
lst Luso-German Meeting on Computer Graphics

On programming an interactive graphical application in logic

Manuel João Próspero

Paulo Jorge Pereira

Computer Science Department
New University of Lisbon (UNL)

ABSTRACT

E-1

A hierarchical graphical modelling system and a dialogue centrei mechanism were designed
and implemented in first order predicate logic. Some main concepts are introduced in this
papar by analysing a given application: a flat drawing design where the user is able to
graphically specify the intended configuration and get important information about the
existing restrictions.

Introducüon

Programming an interactive graphical application is a task where one must pay
attention to a lot of details which are really not at the level of the application problem
itself. ln that sense. the programmer may be disturbed in his/her activity and. being the
output for a given input the ma1n goal. the result is usually a poor user interface. This .
judgment includes both classes of users, the novice and the expert. respecting the
application doi:nain. ·

The improvement of the user interface is hard to do duc to a lack of program structure at
that high level. E1ther the application development stage or the subsequent maintenance
are usually hard to carry out. Separating the dialogue from the functlonal part of a given
appllcation is a widely recognized necess1ty [ENca2 1. Programs that are built in this way are
more flexible than the rema.ining ones.

The main problem conceming the user is that he/she is usually cons1dered as a simple
input/ output device such that an easy straight forward and uniform programming style
dealing with the communication is implemented. This situatlon often happens when a
general purpose programming language is used. A better solution is to introduce a higher
programmtng leve!, where a dialogue is easily specified. For this purpose. there are many
good systems available on the market today [ER087 J . However, in spite of being well
supported by existlng language formalisms, using those systems is not an easy work for the
programmer in what concerns the application interface. This is normally done with
traditional procedure calls. so that the interface must have Ia+owledge about the
application's data structures.

Where complex data structures are needed. the intentlonal descrtptlon for entltles usually
adopted with general purpose procedural languages has an 1mponant drawback. ln fact. the
addition of new properties, when not foreseen at the very beginning, also 1mplies the
deletion of the old data. The number of fields 1n a Pascal record is a good e.."'Cample of that.
This situation is a strong limitatlon. specially for design purposes.

On the contrary, our approach is to introduce an extensional descrtptlon based on a logic
interface by programming in Prolog a system to deal with modelling and user dialogues. An
early and coarse version was first introduced in [?Rô 86 J.

ln the following sections we will try to show some 1nterest1ng features of the system
evaluated on the basis of an actual applicatlon problem.

Presenting the Enüties Model

The primary abstraction is the usual entity concept. For the sake of graphical
representation of entities. a fully instantiated Prolog term is called afamily. Whenever free
variables occur in such a term we refer it as a templa.te. Since a ve:ry large number of entlties
can be decomposed into others. the sarne thing applies to families. This means that a

"[(9
1 st Luso-German Meeting on Computer Graphics E-2

picture on the screen may be dertved from a hierarchy of families and the corresponding
graphics.

A scene is a meta-object so that a specific set of images can be grouped together in the
sarne viewport. that is, the root of a hierarchy of entities.

ln the e."'Cample from figure 1 four templates are shown which have free logical vartables
in the arguments. The meanmg of that is the definition of the kind of relations expected by
the application program. Each relation corresponds to a link 1n the graph and is to be
stored in the logical data base as a fact with an associated transf ormation mat:rix.

scene_1

~
worksheet floorplant

1
room(Room,L *E)

wall(Wall)

window(Window) door(Door)

Fig. 1 - Hierarchy with direct graphic$ objects.

Instance transformation matrtces play a very important role 1n our system. as they are
used to construct path names 1n the hierarchy through the transitive closure given by a
part_ofpredicate. Th1s method is not usual 1n other systems. as 1t is only feasible within
symbolic programming where a mat:rix can also be seen as a simple name.

Rectangular boxes stand for families with a proper definition of graphical output. ln
figure l only direct graphics objects are present, while symbolics graphics appear in figure 2
[PFA85J. As it can be seen, a different scene was designed for this purpose.

scene_2

rui e

dialogue prompt erro r rule_symbol

message(Mess) error_symbol

warning(Warn) prompt_sy_bg error_sy_bg

Fig. 2 - Hierarchy with symbolics graphics objects.

