MAVERIK: A Virtual Reality System
for Research and Tea ching

Toby Howard, Roger Hubbold and Alan Murta
Advanced Interfaces Group, Department of Computer Science

University of Manchester, United Kingdom
toby @cs.man.ac.uk

Abstract

This paper describes some experiences with the use

of the MAVERIK system for supporting
undergraduate and postgraduate teaching and

research. MAVERIK s a high-level system for
creating and managing interactive virtual
environments. It is available free under the GNU
General Public Licence. MAVERIK is modular and
extensible, and its use of Mesa, the free OpenGL-like
graphics system, means that it can be run on low-
cost PCs, making it especially suitable for use in
computer graphics and visualization education. We
discuss the novel architecture and main features of
MAVERIK, and illustrate its use by presenting case
studies of projects undertaken by our students.
Keywords: Computer graphics education,
MAVERIK, Mesa, Virtual Reality.

1. An Introduction to MAVERIK

MAVERIK is a system for managing graphics and
interaction in Virtual Reality applications [1, 2]. It is
specifically designed to address the challenges of
highly interactive virtual environments containing
many objects with complex geometry. MAVERIK
runs on PCs under the GNU/Linux operating system,
using the free Mesa OpenGL-like graphics API [3],
and can take advantage of 3D acceleration hardware
il present. It also runs on Silicon Graphics
workstations using Irix/OpenGL [4].

MAVERIK is free software, released under the GNU
General Public Licence; the distribution includes all
of the C source code, for both MAVERIK, and also a
number of example applications (with data). This
sets it apart from most commercial virtual reality
systems, for which the source code is typically not
available — or may be available, but at a cost
prohibitive to educators. MAVERIK has a highly
modular structure, and comprises a micro-kernel
and a collection of supporting modules. The micro-
kernel implements a set of core services, and a
framework that applications can use to build
complete virtual environments and virtual reality
interfaces. The supporting modules contain default

GVE’'99 — Coimbra — Portugal

methods for optimised display management
including spatial management, culling, interaction
and navigation, and control of conventional and VR
input and output devices. MAVERIK’s structure
allows these default methods to be customised to
operate directly on application data, so that optimal
representations and algorithms can be employed.

The MAVERIK micro-kernel uses a simple object-
oriented class structure. Following normal OO
philosophy, each class has an associated set of
methods. For example, for geometric primitives,
default methods are provided for displaying them,
and for selecting them with a mousc. To keep the
implementation simple, methods are implemented as
callback functions. Changing a method is as simple
as writing a new (or modified) callback function and
registering it with the MAVERIK kernel. The kernel
also provides a mechanism for defining new classes,
making the system extensible. This approach was a
deliberate design decision — we wanted the system to
be ecasy to understand and install. In a student
context, we have found that using C and callbacks
has meant that those with basic programming skills
can quickly become proficient at using the system.

A key difference between MAVERIK and many
other VR systems is that MAVERIK does not use its
own data structure for storing application data. Of
course, the kernel does have data structures for
managing classes and their methods, but as far as
possible we have tried to avoid imposing data
structures on applications. Instead, classes of object
types can be created which suit the nceds of
particular applications. Methods for displaying and
interacting with these objects are then defined and
registered with the kernel. This means that only a
single representation of the application data needs
to be maintained. Any changes to this data are
automatically reflected as soon as the next frame is
displayed, because MAVERIK uses immediate mode
rendering. The default supporting modules take
much of the work out of writing the display and
interaction methods.

85

MAVERIK is distributed with nincteen default
object classes, and standard methods for navigation
and for picking objects using a standard mouse and
keyboard. In our research laboratory we also employ
3D mice based on Polhemus magnetic trackers, and
code for handling these is included in the
distribution. We also use head-mounted displays and
large-screen projection systems and MAVERIK
includes the code needed to compute stereo
projections, and to synchronise frame buffer updates.
Another part of the distribution is a set of tutorial
examples, which are described in the documentation
(in PostScript, HTML, and on-line man page
formats), and some more advanced demonstrations
which illustrate the use of MAVERIK for some of
our own research applications.

2. Using MAVERIK for Teaching

There are several reasons we believe MAVERIK is
useful for teaching computer graphics and
visualization:

1. MAVERIK is free. Students can run it on their
own PCs, allowing them to study in their own
time as well as on campus. Similarly, other
educators have free access to the system.
MAVERIK runs on relatively low-cost PC
hardware, relying only on other software which
1s also available free.

2. MAVERIK is a fully featured, professional-
level system, not a small subset developed
specifically for teaching. We use it in our own
research to explore very large, complex virtual
environments. For example, polygonal
representations of some of our industrial CAD
models would amount to more than 100 million
polygons. Examples can be found on our Web
pages [S].

