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Abstract
We present a parallel compositing algorithm for Volumetric Depth Images (VDIs) of large three-dimensional volume data. Large
distributed volume data are routinely produced in both numerical simulations and experiments, yet it remains challenging to
visualize them at smooth, interactive frame rates. VDIs are view-dependent piecewise constant representations of volume data
that offer a potential solution. They are more compact and less expensive to render than the original data. So far, however,
there is no method for generating VDIs from distributed data. We propose an algorithm that enables this by sort-last parallel
generation and compositing of VDIs with automatically chosen content-adaptive parameters. The resulting composited VDI
can then be streamed for remote display, providing responsive visualization of large, distributed volume data.

CCS Concepts
• Computing methodologies → Distributed algorithms; Rendering; • Human-centered computing → Visualization tech-
niques;

1. Introduction

Interactive volume rendering is commonly used when analyzing
large scalar field data generated by scientific simulations or exper-
imental measurement devices. Rendering at high, consistent frame
rates and low latency is crucial for enabling smooth viewpoint
changes and zooming, which are important for gaining depth per-
ception and spatial understanding. Distributed compute clusters are
therefore commonly used to accelerate the rendering of large data,
distributing the data and parallelizing the calculations among pro-
cessors. But consistently high frame rates are difficult to achieve in
such a setting, due to the time-consuming raycasting procedure and
the remote rendering setup, which introduces network latency.

Here, we propose the use of view-dependent piecewise-constant
representations of volume data, also known as Volumetric Depth
Images (VDIs) [FSE13], to decouple interactive viewpoint changes
and zooming from network latency and distributed volume raycast-
ing. VDIs are generated by dividing the volume-rendering inte-
gral along each ray into chunks that store accumulated color and
opacity. The resulting representation can be much smaller than the
volume data [FSE13], can be compressed and streamed efficiently
[FFSE14], and recent work has shown that it can be rendered at
high frame rates, providing high-fidelity approximations near the

viewpoint from which it was generated [GGI∗23]. However, there
currently exists no method for generating VDIs on distributed vol-
ume data.

We therefore present an algorithm for sort-last parallel genera-
tion of VDIs on distributed data. In this approach, VDIs are gen-
erated on each processing element (PE) on its volume domain in
parallel—we call these “sub-VDIs”—and composited in parallel
to a single VDI with load-balancing in image space. We design
the present algorithm such that it can adapt to arbitrary, potentially
non-convex data decompositions, as may arise, for example, in in
situ visualization of distributed computer simulations.

We benchmark the proposed method on real-world datasets. We
test the parallel compositing algorithm for accuracy and scalabil-
ity, showing that it can be used to enable responsive visualization
at high frame rates for large distributed volume data. We provide
our implementation as part of the open-source visualization library
scenery [GPG∗19]. In summary, we contribute the following:

• We propose the use of view-dependent piecewise-constant vol-
ume representations, such as VDIs, for interactive visualization
of distributed volumes at high, consistent frame rates.

• We provide an efficient parallel algorithm for scalable sort-last
generation of VDIs over distributed data.
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2. Related Work

Before presenting the parallel VDI generation and compositing al-
gorithm for distributed-memory volume data, we review the state
of the art and related works in relevant areas and recall the main
VDI concepts.

2.1. Distributed Volume Rendering

Volume rendering is widely used for the visualization of 3D scalar
fields. Soon after the volume raycasting algorithm was first pre-
sented by Levoy [Lev88], parallel volume rendering began to re-
ceive research interest [Neu93, MPHK93] with the purpose of
achieving interactive visualization by distributing the data and par-
allelizing the rendering calculations. Later progress in parallel vol-
ume rendering enabled efficient rendering at high degrees of paral-
lelism and for large data sizes [PYR∗09, HBC12].

A commonly used strategy for parallel volume rendering is sort-
last rendering [MCEF94,PYR∗09,HBC12]. There, the volume data
are distributed among the n PEs taking part in the rendering. Each
PE performs front-to-back raycasting on its data, producing a full-
resolution sub-image. The sub-images from the different PEs are
then composited to a single image of the overall data.

Cavin et al. [CMF05] provided a theoretical comparison of al-
gorithms used for compositing the sub-images. Perhaps the most
straightforward is the direct-send algorithm [Neu93], where the im-
age is divided among the n PEs such that each is responsible for
compositing 1/n-th of the total pixels in the final image. For this,
each PE receives fragments of images from all other PEs, corre-
sponding to the part of the final image that it “owns”. Peterka et
al. [PYR∗09] used the direct-send approach to demonstrate scala-
bility of parallel volume rendering on an IBM BlueGene/P system.

Other frequently used compositing algorithms include the
binary-swap algorithm [MPHK94], which uses a tree structure with
pairs of processes communicating at every node of the tree, and
the hybrid radix-k compositing algorithm [PGR∗09], which blends
the direct-send and binary-swap approaches offering configurable
parameters for optimization on different hardware architectures.
Previous work has aimed to optimize compositing by dynamically
scheduling communication of sub-images for better overlap with
computation [GKH16], reducing communication cost using hy-
brid OpenMP/MPI parallelism and GPU-Direct RDMA [GPC∗17],
and by compressing image data on the GPU before compositing
[LMPM21]. Interactive frame rates, however, still require a finely
granular domain decomposition to reduce rendering times, and re-
sponsive visualization remains a challenge due to network latency
between the user and the parallel rendering cluster.

