVP
basis flows is non-trivial; the primary contribution of our work is a method we call VDVP-Interpolation which solves this
problem. VDVP-Interpolation reduces error propagation and limits interpolation error while using VDVP Lagrangian basis
flows. As a secondary contribution of the work, we generate VDVP basis flows for multiple data sets and demonstrate improved
accuracy-storage propositions compared to previous work. In some cases, we demonstrate up to 40-60% more accurate pathline
calculation while using 50% less data storage.
CCS Concepts

• Computing methodologies ! Scientific visualization;

1. Introduction

The analysis and visualization of time-varying flow phenomena in-
troduces new challenges given the large amounts of data produced
by CFD simulations on modern day supercomputers [ASM⇤11].
Given that improved computational capabilities have resulted in
more data being produced faster than can be saved to disk, i.e.,
the I/O bottleneck, scientists have resorted to saving vector field
time slices infrequently. However, accurate reconstruction of the
flow field requires a high temporal resolution when using the Eule-
rian paradigm. This creates a tradeoff centered around large data
and accuracy — saving frequently results in accurate interpola-
tion, but creates a large data problem, while saving infrequently
mitigates the large data problem, but is inaccurate. Agranovsky et
al. [ACG⇤14] presented an alternative, Lagrangian-based method
that improved the tccuracy-storage radeoffs. Their method has two
phases, with the first phase extracting flow map samples or basis
flows in situ, and the second phase involving interpolation using the
extracted information to reconstruct the flow field. With our work,
we improve on the Agranovsky method, thus further alleviating a
large data visualization problem.

We contribute a new interpolation scheme to consume informa-
tion extracted in situ which enables new techniques for the La-
grangian paradigm to maintain high accuracy while reducing data
storage. Previous work considered using basis flows of fixed dura-
tion and fixed placement (FDFP). However, post hoc reconstruction
of the flow field using short basis flows, while relatively straight-

forward, results in inaccuracy due to “stitching” a particle trajec-
tory together [BJ15, HBJG16]. Each stitching event corresponds
to a particle basis flow neighborhood update and propagates a lo-
cal truncation error. Our work introduces the notion of variable
duration and variable placement (VDVP) Lagrangian basis flows
which enables the use of longer basis flow trajectories. We intro-
duce VDVP-Interpolation, an interpolation scheme that can use
longer Lagrangian basis flows to calculate new particle trajecto-
ries with reduced error propagation and accumulation. The VDVP-
Interpolation scheme allows particles to maintain their basis flow
neighborhoods for longer durations, i.e., fewer “stitching” events,
and limits interpolation error by evaluating the particle neighbor-
hood.

Our research furthers the usage of Lagrangian analysis as a re-
duction operator for time-varying flow data by increasing the in-
formation content per byte. The use of VDVP allows for much
variation in the specific placement and durations of extracted ba-
sis flows, potentially allowing for saving more information per byte
than FDFP. Further, it enables reduced error propagation from the
use of longer trajectories. To realize the benefits of VDVP, an in-
terpolation scheme that makes optimal usage of such input is nec-
essary. This paper contributes that component, i.e., an interpola-
tion scheme for VDVP Lagrangian basis flows, enabling future in
situ methods research. Our evaluation is aimed at demonstrating
the value of the VDVP approach, and thus the value of our inter-
polator. We consider multiple data sets and demonstrate improved
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accuracy-storage propositions compared to previous methods. As
a result of using both VDVP-Interpolation and VDVP Lagrangian
basis flows, we calculate more accurate pathlines while using less
data storage.

Our specific contributions with this work are:

• We contribute a configurable, neighborhood-aware interpolation
scheme for Lagrangian basis flows that vary in seed position and
duration.

• Building on previous theoretical work, we present the first im-
plementation of generating and using basis flows of variable du-
ration and variable placement (VDVP), forming a foundation for
future research.

• We demonstrate better accuracy-storage propositions compared
to previous work.

2. Background and Related Work

2.1. The Lagrangian Frame of Reference

The Lagrangian frame of reference describes a flow parcel as it
moves through space and time in the flow field. Information is
stored in the form of a flow map when using the Lagrangian frame
of reference. The flow map Ft

t0(x0) : Rd ⇥R⇥R ! Rd describes
where a particle starting at position x0 2Rd and time t0 2R moves
to in the time interval [t0, t] ⇢ R. In contrast to the Eulerian ap-
proach which stores a time slice, the stored information represents a
time interval and new particle trajectories can be computed through
interpolation using the basis of known trajectories.

2.2. Flow Analysis using Lagrangian Techniques

Particle trajectories are one of the fundamental elements of flow
visualization [LHD⇤04, MLP⇤09, PPF⇤11]. Various works have
considered Lagrangian-based flow information storage and path-
line construction techniques. Hlawatsch et al. [HSW11] focused
on precomputing Lagrangian-based trajectories and optimally se-
lecting which to use when calculating pathlines via a hierarchi-
cal scheme. Agranovsky et al. [AGJ11] studied the use of Mov-
ing Least Squares and Barycentric coordinate interpolation, to op-
timize pathline interpolation using scattered particles. Sauer et
al. [SXM16] presented a new joint data representation which com-
bines the Eulerian and Lagrangian reference frames. Chandler et
al. [COJ15] proposed a modified k-d tree to store particle lo-
cations at a given time and an associated interpolation scheme
for SPH [GM77] simulations. In the context of reducing storage
and error for in situ supercomputing environments, Agranovsky et
al. [ACG⇤14] used a flow map over a vector field to represent a flow
and performed barycentric coordindate interpolation post hoc (de-
tails in Section 2.5). This study was extended to provide a better
understanding of spatiotemporal trade-offs [SBC18]. In this work,
we use the method proposed by Agranovsky et al. [ACG⇤14] as a
baseline for comparison.