Dynamic manipulation of links is possible by using general high-level predicates.
Part_of. create_link, delete and display_hierarchy are some of such predicates referred in

1 st Luso-German Meeting on Computer Graphics E-3

this paper. For instance, 1f the display of an errar message is wanted. the necessary
connections between preexistent descrtptions are provided by the following goals:

c r eate_:i nk(error,scene_2,_,_) ,
create_l ink (di a l ogue,scene_2,_,_l ,

create_link (message (Error_ Message) ,dia~ogue,_,_),

create_link (clic k,scene_2, _ , _ l .

Anonymous vartables are used here 1n place of the two last arguments of each subgoal
since there are no attrtbute values to establish.

A waiting situation is then generated until the user clicks a light-button. After that, the
errar message must be erased from the screen. This can be programmed with another
predicate, which removes links from the log1cal database and their side-effects on the
screen:

delete (error::_, i(scene_2,_,_)) ,
delete(dialogue::_, i< scene_2,_, _)) ,

del ete(message (_) ::_, i(dial ogue,_,_ll ,
àelete(cli ck: :_,i (scene_2,_,_l).

The first parameter gives us an example of path names but where transformation
matrtces (on the rtght of the 1nf1x operator ·:: 1 were not instantiated.

A drawing design

Let us see now the ma1n goals of an appllcation program dealing with the drawing design
of a flat:

• creation of a new plant or loading a saved one:
• dynamic control over the type and number of rooms 1n a flat:
• creation (or deletion) of specific rooms and/ or of their associated doors and windows:
• storage of any plant configuration:
• validation of a configuration according to some set of rules and at any stage of the

design;
• zooming on and off to make the user interaction easier. ·

•
1 J ;~7~

'/ ~ . ~

:t •

1

' /
I ,

L_./ ; -

1 1

Fig. 3 - Screen layout example.

A common technique for the conimunication with the end-user, which is found in most
interactive graphical applications. is through menus. We implemented a general menu
generator where the well-known Choice logical input device is supposed to be used to

1 st Luso-German Meeting on Computer Graphics E-4

produce pop-up menus. Any item of a menu will correSpond to a state of the dialogue. TI1is
dialogue is part1ally spet:ified by giving the set of all allowable states 1n the ne.'Ct step:

begin ---> [<state_l >, <st ate_2 >, ... ,<state_n>J .

<s t ate_l > ---> [<stace_l _ l >,<stat e_l _ 2>, ... ,<state_l _ j >] .

<state_n> ---> [<st ate_n_ l >, <st at e_n_ 2>, . .. ,<stat e_n_ j >].

exi t (<Lis c_of _termi nal _stat es >) .

ln the particular case of the flat design. that spec:ification is given by the rules:

begin ---> [new_,restore_,save_ J .
create ---> [create_=oom,create_àoor,create_wi ndow] .
c=eate_room ---> [].
create_àoor ---> [f ile_,create,erase,structure,

zoom_on,zoom_off,validate,quit j.
create window ---> [f i le ,create,erase,structure,

- zoom:on, zoom_off,.validate,quit } .
erase ---> [erase_room,erase_door,erase_window}.
erase_room ---> [file ,create,erase,structure,

zoom:on,zoom_off,validate,quit } .
erase_àoor ---> [file_,create,erase,structure,

zoom_on,zoom_off,validate,quit].
erase_window ---> [file_,create,erase,structure,

zoom_on,zoom_off,validate,quit] .
validate ---> [f i le ,create,erase,structure,

zoom:on, zoom_off,validate .. quit } .
structure ~-> [add str,del str } .
add_str ---> [file_~create,;rase,structure,

zoom_on,zoom_off,validate,quit].
del _st= ---> [file_,create,erase,structure,

zoom_on,zoom_off,validate,quit] .
zoom_on ---> [file_,create,erase,structure,

zoom_on,zoom_off,validate,quit] .
zoom_off ---> [file_,create,erase,structure,

zoom_on,zoom_off,validate,quit } .
file ---> [new ,restore ,save J .
new ----> [file:,create,;rase,;tructure,

zoom_on,zoom_off,validate,quit } .
save_ ---> [yes_save,no_save,create_door_save}.
yes_save ---> [fi le_,create,erase,structure,

zoom_on,zoom_off,validate,quit) .
no_save ---> [f i le_,create,erase,structure,

zoom_on,zoom_off,validate,quit } .
create_door_save ---> [f i le_,create,erase,structure,

zoom on,zoom off,vali date,quit] .
=estore_---> [f ile ,create~erase,s~ructure,

zoom:on,zoom_off,validate,qui t] .
qu i t ---> [yes,no }.
no---> [f i le_,create,erase , st=ucture,

zoom_on,zoom_off,val iàate,quit] .
exi t ([yes }) .