2.2. Explorable Image Representations

For responsive remote visualization, different explorable image
representations have been proposed in order to decouple user in-
teractions from rendering. Shade et al. [SGHS98] introduced the
view-dependent Layered Depth Image (LDI) representation, stor-
ing multiple pixels along each line of sight. Stone et al. [SSS16]
used omnidirectional stereoscopic images, rendered on remote
compute clusters and reprojected locally, to enable Virtual Reality

(VR) visualization of molecular dynamics simulations. These ap-
proaches, however, are limited to surface and geometry data. For
reprojecting volume data, Zellmann et al. [Zel21] used a single
depth layer transmitted by the rendering server together with the
color buffer, proposing various heuristics to create the depth buffer.
While using a single depth value per pixel ensures small message
sizes, it is not conducive to producing high-quality reprojections,
as holes occur where rays do not intersect the depth layer. This has
been addressed by view-dependent piecewise-constant volume rep-
resentations [BJNN97, FSE13, LRBR16], which produce a contin-
uous representation of the volume by storing multiple layers with
composited color and opacity in-between. One such representation
is the VDI, as described in more detail in Sec. 2.4.

Tikhonova et al. [TCM10a, TCM10b] and, more recently, Rapp
et al. [RPD22], proposed compact view-dependent representations
that enable interactive transfer function changes. The VDI differs
from these representations in that it is generated for a given trans-
fer function and stores transfer-function classified color and opac-
ity within each segment. This prioritizes fast rendering from new
viewpoints. Rapp et al. [RPD22] also support viewpoint changes,
but require slower bilinear interpolation of Lagrange multipliers.

Recent years have seen increased research interest in novel-view
synthesis—using one or more images of a scene to generate images
from new viewpoints—using deep-learning techniques. Mildenhall
et al. [MST∗21] proposed the NeRF (Neural Radiation Fields) rep-
resentation, training a neural network to encode a continuous vol-
ume in its weights, enabling rendering by raycasting over samples
collected from the network. This has been extended to implicit neu-
ral representations achieving high compression ratios on large vol-
ume data [LJLB21, HW22]. While techniques have been proposed
to accelerate neural rendering [MESK22,WBDM22], dense regions
in large volumes still require many samples, limiting frame rates.

Exploratory visualization of numerical simulation results was
done post-hoc using the Cinema database [AJO∗14], which stores
images generated in situ for a range of visualization parameters, in-
cluding different viewpoints. All parameter ranges, including view-
points, however, must be specified in advance, and the database
becomes large if many viewpoints are required. Our approach in-
stead generates new VDIs at regular time intervals, which can be
streamed to enable approximate rendering with full six-degrees-of-
freedom viewpoint changes.

2.3. Generation of View-Dependent Piecewise-Constant
Volume Representations

We review techniques that have been proposed for generating view-
dependent piecewise-constant volume representations, including
VDIs [FSE13].

All view-dependent representations of volume data are generated
by raycasting through the volume and decomposing the volume-
rendering integral into segments, each of which containing transfer-
function classified composited color and opacity. The distinguish-
ing feature of these representations, in comparison to other tech-
niques that compress volume data, is that they produce an exact im-
age when rendered from the original viewpoint of generation, ow-
ing to the associativity of the over operator [PD84] used in alpha-
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compositing. Rendering from deviating viewpoints involves accu-
mulation over the segments, which is much cheaper than evaluating
the full integral [KM05]. Close approximations to volume render-
ing are achieved around the viewpoint of generation [FSE13].

Previous works on generating view-dependent volume repre-
sentations differ in the strategies used to determine the locations
and extents of the segments generated along the rays. Brady et
al. [BJNN97] used constant-size segments along each ray, creating
segments that contain composited color and opacity over poten-
tially heterogeneous samples, hampering the quality of rendering
from a new viewpoint. Lochmann et al. [LRBR16] created seg-
ments of constant opacity by partitioning the total transmittance
equally among the segments. This, however, does not account for
potentially varying color values within the segments. Frey et al.
[FSE13] proposed the VDI, which uses homogeneity as a criterion
for segment termination, accumulating samples into a segment un-
less it differs from the current segment by more than a user-defined
sensitivity parameter. Recent work [GGI∗23] has proposed an it-
erative search strategy to automatically determine the sensitivity
parameter. However, while VDIs can provide high-fidelity approx-
imate renderings, there exists so far no method for generating them
in parallel on distributed volume data.

2.4. The Volumetric Depth Image (VDI)

Frey et al. [FSE13] proposed the VDI as a view-dependent repre-
sentation of volume data. They call the segments generated along
each ray supersegments. Each supersegment S is represented by its
front and back faces, f (S) and b(S), and its color and opacity, C(S)
and α(S), respectively.

Each ray (x,y) cast into the volume creates a supersegment list
Lxy of up to NS (user parameter) supersegments Sxy

j , where j is the
index of the supersegment within the list (Fig. 1). The total number
of lists created, NL, corresponds to the viewport resolution the VDI
is generated for, i.e. NL= wh, where w is the width of the viewport
and h the height in pixels.

