
Interactive facilities for
collaborative feature modeling on the Web

Rafael Bidarra Eelco van den Berg Willem F. Bronsvoort

Faculty of Information Technology and Systems
Delft University of Technology

Mekelweg 4, NL-2628 CD Delft, The Netherlands
http://www.cg.its.tudelft.nl

(R.Bidarra/E.vdBerg/W.F.Bronsvoort)@its.tudelft.nl

Abstract
Collaborative modeling systems are distributed multiple-user systems that are both concurrent and synchro-
nized, aimed at supporting engineering teams in coordinating their modeling activities. During a collaborative
modeling session, several users are connected to each other in order to perform activities, such as design,
manufacturing planning or evaluation, together, using some common product data. An interesting research
challenge is to develop a collaborative modeling system that offers all facilities of advanced modeling systems to
its users.

This paper focuses on the interactive modeling facilities required by such collaborative modeling systems. Pre-
vious work in the area of collaborative modeling is surveyed, and several techniques for interaction with feature
models are presented, ranging from display of sophisticated feature model images to interactive selection facili-
ties, which have been implemented in the web-based collaborative feature modeling system webSPIFF. It has a
client-server architecture, with an advanced feature modeling system as a basis of the server, providing feature
validation, multiple views and sophisticated visualization facilities.

The architecture of webSPIFF, the functionality of the server and the clients, their communication mechanisms,
and the distribution of model data is described. In particular, maintenance and synchronization of model data at
the clients, and techniques for their effective utilization for enhancing user interaction and collaboration are de-
scribed. It is shown that a good compromise between interactivity and network load has been achieved, and that
indeed advanced modeling with a collaborative system is feasible.

Keywords
Feature modeling, collaborative modeling, web-based modeling, graphical interaction

1. INTRODUCTION

In the last decade, research efforts in the areas of solid
and feature modeling substantially contributed to the im-
provement of computer-aided design (CAD) systems. A
broad range of advanced modeling facilities is now be-
coming available in high-end commercial systems, ampli-
fied by continuous enhancements in interactive and visu-
alization capabilities, and profiting from the availability
of faster and more powerful hardware. Still, these im-
provements have their counterpart in the increasing size
and complexity of such systems. At the same time, a
number of research prototypes are pushing the edge to
even more advanced modeling facilities. For example,
embodiment of richer semantics in feature models and
validity maintenance of such models [Bidarra and Brons-
voort 2000], and physically-based modeling techniques
[Kagan et al. 1999] are among the current research issues.

A common characteristic of most current CAD systems is
that they run on powerful workstations or personal com-
puters. Interaction with the system is usually only possi-
ble if the user is directly working at the CAD station, al-
though remote interaction is sometimes possible through
a high-bandwidth local area network. This situation is no
longer satisfactory, as nowadays more and more engi-
neers, often at different locations, are getting involved in
the development of products. It would be preferable if a
user could remotely browse and manipulate a model, via
Internet, as if he were working directly at a powerful
CAD station. A web-based system would be ideal for this,
as it would facilitate access to all sorts of product infor-
mation in a uniform, simple and familiar framework.

Even more attractive would be the support of collabora-
tive modeling sessions, in which several geographically
distributed members of a development team could work

43

10º Encontro Português de Computação Gráfica

1-3 de Outubro 2001

http://www.cg.its.tudelft.nl/

together on the design of a product. Typically, in such
collaborative sessions, different participants would be
provided with their own, application-specific views on the
product model according to the analyses or activities re-
quired, e.g. detailed design, manufacturing planning or
assembly planning [de Kraker et al. 1997; Hoffmann and
Joan-Arinyo 1998]. In addition, each session participant,
as in normal development teams, should be given his own
competence and specific session privileges by the system.

So far, only a small number of tools have been developed
that somehow support collaborative design activities. For
example, tools for collaborative model annotation and
visualization via Internet are now becoming available,
providing concepts such as shared cameras and telepoin-
ters [Autodesk 2000; Parametric 2000; Kaon 2001].
However, such tools are primarily focused on inspection,
e.g. using simple polygon mesh models, and do not sup-
port real modeling activities. In other words, they are
valuable assistants for teamwork, but no real CAD sys-
tems. Some more recent research is focusing on the pos-
sibility of enhancing existing CAD systems with collabo-
rative facilities; see Section 2. To the best of our knowl-
edge, the only commercial system currently offering some
collaborative modeling facilities is OneSpace [CoCreate
2000]. However, its modeling capabilities are severely
constrained by the modeler at the server, SolidDesigner,
and by the model format into which it converts all shared
models.

