
1 st Luso-German Meeting on Computer Graphics

Automated Testing of Computer Graphics Systems

Abstract

Joaquim Armando Pires Jorge
INESC

Rua Alves Redol, 9
1000 Lisboa, Portugal

Rolf Ziegler
Martin Gõbel

ZGDV
Wilhelminenstraf3e, 7

D-6100 Darmstadt, FRG

Graphics systems have become increasingly complex over the last
years. Computer graphics standards provide the means to implement
portable graphics applications. However, the goals aimed by the use
of graphics standards cannot be achieved, unless the standards are
not lent to certification. Methods and tools for testing graphics
systems have been developed, such as the GKS conformance testing
package.

L-1

Current test tools rely heavily on operator judgement of pictorial ·
output produced by implementations being tested. As graphics
systems are becoming richer in functionality, the design of test
cases becomes more difficult and error prone.
Automated test methods should be devised to provide for
certification methods more precise than those involving human
judgement. ln particular, methods .for automatic picture testing
should be devised. Graphics systems should also include functions to
assist in automatic testing, in order to prevent t·he need for special
externai devices such as cameras and image processing equipment.

This paper focuses on the issues raised by automatic testing of
graphics systems. Standard components are studied with regard to
their ability to being tested . Recent technologies and their
application to automatic testing are discussed.

lst Luso-German Meeting on Computer Graphics

lntroduction

Graphics standards describe a model of a system , interactions
between its components, and externally visible results of these
interactions. The implementation of these results is not specified by
these standards.
Standards specify the flow of information across an interface and
the data that is to be exchanged, but not the internai workings of the
different functtonal units.
Figure 1 shows the generic interfaces within the model of a
computer graphics operating environment. lt highlights the concept
of . multiple active workstations which may have different
capabi lities rang ing from input-on ly devices to intel ligent
interactive workstations.
Obviously the layer of device dependent software needs to be
adjusted to s4pport such radically different environments and the
application software will need to be able to inquire the capabilities
of the underlying system in order to maximize its efficiency in using
the underlying hardware.

The interfaces of the pipeline to any individual device are usually
called the Applications Programmer Interface (API) and the Virtual
Device· Interface (VDI). At the operator interface, pictorial output is
presented as a result of graphics commands processed by the
pipeline, or as a response to operator action on input devices that
produce an echo.

lt can be seen that one of the major benefits arising from the use of
standards is device independence. The user can deal with one or
more abstract graphics devices with a full range of input and output
capabilities [ArBo-88).
The precise specification of functions and data provided by language
bindings makes it possible to write portable applications software
through the correct use of a standard.

By stating that standards allow the implementation of portable
programs, we assume that all realizations of a standard will provide
a unique functional behavior to the user. Therefore, there is a need
for certification methods to validate an implementation of a
graphics standard. This will prevent the proliferation of "compatible"
and "look-alike" implementations claiming to conform to the "general
philosophy" and "spirit" of a given standard.

L-2

lst Luso-German Meeting on Computer Graphics

Conformance testing aims to ensure that an implementation of a
standard produces correct results and also that the syntax of
commands has been implemented correctly.

The extent to which standards can be tested depends heavily on the
standard specification. Up to now standards documents consist of
informal specifications written in natural language. A great deal of
the standardization work consists of illuminating ambiguities and

· - clarifying dubious points. lt would be desirable to have a formal
specification for each standard if time, resources and tools were
available.

ln the absence of formal means of ascertaining the correctness of an
implementation, one must use a falsification strategy: a complete
implementation is subjected to a series of tests attempt to discover
erro rs.
Thus, falsification testing can determine non-conformance to a
standard but can never assure complete conformance to it. lf formal
specifications were available a validation strategy could be used: an
implementation is derived by a sequence of transformations from the
specification. lf each transformation is correct, the end product will
be itself correct. Formal proofs of correctness have been applied
with success to small pieces of software. lt is doubtful if the sarne
techniques could be applied to graphics packages such as GKS which
contain hundreds of functions.