Items of a spec:ific menu are obtained from the corresponding names of the states,
accordtng to existtng translation rules. Designattons like "zoom_on" or "file_", for
instance. must be conveniently replaced by strings of characters like "zoom ON" ar "File
. . . ". respectively:

zo om_on becomes "zoom ON ".
file_ oecomes "::i _e

States not considered by rules of this kind will be seen e."Cactly as they appear in the
dialogue specification. This is achieved by converting atoms (ie, state names) into strings
dueto the extra-logical facilities found in the implementatlon language.

1 st Luso-German Meeting on Computer Graphics E-5

Nevertheless. it might happen not all the states enclosed by one pair of square brackets
(as it was stated above) be possible at one time. Instead of creatlng more states by
subdivision, we restrtct the set of admissible items at ron-tlme by the interpretation of
conditions having the form

<s~ace> <-> <Condi c i on>.

where <Condi tion> stands for a Prolog goal. For. instance. 1f an option DELETE OBJECT is
shown. then the user w1ll know that at least one instance of that type must exist. Otherwise
the program would not show that item. Therefore, the interpretation of the following facts

creace door <•> defi ned_room (l .
create_window <=> defined_room (_).

is that menu options corresponding to create_door or create_window must be eliminated
from selection 1f there are no rooms created 1n advance. By instantlating the vartable R. the
goal defined_room(R) returns the designation of some room already outllned by the user.
This predicate fails 1f there is an empty configuration at that moment.

Another example is the existence of mutually exclusive alternatlves. like zoom_on and
zoom_o.ff. which cannot be shown on the screen simultaneously.

Entered the state item, the user may proceed the dialogue by using other graphical input
techniques. Th1s means that basic interactlons provided through Locator. String. Valuator
and Pick input devices are also available. Only request mode 1s available at the moment.

~ave your work a.s . ..

Fig. 4 - Saving descriptions into a file.

Deallng with interactlon

The underlying model of interactlon speciflcatlon was based on the way graphical input
is managed in current graphical standards rrso8s, 86, 87J and was designed from an
extension of the sarne main ideas of the Dialogue Cells concept introduced by Borufka. et al
[BOR82) .

A Logical Dialogue Building Block (ar LDBB for short) is thus a logic term havtng separate
roles for dealing with different aspects of the dialogue decompositlon. Figure 5 shows the
main parts of an LDBB, where

• prompt roles are called at the time the corresponding LDBB starts to be solved:
• symbol roles give the syntax of sub-dialogues, which w1ll be specified in terms of the

basic logical input at the very low level:
• value ru.les are responsible for the translation of complex data structures:
• echo roles state the way graphical output is produced in response to a specific input at

that LDBB level:
• help roles include messages to a different operatlng system process depending on the

context of the executlon and not. disturbing the current screen layout.

The achieved description using this technique is very modular. being a good tool for
incremental programming. On the other · hand. although assuming the ex:istence of an
adequate meta-interpreter. this descriptlon was planned to have the clear syntaX: of logical
~rms. .

1 st Luso-German Meeting on Computer Graphics E-6

!J{e{p

•
Act!vation Prompt - SymÍJo[-

'' i
Desactivation 'L:.fw o/a{iu

Fig. 5 - Main parts of an LDBB.

The dialogue control prognmmtng

Going on With the applicatlon used for illustration in this paper, the programmer might
create severa! LDBB's levels depending on the current state. ln what follows, actton(<State>J
is a term standing for an LDBB. Therefore the behaviour implled by each dialogue state is
detailed in a general structurêd form, gtven by symbol rul~s

action(<State>) :- action_(<State(<Parameters>)>).
action_(<State(<Parameters>)>) :- <interaction_goals>.

For illustratlon purposes, here follows the way how the zoom activatlon capabillty was
programmed:

action(zoom_on) :- action_(zoom_on(_,_ll.

action_(zoom_on((P,Area), (PO,Pl))) :
get_point(scene(scene_l),prompt(3),Area,P,P0),
get_point(scene(scene_l),prompt(S),Area,PO,Pl).

prompt_rl(action_(zoom_on((P,_),_)),_) :
scene(scene_l,wv(P,_,_,_)).

value_rl(action_Czoom_on(_, (XO:YO,Xl:Yl))),_) :
'tTEST' (not equal_points([[XO:YO,Xl:Yl]),

"Invalid zoom area specification ! .•• "),
min(XO,Xl,XwOJ,max(XO,Xl,Xwl),
min(YO,Yl,Yw0),max(Y0,Yl,Ywl),
retract(scene(scene_l,wv(PWO,PWl,PVO,PVlJ)),
asserta(scene(scene_l,wv(XwO:YwO,Xwl:Ywl,PVO,PVl))),
retract(application(zoom(disabled))),
assert(application(zoom(enabled(wv(PWO,PWl,PVO,PVl)))l), !,

echo_rl(action_(zoom_on(_,_)),_) :
display_hierarchy(scene_ll.