With a focus on identifying sources of error in Lagrangian-based
advection methods Chandler et al. [CBJ16] showed the correlation
of error with divergence for their interpolation-based pathline trac-
ing system. Bujack et al. [BJ15] identified neighborhood updates as

the source of error propagation. Hummel et al. [HBJG16] theoret-
ically extended this work by using upper error bounds to visualize
the uncertainty of the pathlines.

2.3. Seed Placement Techniques for Flow Analysis

Several works have presented seed point placement and streamline
selection algorithms to explore flow fields [ZSH96, JL97, VKP00,
MTHG03, LMG06, RPP⇤09, XLS10, WLZMI10]. However, the
majority of these works deal with steady state flow. Seed point
placement strategies to extract information and maintain coverage
of a 3D time-varying flow is limited [MLP⇤10]. Specifically re-
lated to strategies for the extraction of basis flows, Agranovsky et
al. [ACG⇤14] placed seeds along a uniform grid periodically. With
our work, in addition to primarily allowing particles to follow the
flow, we strategically introduce basis flow seeds to limit the error
during post hoc flow field reconstruction and maintain an approxi-
mately uniform particle distribution over time (details in Section 5).
The system we adopt is most similar to Mebarki et al. [MAD05]
who used Delaunay triangulation to identify cavities in the field
and then placed seeds at the centroid of the triangle.

2.4. In Situ Processing

An emerging paradigm to counteract temporal sparsity is the use of
in situ processing [BAA⇤16]. In situ processing operates as the sim-
ulation produces data, giving it the significant advantage of access
to all of the simulation data, i.e., the complete spatial data at full
temporal resolution. The Lagrangian paradigm is well suited for in
situ processing because the basis of known trajectories, represent-
ing an interval of time, can be calculated accurately in situ, where
all the simulation data is available. In contrast, storing a tempo-
rally sparse subset of the information in its Eulerian specification
and then integrating post hoc results in significant approximation
errors due to error propagation in the numerical integration. Thus,
the Lagrangian representation has the potential to represent more
information per byte stored.

2.5. State of In Situ Lagrangian Techniques

Agranovsky et al. [ACG⇤14] presented an approach that is useful
for exploratory flow analysis, i.e., analysis when the user does not
know which particle trajectories are desired before the simulation
is run. In the first phase, basis flows are calculated in batches in
situ. Particles are seeded along a uniform grid to begin a batch.
These particles advect for a fixed number of cycles (e.g., 200 cy-
cles), to form basis flows. The particles are then terminated and the
end points of the basis flows are stored to disk. The cycle when data
is stored to disk is referred to as a “write cycle.” The process then
repeats until the simulation completes.

In the second phase, the basis flows from the first phase are used
to approximate the behavior of the flow field. To begin, for a given
particle, the algorithm identifies a neighborhood of surrounding ba-
sis flows to follow. Specifically, the neighborhood is the set of basis
flows that form a minimum convex hull around the particle in space
and time. The particle’s next position is determined by interpolat-
ing the basis flows via barycentric coordinate interpolation. This
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process advances the particle to the same time as when the current
batch of basis flows ends. To advance the particle further, the pro-
cess is repeated with the following batches of basis flows, until the
particle reaches its desired termination time. Agranovsky et al.’s
study showed that using the Lagrangian approach is significantly
superior to the Eulerian approach under sparse temporal settings.
Agranovsky’s seminal work falls in the FDFP (fixed duration, fixed
placement) category of basis flows. We refer to the associated inter-
polation scheme using FDFP basis flows as FDFP-Interpolation.

3. Motivation

Problem: The FDFP-Interpolation approach can suffer from

local truncation error propagation. A particle is advanced in time
by following a neighborhood of basis flows. However, given that
the basis flows are calculated in batches for the FDFP approach, the
process requires identification of a new neighborhood, i.e., a neigh-
borhood update, for each step (advancement in time). To produce
the final particle trajectory, interpolation steps are stitched together
as the particle is advanced forward in time. Figure 1a illustrates
how a small local truncation error occurs with each interpolation
step. Further, this local truncation error propagates with each inter-
polation step resulting in an increase of the global truncation error.
The details of the error propagation and accumulation have been
shown by Bujack et al. [BJ15]. The final accuracy is then depen-
dent on the number of interpolation steps stitched together, i.e., the
number of neighborhood updates. When the number of interpola-
tion steps being stitched together is high, as in the case for long
simulation runs, the error propagation and accumulation can grow
exponentially and lead to poor accuracy [SBC18].