3. MAVERIK implements a range of algorithms —
such as culling, using a hierarchy of bounding
volumes or occlusion techniques, object
tessellation, computing projections, and
stereoscopic viewing — which students can study
to see how they work. The availability of source
code means they can learn by example and by
experimenting for themselves by changing
default methods.

4. MAVERIK is distributed with default methods
which handle the most common cases — such as
primitives like boxes, cones, spheres, cylinders,
tori, polygon meshes. These serve as examples
of how to build other types of objects: NURBS

86

perhaps, or even Jell-O! For example, as we
describe in one of the case studies, it proved
straightforward to add a new class of object to
implement superquadric shapes.

3. Case Studies

We use MAVERIK extensively in our own teaching
—for final year six-month undergraduate projects, and
for postgraduate work — as well as our own research.
In this section we present short accounts of a
selection of recent and on-going student projects
which illustrate the diverse range of applications of
MAVERIK in an educational context.

3.1. Builder - Direct 3D Interactive Construction
Builder is a 3D object manipulation program (see
Figure 1). It was designed to explore techniques for
selecting and manipulating hierarchically structured
objects in 3D space, using two-handed manipulation.
The manipulation is carried out using a pair of 3D
mice, and the resulting images are shown on a stereo
projection screen, a head-mounted display, or a
normal monitor. Builder uses voice recognition to
issue commands, because both hands use the 3D
mice.

Builder is a very dynamic program. Much as in a 2D
drawing program, objects can be selected and
stretched or squashed, using handles attached to key
points on their bounding boxes. Objects can be
created, deleted, copied, pulled apart, joined
together, and positioned in space. Each operation
may be reinforced using sound cues, via a MIDI
interface. It is possible to enter a virtual environment
and to completely rearrange it using these

techniques.

Figure 1. Builder: an interactive 3D modeller.

GVE’99 — Coimbra — Portugal

Buttons on the mice differentiate between moving
around the environment and picking up objects. The
two mice can be used interchangeably, so that it is
possible to pick up an object in one hand and to carry
the object around, using the other mouse to control
navigation.

Builder relies on a key feature of MAVERIK - that it
uses only the application’s data and a set of callback
functions to update the display. There is no separate
scene graph or other data structure that needs to be
synchronised with changes to the application’s data.
It also uses MAVERIK’s culling methods to permit
quite large environments to be displayed at fast
frame rates, which is essential when using an HMD.

3.2. Virtual Lego

Another approach to interactive model building is
illustrated in the Virtual Lego project (see Figure 2).
Here we consider the joining and breaking apart of
models consisting of a set of bricks. It differs from
Builder in that constraints are applied to only allow
the joining of shapes in a small number of known
arrangements, and the system applies continuous
object clash detection during the assembly process.
Interaction is achieved using a combination of 2D
mouse and keyboard.

Figure 2. Constrained Lego brick
manipulation.

3.3. Professor Dijkstra goes Walkabout

Once of the demonstration programs distributed with
MAVERIK is a virtual city (“cityscape”), with
buildings, roads, trees, pavements, grassy arcas,
monuments, and animated avatars. This project
explored extensions to the cityscape program to
include a route planning mechanism. The initial
method used Dijkstra’s algorithm for computing the
minimum cost path between any two places. To
provide a more efficient implementation, a second

GVE’'99 — Coimbra — Portugal

version was implemented based on the Floyd-
Walshall algorithm. Both of these algorithms are
used to find the minimum cost for traversing a graph
structure, and are standard algorithms taught to
Computer Science students. The project used the
Xforms interface builder [6] to provide a GUIL A
speech recognition system can also be used to
instruct the program. The project is quite interesting
from two angles.

First, it is an interactive city guide. Using the
interface, you can ask Professor Dijkstra -
represented by an avatar — to guide you around the
city (see Figure 3). For example, you may ask to be
taken to the railway station, or the public library. The
program builds a graph structure for all of the
connected strects, and you are guided along the
pavements, traversing roads at junctions or
pedestrian crossings, using the shortest route. The
result is displayed as an animated walk-through. At
any time, you can stop or move away from your
guide, and he will recognise this and wait for you.

Second, it is a nice illustration of the Dijkstra and
Floyd-Walshall algorithms in practice. While the
program is running, obstacles can be introduced,
interactively, to block streets — to simulate road
works, or perhaps an incident like a fire, for example
— and the algorithms then search for the best way
around the obstacles via alternative streets.

Figure 3. Professor Dijkstra goes walkabout.