The initialization of a reference point is done in the prompt rule. Chang1ng the
normalization transformation occurs when the value rule is evaluated. Predicate
'#TEST(Goal. Waming) will succeed 1f the validatlon goal Goal also succeeds. Otherwise it
wil1 fail and send a warning to the display surlace, storing a new fact in the logical data base
as well:

'ITEST' (Goal ,) :- call CGoal) , ! .
'ITEST' (_,Error_Message) :-

assert <application (error (Error_Message))) , ! ,~ail .

Finally. the simple echo rule written above is the responsible for the screen up-to-date.
Two other LDBB's were also referred: action and get_point. The later is at a lower leve!

and is indispensable in arder to allow the end-user to define the picture area for
enlargement. The former has a more general nature in this application e.."'allilple.

We have already seen a symbol rule for action. The remaining non-empty parts of this
LDBB is described bellow

1 st Luso-German Meeting on Computer Graphics

prompt_rl (action(State) ,_) :
prompt(State,Prompt_Message J ,
create_:ink(prompt,scene_2,_,_) ,
c=eate_link(dial ogue,scene_2,_,_) ,
c=eate_link (message(Prompt_Message) ,dial ogue,_,_) , ! .

echo_=l(action() ,) :
unlink_subgraph(dialogue) ,
succeed(àelete(prompt: :_, iC scene_2,_,_)) , ! .

E-7

If there 1s a fact for prompt in the logical database and matching the current dialogue
state, a prompt message (given by the second argument) will be displayed on the screen.

The purpose of predicate unlink_subgraphíFName). which always succeeds, is to erase ali
links concerntng family FName from the logical database. Predicate succeed(GoaU has the
form

succeed(Goal) :- call(Goal), ! .
succeed (_) .

e This means that the prompt object link. 1f any, wil1 be conveniently deleted (see figure 1).
There 1s another symbol rule for actiDn which. according to the execution strategy of

Prolog, must be inserted after the other iules. That 1s the reason why the argument value
does not care in th1s case:

-

actionC_l :- display_error.

display_error :-
just_once ((repeat,locator (_, _))).

promFt_rl(display_error,_l :-
retract(application(error(Error_Message))),
succeed(delete(message(_) ::_,i(dialogue,_,_lll,
succeed(delete(prompt::_,i(dialogue,_,_lll,
create_linkCerror,scene_2,_,_),
create_link(message(Error_Message) ,dialogue,_,_),
create_link(click,scene_2,_,_l, ! .

echo_rl(display_error,~l :
unlink_subgraph(dialogue),
delete(click::_,i(scene_2,_,_ll,
delete(error::_,i(scene_2,_,_)), ! .

e One could argue the fact of display_error being also an LDBB. However, in spite of its
name, dtsplay_error appeals to an end-user reaction as it can easily be seen above. This
LDBB is always executed when an errar occurs. so that the fact
application(error(Error _Message)) must be retracted.

Operatlons on direct graphlcs objects

The interacUve design of a iiiat is somewhat simplified by making use of Manhattan
polygons (whose sides are parallel to two orthogonal axes) for modelling the shape of
rooms. Nevertheless this is the case of the great majority of flats in the real world.

The applicatlon program allows interactive drawtng of a floorplant, based on subtractlon
operations over such polygons. The user defines a roam by means of the manipulation of a
rubberband rectangle. The final outline of the roam wil1 be obtained as the result of
subtracting ali existent configuration from the rectangle specified by the user.