Our Solution: Extend the duration of basis flows for as long as

possible. The error propagation and accumulation occurs for every
instance of a stitching event (neighborhood update). We can miti-
gate this issue if:

1. Basis flows live for the duration of the simulation.
2. The interpolation is done based on the initial neighborhood in-

formation. Having basis flows live for the duration of the simu-
lation means a particle can have the same neighborhood for each
interpolation step.

Calculating a particle trajectory would then require only inter-
polation (i.e., from start time to current time using the same ba-
sis flows) and there would be no error propagation events since
there is no need for a neighborhood update. Then, the error of this
pure interpolation approach is O(h2

x), where hx is the resolution in
space [BJ15]. Figure 1b illustrates particle interpolation by using
the same neighborhood.

The FDFP-Interpolation scheme suffers from local truncation er-
ror propagation, while our approach uses pure interpolation. To
highlight the difference in error propagation and accumulation be-
tween the two methods, we consider an analytic field — a distorted
circular flow. Figure 2 shows that the pure interpolation approach
has absolutely no error propagation, while the stitching together of
trajectories shows a growth in error for every advancement in time
(cycle).

Problem: The interpolation error can become unbounded in di-

(a) Basis flows are plotted in black, with the basis flow seed being a hol-
low black circle and the basis flow end point being a solid black circle. The
desired trajectory to interpolate starts at the hollow green circle. The hol-
low yellow and hollow red circles are the interpolated positions from using
short basis flows. In this case, the slightly incorrect position from the in-
terpolation error at t = 1 (hollow yellow) leads to an even more incorrect
position at t = 2 (hollow red), i.e., error propagation. The solid green and
solid yellow are the correct particle end locations for each respective in-
terpolation. The relatively small local error (distance between solid green
and hollow yellow, or solid yellow and hollow red) is ( 1

2 h2
xk f 00k) [BJ15].

The local error propagates with each interpolation. The global error is en-
hanced by the Lipschitz constant ht L of f . Thus, at t = 2, the global error
is already 1

2 h2
xk f 00k(1+ht L) [HBJG16].

(b) Interpolation error when using longer basis flows. The local interpola-
tion error for each step is inevitable, but using the original neighborhood
prevents the incorrect intermediate results from influencing the future path
of the particle. The overall global error is then limited to the local interpo-
lation error 1

2 h2
xk f 00k.

Figure 1: A notional example to provide intuition of how longer
basis flows can reduce error propagation.

vergent areas. While using longer basis flows for interpolation re-
duces error propagation, generating longer basis flows may result in
certain regions having poor basis coverage, depending on the nature
of the flow field. Figure 3 shows the distribution of particles at var-
ious stages when considering the Double Gyre [SLM05]. Figure 3a
shows the initial distribution of particles along a uniform grid. We
can observe the divergence of the particles in Figures 3b and 3c.
There are observable regions in the field that are under and over rep-
resented in Figure 3d. If the basis flows of a neighborhood diverge,
i.e., the neighborhood is stretched or basis flow particles separate,
then the neighborhood size hx 2 R can become unbounded. Using
the pure interpolation approach with divergent basis flows will re-
sult in a high linear interpolation error (with overall performance
then being worse than FDFP-Interpolation). This is in accordance
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Figure 2: Motivating result comparing FDFP-Interpolation to
pure interpolation on an analytic data set of distorted circular flow
data. The image on the left is the LIC of the flow field (color en-
codes the velocity magnitude). The white lines are the FDFP basis
trajectories. The image on the right is a plot of error propagation
over 2000 cycles. In contrast to FDFP-Interpolation, the pure in-
terpolation only shows local interpolation error and has no error
propagation.

with Chandler et al. [CBJ16], who show the correlation between
using diverging basis flows and post hoc interpolation error. If new
particles are not frequently introduced, then the post hoc analysis
of the underrepresented regions could be poor.

Our Solution: Extend the duration of basis flows for as long as

possible, but update the particle neighborhood if it diverges be-

yond a limit. In this paper, we propose a hybrid approach between
the uniform case and the pure interpolation approach. As input, we
generate basis flows of variable duration and variable placement
(VDVP) during the first phase. When performing interpolation us-
ing the VDVP Lagrangian basis flows, as long as a particle lives
in a non-divergent neighborhood, it uses the pure interpolation ap-
proach. As soon as particle neighborhood divergence is detected,
the particle neighborhood is updated. In order to guarantee that a
small neighborhood can always be found, an approximately uni-
form distribution of particles is required in the domain. There are
several ways in which this can be achieved. Our VDVP approach
introduces new particles with the objective of limiting post hoc in-
terpolation error.

The following sections provide details regarding the implemen-
tation of our solution. VDVP-Interpolation is our neighborhood-
aware interpolation scheme for VDVP Lagrangian basis flows. It
enables interpolation with reduced error propagation when using
longer basis trajectories. Further, it limits interpolation error by
evaluating particle neighborhoods for divergence and only updates
if it exceeds a limit for hx.

4. VDVP-Interpolation Method

Our Lagrangian-based technique is implemented by following the
same high level approach, in that it is a two stage process, as de-
scribed in Section 2.5. However, to effectively use longer duration
basis flows we designed a simple interpolation scheme that eval-
uates the quality of the particle neighborhood formed by in situ
extracted basis flows at each step.