Falsification tests separate clearly the specification,
implementation and certification phases. This practical approach
that aims to detect errors as a proof of failure, has been used
extensively to validate compilers and operating systems.

The development of test packages for graphics standards must take
into account the pictorial nature of graphics output, in contrast to
other standards such as programming languages where the desired
results can automatically be compareci with actual test results and
produce a decision. Up to the present, the subjective evaluation of
pictorial output has played a major role in testing graphics systems.

Experience with established Test Services

The strategy for conformance testing of GKS was developed in the

L-3

e .

lst Luso-German Meeting on Computer Graphics

early 1980's. A major influence was the success of compiler
validation , in which a language compiler is subjected to a large suite
of test programs. These test programs are written in the language
being tested, and are designed to be self-checking.
However writing a GKS validation suite highlighted problems not
found in compiler testing. For some functions, such as error reporting
and inquiries, the 'result' can indeed be returned to the test program
and verified. For example, an error situation can be detected by the
test program, using GKS error and inquiry mechanisms. But for the
major graphics functions such as output primitives and attributes,
the 'results' are in the ~orm of a picture which has to be evaluated by
a human tester.

GKS validation tests fall into two classes:

-Application interface tests: These follow the compiler validation
model , in that the test programs are self-checking, with the
exception of input functions. Although input returns data through the
application interface , checking is best done by returning data as
output and visually comparing it to the input entered.

-Operator interface tests: These produce pictorial output, and may
envolve a fair amount interaction as well. A human tester compares
the pictures generated by a candidate implementation against a set
of reference pictures.

Since June 1987 a GKS conformance testing service is available for
the FORTRAN language binding. Testing is done by running a set of
test programs and comparing its results to expected values. A
thorough coverage of an implementation can be achieved for all
leveis of GKS.
A client may use the test software to run self-tests on his
implementation. At this stage difficulties can be sorted out and
different interpretations of the standard can be discussed with the
Testing Laboratory. When the client orders a formal test all programs
are run again under supervision of a Testing Laboratory staff
member. The tester writes a report and has it accepted by the client.
A certificate can be issued based on this report.
The GKS test suite has been designed to check all the prescriptions
of the GKS standard and to detect deviations from the standard in a
GKS implementation. This involves five test series:

L-4

1 st Luso-German Meeting on Computer Graphics

-data consistency test series
-data structure test series
-error handling test series
-input/output test series
-metafile test series

The data consistency tests examine GKS description tables. The
values in these tables are checked for consistency and conformity to
the GKS standard.

The data structure tests check that the values in the GKS state lists
are manipulated correctly, by setting, modifying and inquiring these
values. These tests do not check that data is correctly interpreted
when output is generated - they just verify that data held in the
state lists agrees with expected values.

The error handling tests produce error situations and then check that
the error response of the implementation complies to the GKS
standard.

The input/output tests provide a check of the GKS System as a whole,
through a comprehensive set of tests which exercise ali the input and
output capabilities of GKS. Pictures are produced by the tests and
visually checked against a set of cárefully designed reference
pictures. Input is tested by a set of defined operator actions which
should produce specific results on a display.

The metafile test series checks that the GKS metafile is used
correctly, through operator evaluation of reference pictures stored in
metafiles and then read back.

The development of the GKS test suite has shown that it is possible
for relatively simple strategies, to achieve a good degree of coverage
of an implementation. The development of test software was useful
in highlighting inconsistencies and ambiguities in the GKS document,
contributing to its improvement.
Although operator tests have the merit of exercising the system as a
whole, demonstrating its ability to produce sensible pictures,
experience has shown that they are a limiting factor in the testing
process. Only a limited amount of tests can be run, thus rendering
exhaustive testing impossible, no matter how carefully test pictures

L-5

1 st Luso-German Meeting on Computer Graphics

are designed. Testing becomes very time-consuming to carry out, the
dependence on human judgment is unsatisfactory and to a certain
extent unpredictable - results accepted by one operator can be
rejected by another.