The idea of collaborative modeling combines very well
with the increasingly popular concept of Application
Service Providers (ASP), in which clients remotely ac-
cess, via Internet, specialized applications running on a
server, being billed exclusively for the service time they
spend logged on at the ASP server. Such an approach has
been identified as a very promising and affordable alter-
native for distributed CAD teams [Comerford 2000]. The
first rudimentary commercial CAD ASP has recently been
launched by [CollabWare 2000].

In order to satisfy all requirements outlined above, it is an
interesting research challenge to develop a modeling sys-
tem that offers all facilities of advanced feature modeling
systems to its users, while at the same time providing
them with the necessary coordination mechanisms that
guarantee an effective collaboration. With this goal in
mind, a new web-based, collaborative feature modeling
system has been developed at Delft University of Tech-
nology. A complete description of its client-server archi-
tecture and functionality can be found in [Bidarra et al.
2001], including solutions to the critical concurrency and
synchronization problems that characterize collaborative
design environments.

This paper concentrates on the facilities for interaction
with feature models of this prototype system. In particu-
lar, it describes the models that are maintained by the
clients, and how these models can be effectively used for
visualization and user interaction. The paper is organized
as follows: first, the main research issues of collaborative

modeling are briefly surveyed (Section 2); second, an
overview of the web-based, collaborative modeling sys-
tem is given (Section 3); third, several facilities for inter-
active visualization of the product model, in particular of
its features, are described (Section 4); fourth, techniques
are presented for interactively selecting and using feature
entities in the specification of modeling operations (Sec-
tion 5); finally, some results and conclusions are pre-
sented (Section 6).

2. PREVIOUS WORK

Collaborative systems can be defined as distributed mul-
tiple-user systems that are both concurrent and synchro-
nized. Concurrency involves management of different
processes trying to simultaneously access and manipulate
the same data. Synchronization involves propagating
evolving data among users of a distributed application, in
order to keep their data consistent.

These concepts being in general already rather demand-
ing, their difficulty becomes particularly apparent within
a collaborative modeling framework, where the amount of
model data that has to be synchronized is typically very
large, the concurrent modeling actions taking place may
be very complex, and the requirements for real time dis-
play and user interaction are so acute. This section briefly
surveys collaborative modeling, highlighting the key as-
pects put forward by recent research, and summarizing
the lessons learned from a few prototype systems pro-
posed so far.

2.1. Client-server architecture

The requirements for concurrency and synchronization in
a collaborative modeling context lead almost inevitably to
the adoption of a client-server architecture, in which the
server provides the participants in a collaborative model-
ing session with the indispensable communication, coor-
dination and data consistency tools, in addition to the
necessary basic modeling facilities. For a recent survey
on client-server architectures, see [Lewandowski 1998].

A recurrent problem in client-server systems lies in the
conflict between limiting the complexity of the client ap-
plication and minimizing the network load. In a collabo-
rative modeling context, client complexity is mainly de-
termined by the modeling and interactive facilities im-
plemented at the client, whereas network load is mainly a
function of the kind and size of the model data being
transferred to/from the clients.

A whole range of compromise solutions can be devised
between the two extremes, so-called thin clients and fat
clients. A pure thin-client architecture typically keeps all
modeling functionality at the server, which sends an im-
age of its user interface to be displayed at the client.
Clicking on the image generates an event, containing the
screen coordinates of the interface location the user
clicked on. This event is sent to the server, which associ-
ates it with an action on a particular widget. Eventually,
this action is processed, and an updated image of the re-
sulting user interface is sent back to the client, where it is

44

10º Encontro Português de Computação Gráfica

1-3 de Outubro 2001

displayed. This approach requires a continuous informa-
tion stream between server and clients, and is therefore
very expensive in terms of network traffic. The response
time would be intolerably high for many model specifica-
tion actions, thus making it very ineffective to remotely
participate in a modeling session.

On the other extreme, a pure fat client offers full local
modeling and interaction facilities, maintaining its own
local model. Communication with the server is then often
required in order to synchronize locally modified model
data with the other clients. In a collaborative environment
where clients can concurrently modify local model data,
preventing data inconsistencies between different clients
becomes a crucial problem. In addition, fat clients, to be
effective, place on the platform running them the heavy
computing power requirements of typical CAD stations.