The module dealing with polygons was fully implemented in Prolog haVing

full_subtraction(Fig_•Ext_ - ~ist_of_Figures,:ig*Ext)

as the top goal for the subtractlon and where F*E 1s a descrtptlon of a polygon: F is a
complete list of vertices given in a clockwise arder, E is its rectangular extent given in the
form extent(XMin:YMin,XMax:YMa.x). Ltst_of_Figures is a set of polygons represented in
the sarne way except that vertices must be in a counter-clockwise arder. The secçnd

1 st Luso-German Meeting on Computer Graphics E-8

parameter will return the polygon obtained after subtraction and whose vertices are in a
clock\vise arder. ·

From the user point of view. 1f the current state of the design is like figure 6. the user
might define another roam (the hall in this case) by manipulating a rubberband rectangle
(shown 1n figure 7). The result is a new flat configuration, whose new roam is given after an
automatic subtraction of polygons (figure 8).

·~~ zj:~
»l:. J :· ·t -·: j;
-~~ .. :~~.~;;~,-..~~~~· ~
--=-· ·'-::

.................... ·.··~~:.:·····

Ou:thne tb.e ha.ll

L--)
1 1

Fig. 6 - Room definition process.

'
1

/
,/

~,,.

1 1

Fig. 7 - Rubberbanding.

1

1 /
1 ;

i /
1

'- l--"
,

1 1

Fig. 8 - Resulting configuration.

lst Luso-German Meeting on Computer Graphics E-9

Ambiguity caused by overlapping

As we have said before. pop-up menus are automatically generated by the dialogue
specification. But this does not forbid the application programmer to use menus at a lower
level LDBB. ln our application program we can find two typical e."Ca.IIlples of that.

The first one occurs when one wants to define an object such as a doar ar a Window. It will
belong to the wall picked by the user. But whenever two walls of different rooms full or
partially overlap the user might want to know which roem was really selecteà by picking
one of its walls and getting inf ormation from it. If he gets a unexpcctcd answer, he is
allowed to try again by selecting the approprtate item from the menu shown 1n figure 9. And
another pick at the same location will not return the same object. unless it overlaps nane.
The reason of this 1s that after an object has been picked its relative priority for display is
automatically set to the lowest leve!.

Another occurrence of menus concerns the validation mechanism applied to any
configuration as it is described 1n the next section.

Fig. 9 - The usar must confirm the selection.

Explanatory mechantsms

Neither ali resulting configurations 1n the design process are acceptable. Validation
techniques may vary from a simple checking of a ~et of rules to a powerful expert system. We
describe here one solution that can be casily generalized.

Checking rules must be 1n the form

<Rule>: if <Condition>
then <Goal>.

Every rule has two explanatory facilities: one of them (the ruleJail_tndication
predicate) gives a short message about the most admissible reason of a rule failure, while
the other one (the ruleJail_explanation predicate) 1s a more detailed descrtption 1n case of
failure.

For ex:ample. 1f we cannot imagine a bathroom Without at least one doer and one window.
the corresponding rule could be e."Cpressed 1n the form

ba~h_door_winàow: if àefineà_room(ba~hroom) and
par~_of(door < _ l ::_,room(ba~hroom,_) ::_) and
par::_of(window (_) : :_,room(ba::hroom,_) ::_)

::hen bachroom_ok.

The rule above can be used by the programmer 1n arder to provide suitable error messages:

ru~e-~ai~_indica~ion(bach_door_windcw,

"Wi nàow or Door missing in ::he ba~hroom") : -
àefined_room(ba~hroom) , ! .

·~
1 st Luso-German Meeting on Computer Graphics

rul e_fail_explanation(bath_door_window) :
not àefined room(bathroom),
write ('Ba.thioom not yet defined ! ') ,
nl,fail.

rule_fail_explanation(bath_door_window) : -
not oart of (àoor () : ·: , room (bathroom,) : :) ,
writ~ (. There are no dÕors in thü eathroo;i ! •) '
nl,fai l.

rule !ail explanation(bath door window) :-
- - not part _ of (w'Indow (_) : : _, room (bathroom, _) : : _) ,

write ('There are no windowl!I in thil!I bathroom ! ') ,
nl , fail.

rule_fail_axplanation(bath_door_window) :- nl.

E-1 o

Validation 1s done by check1ng ali thc existcnt rulcs. When the condition of a rule is not
verified, the short message from ruleJail_tndicatton is displayed and a pop-up menu
(figure 10) gtvcs the user onc of the follow:tng possibilities:

• to know more about what is wrong;
• to ignore the specific rule and resume the task of validation;
• to quit that task and return to the drawing work.

Some baste validations are done automatically while the floorplant 1s outlmed: windows
and doors cannot intersect each other, a door must be opened Without intersect any wall, a
roem cannot be inside other roem, etc ..

ln the real world there are regulatlons to be followed 1n designing a flat. We have inserted
some of those legal roles in the logical data base according to portuguese governmental
regulations. One of these rules, for instance, states that the maxtmum Width admissible for
a balcony is 1.80 meters (7lst article 1n [RGE79J).