The decomposition of the volume rendering integral into super-
segments is governed by a termination criterion τ, which depends
on a sensitivity parameter γ. Samples along each ray are merged
into a supersegment until

τ : γ < ∥C(S)α(S)−C′
α
′∥2 , (1)

where C′ and α
′ are the color and the length-adjusted opacity of the

next sample. In words, the next sample is composited into the cur-
rent S unless it differs from the premultiplied color of S by more
than γ, in which case a new S is started. This criterion generates
homogeneous S, which is important for generating high-quality ap-
proximated renderings from new viewpoints.

The value of γ that generates the most accurate VDI depends
on the dataset and on the transfer function. A greedily optimal
per-ray value is found automatically by iterative bisection search
[GGI∗23]. At each iteration, a pass is performed through the vol-
ume, and the total number of times τ is true is used to modify the
value of γ for the next iteration given a NS budget. If τ was true
more often than NS, the value of γ is increased for the next itera-
tion, and vice versa. This process iterates until γ has converged to a

Volume bounding box
Original view direction

Figure 1: A Volumetric Depth Image (VDI) [FSE13] is generated
by casting rays through the volume and grouping samples (depicted
by colored circles along the ray) of similar color and opacity, gen-
erating a list Li of up to NS=3 (in the example of the figure) su-
persegments Si

j per ray. Each Si
j stores its front and back face,

f (Si
j) and b(Si

j), along with color and opacity accumulated in-
between (Fig. 2a). Hollow circles represent samples in empty re-
gions. Volume data may be divided among multiple Processing El-
ements (PE) in a computer cluster (background gray levels).

value that maximizes the number of supersegments generated while
staying below a total of NS. This iterative per-ray γ optimization en-
ables VDIs to be generated without manual intervention, accurately
adapting to the data and the transfer function.

In the following, we extend the VDI concept to distributed par-
allel generation and compositing. More specifically, we propose a
compact memory layout for VDIs in order to reduce the communi-
cation overhead during parallel compositing, we show how γ search
can be approximated without global communication, and we han-
dle arbitrary non-convex data-domain decompositions. All design
decisions are rationalized by performance measurements.

3. Measurement Setup

We compare and evaluate design decisions and algorithmic ap-
proaches in a uniform benchmark setup. All measurements are
taken on the taurus high-performance computer of TU Dresden.
Each node contains 8 NVIDIA A100-SXM4 GPUs with 40 GB of
DRAM each, 2 AMD EPYC 7352 CPUs with 24 cores each, 1 TB
RAM, and runs RedHat Enterprise Linux version 7.9. C++ code
was compiled using GCC 10.3.0, Java code was run using Open-
JDK 11.0.2, and OpenMPI version 4.1.1 was used. Processes are
always distributed in a block manner, i.e., all 8 GPUs on a node are
occupied before starting to use another.

The datasets used for the measurements are described in Table 1.
All of them are commonly used for the evaluation of visualization
tools and algorithms and are referred to by their name or abbrevia-
tion. Volume data is decomposed across PEs in blocks of as close
to equal size and extents along the spatial dimensions as permitted
by the data dimensions. Rendering of VDIs, performed to verify the
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Dataset (Abbreviation) Dimensions Size
Kingsnake 1024×1024×795

8bit uint
795 MiB

Rayleigh-Taylor Insta-
bility [CCM04]

1024×1024×1024
16bit uint

2 GiB

Richtmyer-Meshkov
[CDD∗02]

2048×2048×1920
8bit uint

7.5 GiB

Rotating Stratified
Turbulence [RPMM15]
(RS)

4096×4096×4096
16bit uint

128 GiB

Forced Isotropic Turbu-
lence [YDS12] (FI)

4096×4096×4096
16bit uint

128 GiB

Table 1: Datasets used for the measurements.

quality of VDIs generated, ran on a Nvidia RTX 4090 on a remote
workstation under Ubuntu 20.04.

4. Compact VDI Representation

VDI generation techniques [FSE13] have so far used a regular 3D
representation for VDIs. Any lists that pass through empty regions,
and therefore do not generate supersegments, or that generate less
than NS supersegments, store zeros in the remaining locations as
illustrated in Fig. 2a. This regular 3D structure of the VDI improves
the performance of raycasting-based rendering as it leads to better
memory access patterns. However, for the parallel compositing of
VDIs, which requires communication of sub-VDIs between PEs,
this generates unnecessary communication overhead.

For the purpose of parallel compositing, we therefore store VDIs
in memory using a compact representation. Only those superseg-
ments that are actually generated are stored, as illustrated in Fig. 2c.
The difference between the memory required for a compact repre-
sentation and a regular representation grows when more PEs are
used in a sort-last parallel generation approach. This is because data
becoming divided more finely among PEs leads to sub-VDIs that
are increasingly sparse.