Given a set of VDVP input basis flows, such that each individ-
ual basis flow is represented as a starting location at time Ti, zero
or more intermediate locations, and an end location at time Ti+ j,
where j � 1. A basis flow can exist for as short as a single step, or
for as long as the length of the simulation. Additionally, there are no
contraints on the spatial location of the basis flows. However, from
a temporal perspective, locations of the basis flow are only stored
at write cycles, i.e., Ti, Ti+1, ... , Ti+ j correspond to times at write
cycles. For a given particle location P0 at time T0, our interpola-
tion scheme starts by identifying a neighborhood of basis flows B1,
B2, ... , Bn (where n = 3 for 2D and n = 4 for 3D) surrounding P0.
Given a neighborhood of basis flows to follow, we interpolate each
particle trajectory location using barycentric coordinates interpola-
tion. In an ideal case, we can follow the same neighborhood of basis
flows, performing each interpolation from the starting location, to
calculate an entire particle trajectory with no error propagation.

Data: ParticleSet P, BasisFlowSet B,
float U pperT hreshold, int Tstart , int Tend ,
int WriteInterval
Function VDVP-Interpolation()
Tcurrent = Tstart ;
while Tcurrent < Tend do

DT = Delaunay(B,Tcurrent );
if Tcurrent = Tstart then

foreach Particle p 2 P do

p.NB = UpdateNBInfo(p,DT);
end

else

foreach Particle p 2 P do

if EvaluateNB(p.NB,U pperT hreshold) then

p.NB = UpdateNBInfo(p,DT);
end

end

end

foreach Particle p 2 P do

p = Interpolate(p, p.NB);
end

Tcurrent = Tcurrent +WriteInterval;
end

Algorithm 1: VDVP-Interpolation Algorithm

To begin, an interpolation step is performed using the neighbor-
hood of basis flows of P0 at time T0, to calculate the next location
P1 at time T1. After the interpolation step, we evaluate the neigh-
borhood of basis flows at T1. We perform a neighborhood update
if:

• A basis flow Bi of the particle neighborhood terminates. In
this case we need to identify a new neighborhood of basis flows
to continue particle trajectory interpolation.

• Basis flows of particle neighborhood diverge. We evaluate
the neighborhood of basis flows to keep the interpolation error
bounded. If the basis flows are deemed to have diverged, we per-
form a neighborhood update.

If a neighborhood update is not required, then we use the same
neighborhood of basis flows of P0 at time T0, to calculate the next
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(a) Cycle - 0 (b) Cycle - 100 (c) Cycle - 200 (d) Cycle - 1000

Figure 3: Particle distribution for the Double Gyre, with period set to 1000 cycles. Figure d shows significantly under and over represented
regions of the flow.

(a) Cycle - 0 (b) Cycle - 100 (c) Cycle - 200 (d) Cycle - 1000

Figure 4: Particle distribution after addressing under and over represented regions for the Double Gyre.

Figure 5: A notional example of VDVP-Interpolation. Basis flows
are plotted in black and a sample particle trajectory being inter-
polated is shown in green. Hollow circles are initial positions. Red
arrows show interpolation. Red dashed boxes denote neighborhood
update events. t0 - particle identifies an initial neighborhood. t1 -
particle maintains neighborhood. t2 - particle neighborhood up-
date (neighborhood basis flow terminates). t3 - particle maintains
neighborhood. t4 - particle neighborhood update (basis flows di-
verge).

location P2 at time T2, i.e., a longer interpolation step is performed
by following the same set of basis flows. The process is then re-
peated by evaluating the neighborhood of basis flows at time T2
and so on.

If a neighborhood update is performed, then we use the new
neighborhood of basis flows of P1 at time T1, to calculate the next
location P2 at time T2. The process is then repeated by evaluating
the neighborhood of basis flows at time T2 and so on.

To identify particle neighborhoods at time Ti, we first perform a
single Delaunay triangulation over all basis flow particle locations
at time Ti. If required, each particle neighborhood can then be iden-
tified as the cell containing the particle location Pi at time Ti.

A particle neighborhood is deemed to have diverged if the cir-
cumradius of the cell, representing the particle neighborhood, is

greater than a user-defined parameter, U pperT hreshold. Barycen-
tric coordinates interpolation error is bounded from above through
the circumradius R 2R of the corresponding cell. The interpolation
error is given by the equation:

k f (x)�L f (x)k  1
2

R2k f 00k1 (1)

where f (x) is the ground truth location, L f (x) is the barycentric co-
ordinates interpolated location, and k f 00k1 is the maximum func-
tion space norm of the second derivative of f [Wal98].

Our technique is configured to limit interpolation error by only
using particle neighborhoods that have a circumradius less than
U pperT hreshold. In the following subsection we describe mea-
sures taken to generate VDVP basis flows that guarantee a neigh-
borhood with circumradius less than U pperT hreshold can be
found for each time step.

Algorithm 1 shows the steps involved in the post hoc interpo-
lation scheme and Figure 5 illustrates a notional example for the
neighborhood selection and interpolation process for a particle.