About this rule ...
Re~ume • Rules -----------

1 Bedroorn rnu!lt ba~ "· door !

Fig. 1 O - lnvalid configuration.

Conclusions

There are recognized advantages in the approach just introduced. ln fact. clausal form of
logic programming preserves modulartty, while a declarative style 1s useful to produce
executable specificatlons. Unification is a very powerful mechanism. allowing pattern
matching automatically and ellminating an explicit distinction between input and output
parameters in a procedure call. Backtrack 1s general enough to be applied to any search
process, restoring the previous environment on failure independently from the application
control (depth-first strategy). Meta-interpretatlon 1s easy to implement and all features are
inhertted from the top level interpreter of Prolog.

As it can be seen. data structures and specification of rules are truly fle."'Cible enough to
adapt to changes of almost any kind. ln general, the presentation order of clauses does not
care. Note that this is unusual even in what concerns data structures. For instance. the
comple."C mechanism for structures in PHIGS [:rsoa6 J strongly depends on the order of the
programmed elements. which is not a necessity of the application itself. This is not natural
for the programmer at ali.

ln our logic approach. Pick is not at the low level of the graphical system data structures.
On àesigning and implementing the entities model. we tried to build a system such that a
declarative style of programming might be applied, on the one hand, and where the
application model would be easier to map, on the other. As it was stated before, graphical
objects are instances of families and picking any available object returns its name. which

1 st Luso-German Meeting on Computer Graphics E-11

can be directly recognized by the application. A complete descrtption of our modelling
system and details on dialogue control can be found 1n [PRôBB J .

Our current 1mplementation was built on top of GKS level 2b. This has the disadvantage
of dealing With a one-level segmentation mechanism Without editing capabilities. The
obvious result is a lost of efficiency 1n some basic operations (such as display_hierarchy).
However we th1nk that an acceptable compromise has been achieved, since a quite good GKS
1mplementation was available.

The research and development work at ULN is being supported by. the ESPRIT project
p973 (Advanced Logic Programrn1ng Environments [PREB 7 J l .

References

[BOR82 J Borufka. H.G.; Kuhlmann, H.W.; ten Hagen, PJ.

Dialogue Cells: a Method for defining Interactions, IEEE Computer Graphics & Applications, 25 pp

25-33 (July 1982)

[EROB7 J Ero, J.; van Liere, R.
User Interface Management Systems, Eurographics'87 Tutorial, Amsterdam (1987)

[ENCS2 J Encarnação, J.; Hanusa. H.; Strasser, W.

Tools and Techniques for the Description, Implementation, and Monitoring of Interactive Man
Machine Dialogues, in IEEE Proceedings o/ the lnternational 'Zurich Seminar on Man-Machine
Communications (1982)

[rsoss J Intemational Organization for Standardization

lnformation processing systems-CompUler graphics- Graphical KerTll!l System (GKS) functional
description, ISO IS 7942 (July 1985)

rrsoa6 J Intemational Organization for Standardization
J nf ormation processing sysrems- Computer graphics - Programmer's Hierarchical J nteractive
System (PHIGS) Parr 1-functional description, ISO dp9592/l (October 1986)

r rsos 7 J International Organization for Standardization
J nformation processing sysrems- Computer graphics - Graphical Kernel Sysrem for Three
Dimensions (GKS-3D) Functional Description, ISO DIS 8805 (1987)

[PFASS J Pfaff, G.E. (editor) e User Interface Management Systems, Springer-Verlag (1985)

[PRES7 J Preston, N.; Próspero, MJ.; Gandilhon, T.

Prolog and Graphics-Specificarion, Deliverable for WP3.1, ESPRIT project ALPES-p973

(September 1987)

[PRôS6 J Próspero, MJ.; Messina, L.A.

Towards the Consuuction of Graphical Interfaces on Basis of Geometric Models, in Proceedings of
the Eurographics'86, pp 173-183, North-Holland (August 1986)

[PRóss J Próspero, MJ.

Estilo declarativo na Programação Grájicalnteractiva: análise e avaliação sobre sistemas em Prolog,
Phd Dissertation- UNL (August 1988)

[RGE 7 9 J Regulamento Gerai das Edificações Urbanas, Imprensa Nacional -Lisboa (1979)