The procedure for generating compact VDIs starts similarly to
that for regular VDIs. For each ray, a value of γ is determined using
iterative search (Sec. 2.4). No supersegments are actually generated
at this stage, but value of γ and the number of supersegments that
it would generate are both stored in a buffer. Next, a prefix sum
is calculated on this buffer, which records for each list Li the total
number of supersegments generated by all lists before Li (Fig. 2b).
Entry i in the prefix buffer, corresponding to list Li, therefore con-
tains the index in the linearized array at which the supersegments of
Li start to be stored. All lists can therefore generate their superseg-
ments in parallel, using the value of γ determined in the first step.
In our implementation, both γ search and supersegment generation
are parallelized across lists on the GPU, while the prefix sum is
calculated on the CPU.

Table 2 compares the time to generate a compact VDI repre-
sentation with the time to generate a regular representation, which
avoids the prefix-sum computation and the GPU kernel synchro-
nization at the end of the per-ray γ search. We find that generating

0
0
3
5
8
11

a) Regular representation b) Prefix sum c) Compact representation

Figure 2: Representing the VDI generated in Fig. 1 in memory.
a) All 18 S are stored in memory. b) Prefix sum evaluated on (a),
which is used to generate the compact representation of the VDI
shown in c), storing only the 11 non-empty S.

Dataset Regular Compact Memory ratio

Kingsnake 0.42 s 0.29 s 1:0.12
Rayleigh-Taylor 0.54 s 0.44 s 1:0.45

Richtmyer-Meshkov 0.91 s 0.84 s 1:0.34

Table 2: Time in seconds to generate a single NL=1920×1080,
NS=25, VDI stored either using the regular or the compact
representation in memory, and the ratio of the memory (regu-
lar:compact) required for the representations.

the compact representation is, in fact, faster than generating the reg-
ular representation, with the additional time to compute the prefix
sum more than amortized by the fact that empty supersegments do
not need to be written to memory.

The compact VDI representation is a form of run-length encod-
ing for the VDI. Though a typical run-length encoding approach
would group all neighboring supersegments with the same color
and depth values, not only empty ones, it is unlikely in practice for
neighboring supersegments to have the same value, unless they are
empty. This form of lossless compression is analogous to active-
pixel encoding [Mor11, LMPM21] commonly performed in par-
allel compositing of images, where empty regions in images are
compressed using run-lengths.

Although it is possible to render VDIs in their compact represen-
tation, this is significantly slower than rendering the regular repre-
sentation as it offers less optimal memory access patterns (Fig. 6).
The VDI we finally stream for rendering after parallel compositing
is therefore stored in the regular representation, but we use the com-
pact representation during parallel generation and compositing.

5. Generating a VDI on distributed data

We propose a method to generate VDIs that represent data dis-
tributed across PEs, e.g., compute nodes in a cluster, GPUs within
a node, etc. The final VDI represents the entire volume data in the
viewport across all PEs and can be streamed for remote display.

The proposed approach relates to techniques commonly used to
generate images from distributed data. We adopt a sort-last parallel
rendering strategy [MCEF94] in order to achieve scalability with
data size and to conform to arbitrary domain decompositions, as,
e.g., produced by an in situ numerical simulation. Distributed VDI
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a) sub-VDI generated on PE 1 b) sub-VDI generated on PE 2

c) Supersegment lists composited on PE 1 

d) Supersegment lists composited on PE 2 

Figure 3: The sub-VDIs generated during Phase 1 and the lists
composited during Phase 2 for the VDI in Fig. 1. Panels c) and
d) show sub-S sorted by their position along the ray. Flat outlines
represent sub-S received from PE 1, while dotted outlines represent
sub-S received from PE 2. These are then composited, producing a
maximum of NS= 3 S per list, as shown in Fig. 1.

generation therefore begins from a given domain decomposition
where each PE only stores a part of the overall volume (Fig. 1).
Each PE then generates a sub-VDI at full viewport resolution for
its local data and stores it in the compact representation. The sub-
VDIs are composited into a single VDI representing the entire vol-
ume data using a direct-send approach [Neu93] with compositing
load balanced in image space. The compositing stage receives su-
persegments from all PEs and combines them to produce a total of
up to NS supersegments per list, minimizing loss of detail.

5.1. Phase 1: Distributed generation of sub-VDIs

Distributed sub-VDI generation starts from a domain decomposi-
tion of the volume data. As is typical for sort-last approaches, no
transfer of data between PEs is required. A VDI corresponding
to the full viewport resolution is generated concurrently on each
PE. All PEs share the camera viewpoint from which rays are cast
to generate supersegments. The sub-VDIs are stored in the com-
pact representation. This avoids a linearly growing communication
overhead with increasing numbers of PEs, since the sub-VDIs be-
come increasingly sparse for finer data decompositions.

Any given ray in the view frustum can, in general, pass through
the domains of multiple PEs. The search for a value of γ that would
generate a total of up to NS supersegments along the ray would thus
require communication between PEs at each iteration. This would
prevent the algorithm from scaling, as γ search typically requires
several iterations to converge. We avoid this communication and
synchronization by proposing an approximate algorithm that allows
each PE to act independently during sub-VDI generation. For this,

PEs do not make assumptions about the numbers of supersegments
generated on other PEs. Instead, each PE independently generates
up to NS supersegments (we refer to them as sub-S) within its own
domain. This ensures that the volume rendering integral is never
under-resolved for the given budget of NS. In Fig. 1, for example,
ray 2 passes through the domains of both PE 1 and PE 2, but en-
counters only empty regions on PE 2. All NS= 3 supersegments are
thus generated on PE 1 (Fig. 3). Ray 3, however, generates a full
NS= 3 on each PE, over-resolving the ray with six sub-S, which
are then reduced during compositing.