Testing at component interfaces

As shown in previous paragraphs, a functional standard may extend
its reach across severa! interfaces defined in the reference model. ln
arder to do a thorough certification , one should be able to perform
tests on ali these interfaces. Figure 1 identifies major interfaces
relevant for conformance testing .

Data is exchanged at the Application Program Interface using
function calls and data structures defined by a language binding . The
GKS test suite development has shown that data structure,
consistency and errar tests can be automatically performed at this
interface if externai (visual) effects are not taken into
consideration.

The Virtual Device Interface stands between the device-independent
and device-dependent components of a graphics system. lnformation
exchange may take the form of function calls or a data-stream
encoding , as specified by emerging standards such as CGl[IS0-88a].
Automated testing at this levei, must ·make use of a reference
implementation, which generates reference data that will be
compareci to the output of a candidate implementation. The
development of a ·comparator program is still an open research topic,
due to the behavior latitude allowed in current standards.

At the operator interface, data take the form of visual information,
and functional requirements become less precise. All graphics
standards allow considerable variations in the visual appearance of
graphics primitives, to interface a. broad range of graphics devices .
Automated test methods for pictorial output become very difficult to
implement, even if the device provides means for inspecting the
co:itents of its display surface without operator intervention. The
problems raised in developing an automated test suite for CGI , are
developed in the ne~t section of this paper.

Survey on Automatic Testing methods

L-6

lst Luso-German Meeting on Computer Graphics

One of the main lessons gained from the experience with GKS
conformance testing was to test as much as possible automatically
in CGI [IS0-88a]. CGI contains a more general set of primitives than
GKS (e.g., circles and ellipses are included), se additional tests are
needed; . Therefore the test suites should be designed in a way to
perform automatic testing.

ln the cases of state list checks, error report checks, error reaction
checks, and tests of output of CGI raster functions (on a CGI system
supporting the raster part) automatic testing is feasible. Problems
arose in testing output and input automatically.
When testing output functions by automatic means, the test strategy
is to compare candidate pictures with the expected results, as
described in the testing of GKS.
A first approach for a comparison makes use of a pixel by pixel
comparison between the rendered image and the image stored by a
reference implementation of the CGI. This reference implementation
would have to be properly configured to match the candidate
implementation's specific characteristics. Tis approach is impaired
by the huge number of allowable variations in the rendering
characteristics of output primitives, coupled to areas of the
rendering process about which CGI (and other graphics standards as
well) says next to nothing. These include:

- Algorithms for selecting pixeis to be set in rendering primitives
(e.g., Bresenham, DOA, with/without aliasing etc.).
- The algorithm used to combine the new pixeis with the old
- Precision of coordinates, rounding strategy and fence post
problems.
- Attribute handling - definition of different styles (e.g. dashed)
along with the rendering · across multiP.le line segments (e.g.,
continuous around corners v. restart for each segment).
- Potential transmutation from one primitive to another during
clipping (giving different rendering methods for the resulting
primitives).

Allowable leveis of support for different attributes (e.g.,
transparency, fill styles, segrr.ent display priority, etc.).

With this number of variations a pixel by pixel comparison has
almost no chance of coming up with meaningful results, however
sophisticated the basis for the comparison.

L-7

1 st Luso-German Meeting on Computer Graphics

Severa! other methods can be devised for testing picture output. One
must bear in mind that testing strategies that involve the use of
additional hardware, may prove to costly to implement:

1. Check whether the primitiva lies inside a given area.
lt is very approximate to check whether a certain primitiva fits into
a given area because this may lead to the answer 'the output is ok'
although it is not (i.e., horizontal lines do not appear as horizontal).

2. Compare with severa! reference algorithms.
This approach has the disadvantage of making prov1s1on only for the
"most common algorithms". Also needs to be modified to match
ideosincrasies of particular implementations.