5. Generation of VDVP Basis Flows

In order to evaluate VDVP-Interpolation we need to generate
VDVP basis flows. Our objectives are to generate long duration
basis flows and simultaneously provide sufficient coverage to limit
interpolation error. VDVP basis flow generation and distribution
management can be guided by distance fields, spatial binning,
neighborhood entropy, vector field divergence, and so on. Deter-
mining an optimal and efficient basis flow particle distribution ap-
proach in situ is a large topic beyond the scope of this paper and will
be considered as future work. VDVP-Interpolation can be config-
ured to interpolate VDVP basis flows, with any spatial distribution,
if represented as defined in the previous section. For this study, we
address the problem of underrepresented regions or particle cluster-
ing that come from allowing particles to follow longer trajectories,
by employing a method to limit interpolation error.
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With our VDVP approach, we begin by placing particles along
a uniform grid in the volume. These particles are advected through
the time steps until a write cycle completes. At the end of a write
cycle, the particle positions are saved to disk. A particle is termi-
nated if it exits the volume. Advection continues for the remaining
particles from their last position. Thus, at write cycles (i.e., sim-
ulation cycles where data is saved to disk), intermediate locations
along a particle trajectory are saved to disk. This results in longer
basis flow trajectories with the distribution of seeds determined by
the flow itself. Figure 3 shows the distribution of particles achieved
by a flow-guided VDVP approach for the Double Gyre data set.

To limit interpolation error, our goal is to guarantee a particle
neighborhood update during interpolation can find a valid sized
neighborhood. In addition to placing new seed particles to address
the problem of underrepresented regions, we selectively terminate
basis flows to mitigate particle clustering. To identify candidate re-
gions for particle addition and removal, we perform Delaunay tri-
angulation on the existing particles in the volume at the end of a
write cycle. The circumradius of the largest Delaunay cell has a
direct relationship to how sparse the particle sampling is in that
region. The circumcenter is farthest away from any other current
particle, and therefore a natural candidate to insert a seed to im-
prove the overall coverage. If the circumradius of a cell is larger
than U pperT hreshold, we place a seed point at the circumcenter
if it lies inside the cell, or at the location on the boundary of the
cell that is closest to the circumcenter if it is outside. For parti-
cle removal, for every vertex in the triangulation we calculate the
average circumradius of cells that the vertex is a member. If the
average calculated circumradius is below a user-defined threshold
LowerT hreshold, the associated basis flow particle is removed.

Figure 4 shows a more uniform distribution of particles achieved
by a flow-guided VDVP approach using particle distribution man-
agement for the Double Gyre data set.

6. Study Overview

We evaluate the VDVP-Interpolation method using results of the
FDFP-Interpolation approach as a baseline for comparison. For our
study, we generate our input basis flows by evaluating analytic data
sets on the fly or loading simulation results that were precalcu-
lated for each cycle from disk. The study consists of configurations
which vary over five parameters:

1. Lagrangian-based techniques
2. Data sets
3. Total data storage
4. Number of cycles saved (write cycles)
5. Number of basis flows saved per write cycle

We test our implementation on a single node. We ran a total of
144 test configurations on a Xeon E5-2667v3 CPU. We used 12
cores at 3.2GHz and 256 GB DDR4 memory. Post hoc particle
interpolation and basis flows particle advection was performed in
parallel using OpenMP. We used the CGAL library to calculate the
Delaunay triangulation, and to perform vertex insertion and dele-
tion.

6.1. Configuration Parameters

6.1.1. Lagrangian-based techniques

We compare the FDFP-Interpolation using FDFP input basis flows
to VDVP-Interpolation using VDVP input basis flows. We generate
multiple sets of each type of input basis flows by varying configu-
rations parameters.

6.1.2. Data Sets

We considered three data sets to evaluate our method:

Double Gyre — This data set is an analytic two-dimensional
flow field that is commonly used to study flow visualization tech-
niques [SLM05]. It consists of two counter-rotating gyres with a
time dependent perturbation. The data set is simulated for 2048 cy-
cles at a base resolution of 512⇥256 (⇡ 6.4GB). We set the period
of the Double Gyre flow to 1000 cycles (each cycle is 0.01 sec-
onds).

Arnold-Beltrami-Childress (ABC) — This data set is a time-
dependent variant of the three-dimensional ABC analytic vector
field [BCT01]. For this variant of the ABC analytic vector field
we used A = B = C = 1 and selected values of e = 1 and W = 1.
The data set is simulated for 2048 cycles at a base resolution of
128⇥128⇥128 (⇡ 103GB). We set the period of the ABC flow to
1000 cycles (each cycle is 0.001 seconds).

Tornado — This data set is a real-world simulation of the
dynamics of an F5 tornado [OWW15]. The base resolution is
490⇥ 490⇥ 280. A mature tornado vortex (depicted in Figure 6)
exists in the domain during the 512 simulation seconds we consid-
ered for our experiments. Our collaborating scientist normally uses
a frequency of “every two simulation seconds" to study this turbu-
lent data set. Thus, we considered 257 time slices (⇡ 415GB), with
the time-steps evenly distributed from t0 = 8502s to t256 = 9014s.