The proposed strategy of generating up to NS sub-S on each PE a
ray passes through generates more sub-S than required. This in-
creases the amount of data to be communicated during composit-
ing. But it eliminates the cost of communicating and synchronizing
all PEs during γ search and preserves the best-possible quality for
the final VDI.

5.2. Phase 2: Parallel compositing of sub-VDIs

At the end of Phase 1, each ray has produced up to NS sub-S on
each PE where it intersects the data. These need to be merged to
produce a total of up to NS supersegments for each ray. The first
step is therefore to bring all sub-S of a ray from all PEs onto a
single PE where they can be composited.

We design an algorithm based on the direct-send approach for
compositing sub-images in distributed volume rendering [Neu93].
The number of supersegment lists L in the final composited VDI
is divided equally among PEs, with each PE responsible for pro-
ducing composited Lxy for the pixels in its part of the image space.
In Fig. 3, e.g., both PE 1 and PE 2 composite three L each. This
balances the load in image space.

Each PE sends to all PEs, including itself, the sub-S those
PEs are responsible for compositing. Since the amounts of data to
be sent to different PEs differ, we use MPI_AllToAllv, which
accounts for variable message lengths. The prefix-sum buffers gen-
erated for the sub-VDIs are also transmitted, in chunks correspond-
ing to the image space decomposition, as they are required for read-
ing sub-S from the compact representation. Each PE then has all
the data required for compositing the final supersegments S of the
lists in its part of the image space.

The first step in merging the sub-S is to determine the order in
which they lie along the ray. The sub-S in any list cannot be as-
sumed to be contiguous. There may be gaps between consecutive
sub-S when the ray passes through the domain of another PE. In
Fig. 1, e.g., Ray 4 passes through the domain of PE 2 before re-
turning to PE 1, generating sub-S on PE 2 (see Fig. 3) that are to
be placed in-between the sub-S of PE 1. Within each PE, however,
the sub-S are sorted, since they are generated by front-to-back ray-
casting. Therefore, to iteratively determine the next sub-S in a list,
the depths of the frontmost sub-S from all PEs are compared, and
the sub-S with the lowest starting depth is selected as the next along
the ray. The merged set of sub-S for Ray 4 is produced on PE 2,
which is responsible for compositing L4 (Fig. 3d).

The process of compositing the merged sub-S can be formulated
as another supersegment generation task, performed by raycasting
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Figure 4: SSIM (mean ± min-max range across four viewpoints
of VDI generation) with respect to ground truth DVR for the ren-
dering of VDIs generated using varying numbers of Nvidia A100
GPUs. VDIs generated on 8, 16, 24 and, 32 GPUs are composited
using the presented compositing algorithm (Sec. 5.2), while VDIs
generated on 1 GPU do not undergo compositing. All VDIs are of
resolution NL=1920×1080 with NS=25 for three datasets (sym-
bols, top legend) and three different VN (panels).

through the sub-S, which are, after all, piecewise constant samples
of the original volume. We therefore treat each sub-S as a sample
along the ray. These samples are raycast through and combined into
supersegments S. Since the sub-S have different lengths, the pro-
cess of raycasting through them is analogous to volume raycasting
with irregular step size. The opacity obtained from a sub-Si

j is the
opacity stored in sub-Si

j, corrected by its length [EHK∗04] as:

α̃ = 1− (1−α)l (2)

where α̃ is the adjusted opacity, α is the opacity stored in sub-Si
j,

and l is the length of sub-Si
j . Empty spaces between sub-S are

treated as transparent samples. At each sample, the sub-S can ei-
ther be merged with the previous supersegment, or it can begin a
new one. This is again determined using the criterion τ (Eq. 1) and
requires finding another γ that leads to the generation of NS super-
segments in total. This is again done using per-ray iterative γ search
(Sec. 2.4), which requires multiple passes through the sub-S. The
sub-S in L4 in Fig. 3d are, e.g., combined to produce the S depicted
in Fig. 1. Detailed pseudocode is included in the Supplement.

While parallel compositing approaches like binary-swap
[MPHK93] and radix-k [PGR∗09] typically outperform the direct-
send for image compositing, we choose the latter here as it requires
only a single stage of compositing sub-S into S. The proposed sort-
last approach of compositing sub-S produces different S depend-
ing on the number of PEs the data is divided over. To evaluate the
accuracy, we generate VDIs on multiple GPUs and compare the
quality of the rendering with a VDI generated on a single GPU,
where compositing is not required. VDIs are generated from four
viewpoints (VO) representing 90° rotations of the dataset in cam-
era space. They are then rendered at different viewpoint deviations
(VN) about the viewpoint of generation, and quality is compared to

ground truth direct volume rendering (DVR). Figure 4 presents the
results with image similarity measured using the SSIM [WBSS04]
metric, depicting the mean and the range (max-min) across the four
VO. While there is a marginal decline in SSIM values, we observe
that VDI rendering quality remains similarly high for VDIs gener-
ated on multiple GPUs as for a VDI generated on a single GPU.
Transfer functions are depicted in Fig. 5 and images are included
in the Supplement for visual comparison.