This program exploits several features of
MAVERIK. First, it uses occlusion culling
algorithms to achieve good frame rates, even for
large cities (c.g. 40 blocks square). Second, the
navigation methods can be employed to wander
around the city at will. Third, MAVERIK's default
avatar class is used to display representations of

87

actions of people in the city. The avatars are
animated, and walk around the city in real-time.

3.4. Head-Driven Navigation

Specifying scene navigation within interactive 3D
environments is often based on 2D mouse
movements and key-presses, or uses 3D mouse or
dataglove gestures. This project considered the use
of head motion (tracked using a 3D Polhemus
sensor) to trigger user movement within a virtual
environment. This may be useful when both hands
are already involved in a manipulation task, for
example. Navigation behaviours were devised which
map head motion onto view rotations and
translations. Alternative mappings were tried for
both head-mounted displays and fixed large-screen
projection screens. MAVERIK proved to be a good
platform for investigations of this kind, since the
user is free to customise navigation functions for
specific applications. User tests were performed to
compare the usability of the head-driven approach
with more traditional hand-driven navigation
schemes. These included a timed fly-through of a
twisting 3D tube, and the navigation of a slalom
course.

3.5. Out-of-Body Experiences

Navigation in virtual environments is a difficult task.
One of the main hindrances is the limited field of
view afforded by head-mounted displays and
projection systems, as this is typically much
narrower than we experience in the real world. It has
been described as like looking at the world through a
pair of toilet rolls! This makes life difficult, because
it means that one tends to blunder into objects that
are just out of view.

An important aspect of virtual reality is the notion of
presence — that is, of being present in a virtual
environment and of being surrounded by it. Thus,
when navigating around, one is normally presented
with a view corresponding directly to that of one’s
virtual body — an “in-body” or first person view.
However, an alternative way to navigate is to follow
a few paces behind one’s virtual body — a kind of
“out-of-body experience”. In this case, one still
controls one’s body, but sees it as a separate
representation, or avatar. This type of interface can
be found in some PC games, such as Tomb Raider
[7].

The purpose of this project was to investigate

whether navigation is more easily controlled using
an in-body or an out-of-body paradigm. One reason

88

why the latter might be easier is that it affords a
much wider field of view — you can see obstacles
surrounding your virtual body that would not
normally be within your ficld of view using the in-
body approach. The project entailed devising some
simple virtual environments containing obstacles and
then monitoring the performance of volunteers in
negotiating their way along prescribed routes. The
code was instrumented to measure results, such as
the number of collisions with objects, the length of
the path followed, and the time taken to complete a
route.

3.6. Visualization of Nanotechnology

This project investigated how computer graphics and
Virtual Reality techniques might be used to visualize
and control the construction and activity of
nanomachines. The project involved the simulation
of molecular interactions, and the modelling of
collections of molecules organised into mechanical
structures (sce Figure 4).

This was an ambitious project, and MAVERIK
proved especially useful — its provision of high-level
virtual environment management enabled the student
to concentrate on the application problem, rather
than the infrastructure needed to manage the virtual
environment.

Figure 4. Visualizing nanotechnology.

3.7. A Clutterizer for Virtual Environments

A virtual environment is typically constructed by
creating accurate geometrical architecture, and
populating the scene with specific objects (and
textures) at specific locations. Such environments are
usually quite tidy. Real environments, however, are
rarely tidy, having accumulated clutter over time.

GVE'99 — Coimbra — Portugal

The purpose of this project was to investigate
methods for automatically “clutterizing™ a virtual
environment, by semi-automatically adding “junk”
geomelry and texture.

MAVERIK provides default methods for testing for
collision detection between objects in the virtual
environment, and this feature facilitated the
development of algorithms for rapidly populating the
environment with large numbers of “clutter” objects,
distributed statistically.

3.8. Interactive City Generation

This undergraduate project investigated methods for
automatically generating realistic cities (see Figure
5). The project implemented a suite of three separate
programs; the first generated a plausible layout of
streets within the city; the second then populated the
streets with buildings, monuments, parks and other
urban features. The final program was an interactive
viewer, which used MAVERIK for visualization, and
navigation within the scene.

it

3

i=r=

Figure 5. Interactive city generation.

3.9. Line of Sight and Trajectory Analysis for
Scene of Crime Reconstruction

Working in collaboration with Greater Manchester
Police, we have constructed a prototype virtual
environment corresponding to a real scene of crime
[8]. Subsequently, this undergraduate project
undertook an investigation of two areas: first,
methods for testing “line of sight” scenarios, to
accurately determine which parts of a scene are
visible from certain vantage points; sccond, for
interactively tracing and modelling bullet trajectorics
within the scene.