3. Apply methods of statistical analysis.
This could be a good approach to get a statement about the quality of
implemented pixel setting algorithms of the candidate
implementation. The idea is to compare the generated pixel data with
the ideal output by means of statistical analyzing methods. Such a
valuing algorithm can deliver a characteristic for a qualitativa
"good" pixel setting algorithm.
First steps were made in implementing an algorithm for evaluating
generated (two-point) polylines. This algorithm delivers a value for
the deviation of the generated pixel line from the geometric polyline
[LeWe-87]. Problems arose in defining an appropriate measure value
which will be the upper (or lower) value for a qualitativa "good"
polyline (or pixel setting algorithm).

4. Compare by means of computar vision.
Recent advances in computar vision [BoTh-87] make this an
alternative means of checking the correctness of pictures.
Techniques such as Hough transforms allow the identification of
areas; and character recognition too was shown to be possible.
For devices which use a bitmap, it may be possible to interrogate the
bitmap directly using the GET PIXEL ARRAY function; otherwise some
image capture device can be used to collect a representation of the
picture produced by the candidate implementation.

To sum up briefly, experience has to be gained in automatic picture
comparison concerning computar vision and statistical analysis
algorithms. Research will have to be dane in order to determine if

L-8

1 st Luso-German Meeting on Computer Graphics

these methods are suitable for comparing pictures.

Conclusions

Conformance testing prov:des a means of certifying the adherence of
implementations to a given functional standard. As graphics systems
become more complex, writing, maintaining and running test suites
for these systems is getting an increasingly harder task. This paper
attempts to highlight the components of a standard that are better
suited to be tested automatically. Testing for visual effects seems
to be harder part of the testing task, given the loose specification of
visual output in current graphics standards. From the standpoint of
emerging standards such as CGI, new test methods based on image
processing present interesting research possibilities.

L-9

lst Luso-German Meeting on Computer Graphics

Reterences

[ArBo-88] Arnold, D.B., Bona, P.R.: CGM and CGI, Metafile and Interface
Standards for Computer Graphics, Springer-Verlag, January, 1988.

[BoTh-87] Boyle, R.D., Thomas, R.C.: Computer Vision, A First Course,
Blackwell Scientific Publications, October, 1987.

[BoHe-87] Bona·, P.R., Herman, l.:GKS Theory and Practice, Springer­
Verlag, January 1987.

[Bro-83] Brodlie, K. W. "GKS Certification - An Overview", Computers
and Graphics Vai. 8 .• No 1, pp 13-17, 1984

[IS0-88a] ISO/DP9636(CGI) - lnterim Draft, lnformation Processing
Systems - Computer Graphics - lnterfacing Techniques for Dialogues
with Graphics Devices - Functional Specification, April, 1988.

[IS0-88b] ISO/IEC JTCl/SC24 Nl85, Conformance Testing of
lmplementations of Computer Graphics Standards, lnitial Draft
Document, July, 1988.

[LeWe-87] Lehn, Wegmann: Einführung in die Statistik, Teubner­
Verlag, 1987.

[ZiGo-88] Ziegler, R., Gõbel, M. (Eds.): Workshop Report "The Computer
Graphics (Device) Interface: Applications and Test Methods for CGI",
August, 1988.

L-10

1 st Luso-German Meeting on Computer Graphics L-1 1

I• Workstation ~
Application Language Functional Workstation Devices and
Programs Bindings Standards Software Metafiles

DEV
AP G

DEV K
1

AP s :---1 DEV

'º;~1
G

AP K
s

DEV
AP

3
CGM D

Generator

p
AP

H DEV
I

AP G DEV
' s
' CGM
' 1- Generator

'
AP Other DEV

Systems
CGM

Generator

CGM
Interpreter

API Language CGI Language CGll)ata
Binding Binding Encoding
Standard Standard Standard