Figure 6 compares the rendering frame rates of VDIs stored in
regular and compact representation with the DVR baseline at dif-
ferent VN about VO. The regular representation renders faster due
to its simpler memory-access patterns. The task of converting from
compact to regular representation cannot be handled by the display
client as it needs to remain responsive for user interaction. There-
fore, while the sub-VDIs communicated for compositing used the
compact representation to reduce communication overhead, the su-
persegment lists produced by compositing use the regular repre-
sentation. The composited lists from all PEs are combined onto the
root PE by MPI_Gather, from where they are be streamed for
(remote) display, potentially after lossless compression.

5.3. Handling Non-Convex Data Decompositions

A key feature of the above compositing method is that it can handle
non-convex domain decompositions and therefore work with any
application-given data distribution.

A non-convex domain decomposition is one where a ray can
intersect the boundary of the domain of a PE in more than two
points. Such decompositions occur, e.g., in numerical simulations
in complex-shaped simulation domains, where the domain decom-
position balances the computations in each sub-domain and the
communication volume between PEs [ILZ∗19], not necessarily
producing an equal division of data among PEs. Such situations
are challenging for distributed volume rendering, due to the non-
commutativity of the over operator [PD84]:

a over b ̸= b over a. (3)

This implies that in non-convex domain decompositions, volume
rendering cannot composite color across disjoint segments of a ray
without requiring communication or synchronization between the
PEs, or redistribution of the volume data.

Our method avoids this problem by generating sub-S that store
world-space front and back depths along the ray. A sub-S necessar-
ily terminates when the ray leaves the domain of a PE. Since sub-S
are ordered by their depth during compositing, over operations
are done in the correct order. The sub-S along a ray can therefore
be generated in parallel without synchronization or communication
between the PEs.

The present approach includes non-convex distributed volume
rendering as a limit case: when generating only a single sub-S per
sub-domain intersection, the compositing algorithm can, in addi-
tion to placing the supersegments in correct order, also perform
over-operator compositing along the supersegment lists. This ef-
fectively performs volume rendering, creating a flat image on a
non-convex domain decomposition without requiring synchroniza-
tion or communication between PEs.
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(a) Kingsnake, SSIM: 0.970. (b) Rayleigh-Taylor, SSIM: 0.974. (c) Richtmyer-Meshkov, SSIM: 0.949.

Figure 5: Visual illustration of VDI rendering quality. VDIs generated on 32 GPUs are rendered at 20° from the viewpoint of generation.
SSIM values computed w.r.t. ground-truth direct volume rendering (DVR) at the same viewpoint (see Supplement for images).
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Figure 6: Performance comparison (in fps) between DVR (lines)
and rendering NL=1920×1080, NS=25, VDIs stored in either reg-
ular (colors) or compact (grayscales) representation, at various
angles about the viewpoint of generation. Datasets (Kingsnake
(KS), Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM)) are repre-
sented by symbols/line styles, see inset legend.

6. Implementation

We implemented the algorithms described in the previous sec-
tions in the open-source rendering framework scenery [GPG∗19].
Both sub-VDI generation and VDI compositing are implemented as
compute shaders in the Vulkan API. For work distribution, a local
work-group size of 16×16 is used, i.e., the screen space is divided
into 2D blocks of that size. During raycasting, each ray within a
block corresponds to a thread on the GPU, and to a single pixel on
screen.

The final VDI generated is compressed using LZ4, which we
found to provide faster and better compression than Snappy and
ZSTD, before streaming. For a NL=1920×1080, NS=25, VDI
this produces ≈325 MiB of data, while the corresponding uncom-
pressed VDI in regular 3D representation would be ≈1.2 GiB.

The source code is available under the open-source BSD
license at: https://github.com/scenerygraphics/
scenery-insitu/.

7. Benchmarks and Evaluation

We evaluate parallel VDI generation on the real-world datasets
from Table 1, measuring rendering performance and quality.

We profile the performance of the individual steps of parallel
compositing (Sec. 5.2) in order to quantify the benefits of using
the proposed compact VDI representation. Figure 7 plots, for both
compact and the regular representation, the timings of the three
stages of parallel compositing: the distribution of sub-S among
PEs (pd), the actual compositing into S (pc), and the final gather
at the root PE (pg). An MPI_Barrier is placed before all MPI
calls for profiling. Measurements are reported as mean ± standard-
deviation over 144 iterations with the camera rotating 5° about the
dataset every second iteration for a full 360° orbit. For pd and
pc, timings are averaged across PEs at every iteration, since the
PEs can independently proceed with the next step; pg is recorded
at the root PE. VDIs of the FI dataset (Table 1) are used in full HD
(1920×1080) viewport resolution with NS=25.