GVE’99 — Coimbra — Portugal

MAVERIK provided the virtual environment
infrastructure, and its default methods for computing
vector-object intersections assisted the modelling of
bullet trajectories, and multiple ricochets from rigid
surfaces. The project implemented two kinds of
trajectory simulation: a simple Newtonian model,
and a “point mass” model which takes into account
acrodynamic drag on a bullet. Figure 6 shows a
simulated bullet trajectory and ricochet.

Figure 6. Visualization of bullet trajectories.

3.10. Simulating Undersea Viewing Conditions
We are interested in using VR as a means of
rchearsing assembly and maintenance procedures on
large industrial structures, such as offshore gas and
oil platforms. This project investigated the graphical
portrayal of the kind of environments encountered
during such undersea operations (sce Figure 7). In
particular, the incorporation of visual phenomena
such as animated caustics, lighting effects within
participating media, limited visibility (fogging) and
the presence of particulate matter in the environment
were considered. This project used MAVERIK for
navigation, interaction and scene management, with
additional use of Mesa/OpenGL to achieve specific
graphical effects. Real time undersea effects (over 20
frames per second) were achieved on a modest PC
with a 3D graphics card.

89

Figure 7. Shallow undersea view featuring
animated lighting effects.

3.11. Interactive Modelling Using Superquadrics
Superquadrics are a family of solids derived from the
parametric forms of the basic quadric surfaces —
ellipsoids, tori and hyperboloids. Superquadrics are,
however, much more flexible than standard quadrics
and can represent a huge variety of shapes. This
postgraduate project is investigating the use of
interactively deformed superquadrics for object
modelling in a virtual environment (see Figure 8).

This involved adding a new, quite complex, object
class to MAVERIK. In practice this proved to be
straightforward: the application defines a data
structure for the object, and a minimal number of
methods — which it registers with MAVERIK - to
operate upon it.

Figure 8. Interactive deformation of
superquadrics.

90

4. Conclusions

We have been using MAVERIK as the basis for our
teaching and project work since 1996, and have been
extremely encouraged by its success. Because the
source code is freely available, students have the
opportunity to look inside and see exactly how a
large professional-level — software system is
structured, and they can examine the algorithms in
detail. And because MAVERIK uses Mesa as its
rendering engine, computer graphics students can go
further, and see exactly how the rendering pipeline is
implemented. As for project work, because
MAVERIK manages the complexity of the virtual
environment, students are able (o pursue more
ambitious projects than have previously been
realistic.

It is our hope that sharing our positive experiences of
teaching using MAVERIK will be of benefit to other
educators. We would be delighted if others would
consider evaluating MAVERIK as a suitable tool for
computer graphics and visualization education.

Acknowledgements

We would like to thank our colleagues in the
Advanced Interfaces Group: Jon Cook, Simon
Gibson, Martin Keates, Steve Pettifer, Adrian West —
all of whom have contributed substantially to the
MAVERIK system. And we’d especially like to
thank our students for their enthusiasm, and for
implementing a series of fun and interesting projects
for us to report: Osian Ap Garth, Tim Davis, Sinem
Guven, Chris Kirk, James Pearce, Jamie Pratt,
Ahmed Rahali, Chris Redburn, James Sinnott, John
Taylor and Irina Titovich.

MAVERIK was developed as part of the VRLSA
project, funded by the Engineering and Physical
Sciences Research Council (GR/K99701), with
additional support from our industrial partners,
CADCentre Ltd, Brown & Root Ltd, and Sharp
Laboratories of Europe Ltd.

MAVERIK is available in tar and RPM formats from
http://aig.cs.man.ac.uk/systems/Maverik/.

References

[1] Roger Hubbold, Dongbo Xiao and Simon
Gibson. MAVERIK: The Manchester Virtual
Environment Interface Kernel. In Virtual
Environments and Scientific ~ Visualization
1996, M. Gobel, J. David, P. Slavik, J.J. van

GVE'99 — Coimbra — Portugal

(2]

(3]
(4]
(5]
(6]
(7]
(8]

Wijk (Editors).

Jon Cook, Roger Hubbold and Martin Keates.
Virtual Reality for Large-Scale Industrial
Applications. In Future Generation Computer
Systems, 14, pp. 157-166, 1998.
http://www.mesa3d.org.
http://www.opengl.org.
http://aig.cs.man.ac.uk/systems/Maverik/.
http://bragg.phys.uwm.cdu/xforms/.
http://www.tombraider.com.

Alan Murta, Simon Gibson, Toby Howard,
Roger Hubbold and Adrian West. Modelling
and Rendering for Scene of Crime
Reconstruction: A Case Study. In Proceedings
Eurographics UK, pp. 169—173, 1998.

GVE'99 — Coimbra — Portugal

91