Figure 6: Pathlines traced depict a mature tornado vortex.

6.1.3. Total Data Storage, Number of Cycles Saved, and

Number of Basis Flows Saved per Cycle

The total number of basis flows saved, i.e., the total data storage,
is the summation of the number of basis flows saved over every
write cycle. For FDFP input, the number of basis flows saved ev-
ery write cycle can be fixed. Let P denote the number of basis
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flows saved at a write cycle. Let NC denote the number of cycles
saved, i.e., the number of write cycles. Then, the total data stor-
age required can be calculated as the product of NC and P. If X
denotes the total data storage, then X = NC ⇥P. We select multi-
ple combinations of P and NC for a given X . The selected com-
binations of P and NC are together a set of configurations to gen-
erate FDFP basis flows. For the Double Gyre and ABC data set,
NC = {8, 16, 32, 64, 128, 256, 512, 1024, 2048}. For the Tor-
nado data set, NC = {8, 16, 32, 64, 128, 256}.

For our study, we have three sets of selected combinations of
NC and P, for the evaluation of the FDFP-Interpolation approach.
The set of options for NC remains the same across all three sets of
selected combinations. The values of P in the second and third set
are two times and four times the corresponding values of P in the
first set. Thus, the total data storage of the second and third set is
two times and four times respectively. We denote these sets of test
configurations as FDFP-1X, FDFP-2X, and FDFP-4X.

We selected the smallest value of total data storage, 1X , used to
calculate multiple combinations of P and NC, to be equal to two
times the total number of grid points in the base resolution of the
specific data set. For the Double Gyre data set, X = (512⇥256)⇥
2 = 262,144 points (⇡ 6MB). For the ABC data set, X = (128⇥
128⇥ 128)⇥ 2 = 4.2M points (⇡ 100MB). For the Tornado data
set, X = (490⇥490⇥280)⇥2 = 134.4M points (⇡ 3.2GB).

When generating VDVP input, the number of basis flows fluc-
tuates over time, i.e., the number of basis flows saved every write
cycle is not fixed. Thus, in the case of our VDVP input, the to-
tal data storage is observed. To compare VDVP-Interpolation with
FDFP-Interpolation, we have a corresponding set of test configura-
tions, with the same three sets of selected combinations of P and
NC to generate VDVP basis flows. However, the value of P is only
the initial number of basis flows placed, i.e., it is not fixed. We de-
note these corresponding sets of test configurations as VDVP-1X,
VDVP-2X, and VDVP-4X.

In addition to particles exiting the domain, the total data storage
costs of VDVP is influenced by particle addition and removal. Let
R denote the circumradius of a cell after the initial placement of
particles along a uniform grid. Then, we define U pperT hreshold
and LowerT hreshold as follows:

U pperT hreshold =CR (2)

LowerT hreshold =
R
C

(3)

where C is a user-defined value to control particle addition and
removal. For our study, we empirically selected C = 2 for the
two-dimensional Double Gyre data set, and C = 8 for the three-
dimensional ABC and Tornado data sets. We found these values al-
lowed us to keep particle addition and removal relatively balanced.

6.2. Error Evaluation

We calculate particle trajectories using three methods.

• Ground Truth — The particle trajectory is calculated with a
fourth-order Runge Kutta scheme [CK90] using the full spatial

and temporal resolution available. The ground truth is considered
to be perfectly accurate, i.e., it has 0% error.

• FDFP-Interpolation — Lagrangian particle trajectories are cal-
culated by FDFP-Interpolation using FDFP input basis flows for
every configuration of NC and P.

• VDVP-Interpolation — Lagrangian particle trajectories are cal-
culated by VDVP-Interpolation using VDVP input basis flows
for every configuration of NC and P. In this case, P is only the
initial number of basis flow particles seeded in the volume.

We evaluate the accuracy of the Lagrangian particle trajectories cal-
culated from a test configuration by comparing it to the calculated
ground truth. For both the Double Gyre and ABC data set we ran-
domly seed 1000 particles in the volume. For the Tornado data set,
we place 144 particles along rakes at locations used by our col-
laborating scientist to study the phenomena (Figure 6). We then
calculate the set of trajectories for each test configuration.

To compare two trajectories we measure the L2-norm. NC is the
number of cycles saved and consequently the number of known
particle positions along a Lagrangian trajectory.

The average L2-norm is calculated as follows —

1
p

p

Â
i=0

1
NC

NC

Â
t=0

||xi,t �gi,t || (4)

where p is the total number of particles, xi,t is the location of a
Lagrangian interpolated particle i at time t and gi,t is the location
of the ground truth particle i at time t.

Thus, we evaluate the distance between the ground truth and a
Lagrangian trajectory at every known point of the Lagrangian tra-
jectory. The points that are known of the Lagrangian trajectory can
be connected using linear interpolation or curve fitting. Representa-
tion of a Lagrangian trajectory using curve-fitting has been studied
by Bujack et al. [BJ15]. For our study, we focus on the accuracy of
the interpolated locations of a Lagrangian particle trajectory.