Using the compact VDI representation during compositing is
faster in all tested cases and provides better scalability with increas-
ing numbers of GPUs. On 32 GPUs, the entire parallel compositing
process, i.e. (pd + pc+ pg), for the compact representation requires
40% of the time of the regular representation. As expected, the aver-
age number of sub-S generated per PE decreases when using more
PEs, as the sub-VDIs become increasingly sparse. This amplifies
the advantage of the compact representation, reducing pd by about
90% on 32 GPUs.

The reduction in the number of sub-S per PE also reduces the
compositing time (pc) to 0.6× on 32 GPUs, relative to 8 GPUs.
VDI sparsity, however, depends on VO, resulting in the higher
standard-deviation for the compact representation. For the regu-
lar representation, the number of sub-S per PE remains constant,
leading to constant compositing times. The communication volume
for the final gather (pg) is independent of the number of PEs and
equal to the size of the final VDI. The observed variability is thus
attributed to background load fluctuations on the benchmark ma-
chine. Eventually, pd limits scalability, as it increases (1.4× on 32
GPUs relative to 8 GPUs) even for the compact representation.

Figure 8 shows the overall rate of VDI generation for the
128 GiB RS [RPMM15] and FI [YDS12] datasets, starting at 4
GPUs which is the minimum required for this data size (Table 1).
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Figure 7: Runtime performance of the three stages of parallel com-
positing for VDIs in both compact (C, light colors) and regular
(R, dark colors) representation. Mean ± standard deviation (er-
ror bars) are reported over a 360° camera orbit (top panel). The
individual parts are: distribution of sub-S (pd , blue), compositing
into S (pc, green), final gathering of S (pg, red). The bottom panel
shows the average number of sub-S generated by a PE.
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Figure 8: Number of VDIs generated per second (mean ± standard
deviation over a 360° camera orbit) for different numbers of Nvidia
A100 GPUs, NL=1920×1080, NS=25, for the RS and FI datasets
of 128 GiB each (see Table 1).

Again, the camera performs a 360° orbit of the data at 5° incre-
ments with two iterations at each viewpoint.

At small numbers of GPUs, sub-VDI generation dominates the
overall VDI generation time. As the number of GPUs increases,
sub-VDI times decrease (strong scaling). From 4 to 8 GPUs, VDI
generation rates therefore increase by 2.2× and 2.1× for the FI and
RS datasets, respectively. As sub-VDI times decrease further, the
communication overhead of parallel compositing begins to domi-
nate, and speed-ups reduce to 1.75× from 8 to 16 GPUs and 1.2×
from 16 to 32 GPUs. This is typical for strong scaling and is also
observed in distributed volume rendering [LMPM21]. Our imple-
mentation overlaps sub-VDI generation with the final gather of the

previous VDI, effectively hiding some of the sub-VDI generation
time. This increases VDI generation rates, but decreases the mea-
sured parallel efficiency. Overall, about one VDI is generated per
second on 32 GPUs. The results are similar for other values of NS.
VDI generation rates increase by ≈ 15% for NS=20 and decrease
by ≈ 9% for NS=30, relative to the NS=25 plotted here (see Sup-
plement).

Once the final VDI is generated, it can be streamed for in-
teractive remote rendering. We therefore compare VDI render-
ing on the display client with distributed DVR on the clus-
ter. We implement distributed DVR using IceT [Mor11], a com-
monly used library for sort-last parallel compositing, as also used
by ParaView [AGL05] and VisIt [CBW∗12]. To ensure opti-
mal compositing performance, we recompile IceT with support
for the recent CUDA image compression extension [LMPM21].
The sort-last parallel compositing strategy is chosen using
the ICET_SINGLE_IMAGE_STRATEGY_AUTOMATIC option,
which automatically selects between the radix-k [PGR∗09], binary
swap [MPHK93], and binary tree [Mor11] methods, based on the
number of processes. This is the default setting in IceT.

VDIs are rendered at different viewpoint deviations (VN) about
the viewpoint of generation (VO) and compared to distributed DVR
from the same viewpoint. Results are reported at four different
VO at 90° rotation increments around the data. Transfer functions
with multi-hue colormaps are used to present a challenging test
case for the VDI. Volume raycasting, both for DVR and VDI gen-
eration, used an emission-absorption illumination model.

Figure 9 reports rendering frame rates averaged over the four VO.
For distributed DVR, frame rates are limited by volume raycasting
with parallel compositing adding an overhead of ≈ 12 ms per frame
on 32 GPUs. Close to VO, VDI frame rates are significantly higher
than distributed DVR, achieving a speed-up of 5.5× at VN=5° for
both datasets. For larger deviations, VDI frame rates reduce due to
the anisotropic view-dependent shape of the VDI. But they remain
at least 1.3× better than for distributed DVR even at VN=50°.

Finally, we compare the quality of the images generated by VDI
rendering with those from DVR. VDIs generated on 32 GPUs at
the same four VO are rendered on a remote workstation and com-
pared with distributed DVR on 32 GPUs. Figure 10 reports the
SSIM (Structural Similarity Index Measure) [WBSS04] between
the VDI rendering result and DVR, with 1.0 indicating identical im-
ages. VDI rendering provides high-quality approximations to DVR
for both the RS and FI datasets. As expected, SSIM reduces with
increasing viewpoint deviation, but overall remains high even at
50°. The results are similar when measuring rendering quality in
terms of PSNR (Peak Signal-to-Noise Ratio, see Supplement). Vi-
sual comparisons are given in Fig. 11 with full-resolution images
available in the Supplement, along with screencast videos of inter-
active rendering on the FI and RS datasets.

8. Conclusions

We have presented a distributed generation and parallel composit-
ing approach for Volumetric Depth Images (VDIs), enabling re-
sponsive interactive visualization of large distributed volumes at
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(a) Forced Isotropic Turbulence (FI) dataset, 128 GiB.
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(b) Rotating Stratified Turbulence (RS) dataset, 128 GiB.

Figure 9: VDI rendering frame rates on a display client with one Nvidia RTX 4090 (stars), averaged over four viewpoints at 90° from each
other, compared with distributed DVR on the cluster using IceT for sort-last parallel compositing on varying numbers of Nvidia A100s (other
symbols, see inset legend); resolution 1920×1080 with NS=25.
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Figure 10: SSIM image similarity between VDI rendering and DVR
for different VN. Mean and min-max range (error bars) are re-
ported over four different VO for two datasets (RS: circles, FI:
stars).

consistently high frame rates. We improved the scalability of par-
allel compositing using a compact memory layout for VDIs that
stores only non-empty supersegments, analogous to active-pixel
encoding in parallel image compositing [Mor11, LMPM21]. We
found that this significantly reduced communication overhead dur-
ing compositing (Fig. 7) and that VDIs in the compact representa-
tion were slightly faster to generate than those represented at regu-
lar 3D resolution (Table 2). After compositing, however, the VDIs
were represented at regular 3D resolution in memory, as we found
this to allow for significantly faster rendering (Fig. 6).

We followed a sort-last approach where sub-supersegments re-
ceived for compositing were treated as samples of varying length
and α-composited along the ray to form the final supersegments.
This produced accurate VDI approximations (Fig. 4) even on large
datasets (Figs. 10, 11) and allowed us to generate sub-VDIs in
parallel without any communication between processing elements.
This is particularly beneficial in combination with the automated
γ parameter optimization, where synchronization would otherwise
occur at each iteration and for each ray. Overall speed-ups for VDI
generation (Fig. 8) reduced from linear to sub-linear with increas-
ing GPU counts as soon as compositing times became dominant, as
expected for strong scaling.

The proposed distributed generation approach enabled us to test
the VDI on larger data than what was possible in previous works.
We found that VDI rendering on a display client was about 5.5×
faster than distributed DVR near the viewpoint of generation and
remained faster also at large viewpoint deviations (Fig. 9). The ren-
dered images were almost identical, particularly close to the view-
point of generation (Figs. 10, 11).

Overall, VDIs were generated in less than one second when us-
ing 32 GPUs for a 128 GiB datasets (Fig. 8). These generation times
are comparable to or lower than the iteration times of typical dis-
tributed numerical simulations. We therefore envision distributed
VDI generation finding applications in interactive in situ visualiza-
tion of numerical simulations. This also includes simulations on
unstructured grids, as VDIs can be generated for any volume dis-
cretization that can be raycast. While this will influence sub-VDI
generation times, as it would for any rendering, it does not change
the downstream parallel compositing presented here. We further see
potential applications with the Cinema database [AJO∗14] for ex-
ploratory post-hoc visualization, where distributed VDIs could be
used to reduce the size of the database by reducing the need for
images generated from different viewpoints.

The present parallel approach for compositing sub-S into
S maintains scalability with increasing PEs, reducing compositing
times (Fig. 7) despite an increase in the overall number of sub-S due
to our strategy of generating up to NS sub-S per list on each PE.
On the other hand, a limitation is that it is susceptible to load im-
balance due to variation in the number of sub-S across lists. This is
because we equi-distribute lists among PEs. Future optimizations
could explore alternate strategies for distributing lists that balance
the sub-S distribution among PEs. Whether the gain in load bal-
ance amortizes the additional global communication required to
do so, however, remains to be seen. In addition, the proposed ap-
proach inherits limitations of the VDI representation. Since VDIs
store transfer-function classified color and opacity, they do not sup-
port interactive transfer-function modification. Also, gradients of

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

33



Gupta et al. / Parallel Compositing of VDIs

VDI at VN = 30ºReference at VN = 30ºReference at VN = 5º VDI at VN = 5º
147fps, SSIM = 0.982, PSNR = 41.4423fps

21fps 25fps137fps, SSIM = 0.969, PSNR = 39.66

24fps 48fps, SSIM = 0.975, PSNR = 34.57

47fps, SSIM = 0.949, PSNR = 35.31

Figure 11: Visual comparison of VDI rendering quality with distributed DVR (“Reference”) for the Forced Isotropic Turbulence (top) and
Rotating Stratified Turbulence (bottom) datasets with a multi-hue transfer function. Image quality metrics are computed w.r.t. the DVR image.

the volume data cannot be calculated from the VDI, precluding the
use of directional illumination effects, such as specular lighting.

Notwithstanding these limitations, we believe that the methods
and algorithms presented here are key in enabling the use of view-
dependent volume representations, such as the VDI, for interactive
visualization of large distributed volume data.
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