7. Results

The accuracy of interpolated pathlines is dependent on both the
input basis flows and the interpolation scheme used. VDVP-
Interpolation can utilize the FDFP input and produce pathlines of
the same accuracy as FDFP-Interpolation. Given both approaches
require varying data storage, we take the number of basis flows
used for the pathline interpolation into account.

7.1. Accuracy and Data Storage Comparison

We analyze the results of accuracy achieved and the corresponding
number of basis flows used by each approach, shown in Figure 7.
The x-axis represents the average number of points stored per write
cycle, denoted by Pavg, and uses a logarithmic scale. The y-axis
represents the average L2-norm and uses a linear scale. Each curve
represents one of the sets of configurations. Thus, for each curve, as
the number of particle locations saved increases (Pavg), the number
of cycles (NC) saved decreases. Further, since number of basis flows
used does not match exactly for corresponding configurations of
each approach, we highlight example configurations which used
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Figure 7: Evaluation results using L2-norm. Legend indicates the
configuration information.

approximately similar amounts of data storage or achieved similar
accuracy for different amounts of data storage.

For the Double Gyre plot in Figure 7a, considering all config-
urations, VDVP-Interpolation calculated particle trajectories that
are 48% more accurate on average than the corresponding FDFP-
Interpolation approach, however, it used 16% more data storage
on average. Our VDVP generation approach produced more basis
flows given the divergent nature of the flow and the contained na-
ture of the data set, i.e., no particles exit. We observed the number
of basis flows generated was proportional to the value of NC for this
data set. As the interval increases, i.e., as NC gets smaller, and the
opportunities to add particles coincides with clustering of particles
in the domain, we observe a more balanced particle addition and
removal. For configurations between NC = 64 and NC = 8, we ob-
serve VDVP-Interpolation is on average 50% more accurate while
using 2% less data storage. Further, interpolation using VDVP-4X
is approximately 56% more accurate than FDFP-4X for NC = 128
(P = 8192), while using only 1.8% more data storage, and parti-
cle trajectories calculated using VDVP-2X are approximately 59%
more accurate than FDFP-2X for NC = 32 (P= 16384), while using
1.4% less data storage.

For the ABC data set, we observe the benefits of using VDVP-
Interpolation given particles travel in relatively straight trajectories
and maintain the same neighborhood for most interpolation steps
(Section 7.2.2). Considering configurations between Pavg = 1372 to
Pavg = 125000 in Figure 7b, VDVP-Interpolation is 6.5% more ac-
curate while using 22% less data storage. Further, for multiple con-
figurations our approach maintains accuracy while requiring less
data storage. For example, interpolation using VDVP-2X has ap-
proximately the same accuracy as interpolation using FDFP-2X for
NC = 2048 (P = 4096), while using 20% lesser data storage, and
interpolation using VDVP-4X is approximately 2.5% more accu-
rate than using FDFP-4X for NC = 128 (P = 131072), while using
30% less data storage.

For the Tornado plot in Figure 7c, considering all configura-
tions, VDVP-Interpolation on average calculated particle trajec-
tories that are 31% more accurate than the corresponding FDFP-
Interpolation approach, while using 48% less data storage. Com-
paring VDVP-1X and FDFP-1X configurations, we observe that
VDVP-Interpolation using 50% less data storage is approximately
60%, 47%, 40%, and 38% more accurate than corresponding
FDFP-Interpolation accuracy for NC = 256, 128, 64, and 32 re-
spectively. We placed seeds in areas from which particles are pulled
into the vortex of the Tornado in the data set. Given the nature of the
Tornado data set, we expect a lot of basis flows to exit the domain
during the run and this contributes significantly to the lowered data
storage. Overall, the interpolation accuracy of VDVP-Interpolation
configurations is significantly better than the corresponding FDFP-
Interpolation configurations across the board. We believe VDVP-
Interpolation benefits from basis flows adapting and following the
flow field thus offering better spatial resolution for the particles be-
ing interpolated.

7.2. VDVP-Interpolation Evaluation

In addition to accuracy and data storage we discuss the computa-
tion time required by our interpolation method. Further, to aid our
understanding of the divergence in the flow field and the relation to
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Configuration Double Gyre Configuration ABC Configuration Tornado

NC Data Time Per Interval NC Data Time Per Interval NC Data Time Per Interval

2048 1X 0.1704 2048 1X 0.4897 128 1X 3.5335

4X 0.1774 4X 0.5669 4X 14.6271

128 1X 0.1821 128 1X 0.6528 32 1X 12.3912

4X 0.1775 4X 1.0535 4X 50.4528

8 1X 0.2075 8 1X 4.1075 8 1X 54.5112

4X 0.2712 4X 16.2275 4X 184.1937

Table 1: Timing results for post hoc interpolation using the VDVP-Interpolation method. For the Double Gyre data set, X = 262,144 points.
For the ABC data set, X = 4.2M points. For the Tornado data set, X = 134.4M points. All timings reported are the average time for a single
interval and measured in seconds.

interpolated pathline accuracy we observe the rate of neighborhood
updates during interpolation.

7.2.1. Computation Time

Table 1 shows the average time required for a single interval when
performing VDVP-Interpolation for a select set of configurations.
Given the number of intervals corresponds to the value of NC, the
total time required can be computed as a product of the average
time per interval and NC. Each interval of VDVP-Interpolation con-
sists of identifying the next location for a set of particles and per-
forming a serial Delaunay triangulation over the current set of input
basis flows to identify the containing cell. Identification of the next
location for each particle is computed using Barycentric coordi-
nates interpolation and is computed in parallel over the total set of
particles. For the configurations shown in Table 1, we believe the
mid-value for NC represents the most practical choice for configu-
rations in practice.

For the Double Gyre data set, we observe short computation
times given the 2D Delaunay triangulation is inexpensive for a rel-
atively smaller number of points. Thus, the interpolation times are
dominated by the parallel particle interpolation process. Overall,
the total interpolation time is greater for high NC and relatively
low when NC is small. For the ABC data set, we observe similar
trends with total computation time proportional to the value of NC.
However, we do observe the impact of the 3D Delaunay triangu-
lation over a large number of points as a bottleneck when NC =
8 and VDVP-4X is used. For the Tornado data set, the 3D Delau-
nay triangulation dominates the total time required and is greater
for VDVP-4X configurations. The number of intervals has a lesser
effect when the Delaunay triangulation is expensive. For example,
the total time required by the NC = 128 and VDVP-1X configura-
tion is less than the time required by the NC = 8 and VDVP-4X
configuration.

Our experiments with parallel calculation of the Delaunay tri-
angulation showed it can significantly improve computation times,
but there are constraints such as CGAL only offers a parallel 3D
Delaunay triangulation which requires TBB (no support for 2D),
and Delaunay triangulation on GPUs does not scale beyond a few
million points due to memory constraints. We discuss potential so-
lutions to this challenge in Section 9.
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Figure 8: The average percentage neighborhood update rate over
all particles for each data set. The x-axis shows the number of write
cycles, i.e., the number of “opportunities" a particle being inter-
polated had to evaluate and decide whether to update its neigh-
borhood. The y-axis plots the average percentage of neighborhood
updates over all interpolated particle trajectories, considering all
configurations, i.e., VDVP-1X, VDVP-2X, and VDVP-4X.

7.2.2. Neighorhood Update Rate

Figure 8 plots the average percentage neighborhood update rate of
particles interpolated using the saved basis flow information. Dur-
ing VDVP-Interpolation, a particle follows a neighborhood of ba-
sis flows for an interval of time, followed by an evaluation of the
continuation and quality of the neighborhood. If a member basis
flow of the neighborhood terminates or the basis flows diverge be-
yond an acceptable threshold the particle identifies a new set of
basis flows to follow by performing a neighborhood update. We
use Nupdate to denote the average percentage neighborhood update
rate. The FDFP-Interpolation approach has Nupdate equal to 100%.

For the Double Gyre data set, where we seeded particles ran-
domly in the domain, we observe Nupdate is high when the intervals
are large, i.e., the number of write cycles is small. This is expected
given the circulating and diverging nature of the Double Gyre flow.
For the ABC data set, where we seeded particles randomly in the
domain, we observe low values for Nupdate irrespective of the num-
ber of write cycles. This is expected given particles have rather
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straight trajectories for this data set, thus being able to maintain
the same neighborhood. For the Tornado data set, we seeded par-
ticles at select locations in order to capture the flow of the mature
vortex in the field. We observe that for the large intervals, parti-
cles have Nupdate approximately equal to 25%. For all data sets,
for small temporal intervals (i.e., high values of NC), we observed
low values for Nupdate. Thus, particles choose to continue using the
same neighborhood of basis flows for upcoming interpolations.

8. Conclusion

Our interpolation scheme VDVP-Interpolation reduces error prop-
agation and limits interpolation error when calculating particle tra-
jectories using VDVP Lagrangian basis flows. VDVP-Interpolation
makes configurable neighborhood-aware usage of VDVP basis
flows and is the main contribution of this work. Further, our work
is the first practical implementation of generating and using VDVP
basis flows. This serves as a starting point for future in situ methods
research for flow analysis and visualization using the Lagrangian
paradigm.

We evaluated the accuracy-storage propositions offered by our
method for multiple data sets and demonstrate improved accuracy
and reduced storage compared to previous methods. For example,
VDVP-Interpolation was able to calculate particle trajectories that
were between 40%-60% more accurate while using 50% less stor-
age for certain configurations of the Tornado data set.

9. Future Work

Identifying the neighborhood of a particle can be expensive us-
ing a global search structure which requires construction over a
large number of points or updating every interval. An alternative
approach could be a local parallel search for nearby, relevant ba-
sis flows to form the neighborhood for each particle. Identifying
an efficient approach for tracking particle neighborhoods for un-
structured input will be explored as a future research direction with
options including spatial hashing and binning being considered.

Significant research needs to be directed toward the best ap-
proaches for generating VDVP basis flows. Generating VDVP ba-
sis flows in an in situ distributed environment introduces new chal-
lenges with regard to particle distribution management, commu-
nication costs, and scalability given the complexity of distributed
time-varying integral curve computation. While the Lagrangian
paradigm offers significant flexibility in terms of flow sampling, ef-
ficient in situ approaches to capture interesting regions of the flow
need to be researched and developed.
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