2.2. Current research prototype systems

Several collaborative modeling prototype systems have
recently been described in literature. Some of these sys-
tems will be shortly surveyed here, and their shortcom-
ings identified.

CollIDE [Nam and Wright 1998] is a plug-in for the Alias
modeling system, enhancing it with some collaborative
functionality. Users of CollIDE have private workspaces,
where model data can be adjusted independently from
other users. In addition, a shared workspace exists con-
taining a global model, which is synchronized between all
users participating in a collaborative modeling session.
Users can simply copy model data between the private
and shared workspaces, in order to create and adjust cer-
tain model data locally, and add it to the model in the
shared workspace. The architecture of CollIDE poses
severe restrictions to crucial collaborative modeling is-
sues. In particular, no special measures have been taken
to reduce the amount of data sent between the participants
of a collaborative modeling session, resulting in delayed
synchronization of the shared workspace and of the users'
displays. Also, since each user operates on a separate
instance of the modeling system, able to perform model-
ing operations by itself, concurrency has to be handled by
the users themselves in order to keep shared model data
consistent. A positive point in CollIDE is, however, that it
provides its users with most interactive and visualization
facilities of the native system Alias, although this comes
at the cost of a very fat client.

The ARCADE system [Stork and Jasnoch 1997] defines a
refine-while-discussing method, where geographically
distributed users can work together on a design, interact-
ing with each other in real-time. Every participant uses a
separate instance of the ARCADE modeling system, and
all ARCADE instances are connected to a session man-
ager via Internet. A message-based approach was chosen,
where every change of the product model is converted
into a short textual message, which is sent to all other
instances of ARCADE through the session manager.
ARCADE provides a collaborative environment in which
the network load is kept low. This was done by including

all modeling functionality in the distributed ARCADE
instances, which exchange only textual messages, rather
than large sets of polygons. A drawback of this approach,
however, is that the user application becomes rather com-
plex, thereby requiring much computational power. In
addition, ARCADE provides a primitive concurrency
control mechanism, where only one user can edit a par-
ticular part at a time.

CSM, the Collaborative Solid Modeling system proposed
by [Chan et al. 1999] is a web-based collaborative mod-
eling system. Within its client-server architecture, the
server contains a global model, while every client owns a
local copy of this model. When a user has locally modi-
fied the model, it is propagated to all other users through
the server. Concurrency is managed in two ways: (i) the
model can be locked, using token passing, restricting it
from being accessed by other users as long as some user
is performing a modeling operation; and (ii) functionality
can be locked, preventing certain functions from being
used by particular users. Clearly, such methods provide a
very strict concurrency handling policy. In fact, they turn
the clients into several independent modeling systems,
just using the same product model alternately. In a truly
collaborative modeling system, one expects a higher level
of coordination support.

NetFEATURE [Lee et al. 1999] claims to be a collabora-
tive, web-based, feature modeling system. A server pro-
vides basic functions on a central product model, includ-
ing creation and deletion of features. On the clients, a
local model is available, containing a boundary represen-
tation of the product, derived from the server-side central
model. The local model is reportedly used for real-time
display, navigation and interaction, although very little
has been described by the authors on how this operations
take place. For more advanced operations, the server
must be accessed. Updating the local model is done in-
crementally, which required a rather heavy naming
scheme. This scheme severely reduces the modeling
functionality of the system, degrading it to a history-based
geometric modeling system, instead of a genuine feature
modeling system. Furthermore, NetFEATURE uses, just
like CSM, very strict concurrency handling methods, thus
seriously limiting genuine collaborative modeling.

2.3. Conclusions

Collaborative modeling systems can support engineering
teams in coordinating their modeling activities. Instead of
an iterative process, sending product data back and forth
among several team members, designing becomes an in-
teractive process, in which several engineers are simulta-
neously involved to agree on design issues. Collaborative
modeling systems typically have a client-server architec-
ture, differing in the distribution of functionality and data
between clients and server.

Concurrency control is still a crucial issue in current col-
laborative environments. If a user is allowed to change a
model entity, while another user is already changing the
same entity, problems can easily arise concerning consis-

45

10º Encontro Português de Computação Gráfica

1-3 de Outubro 2001

tency. To avoid this situation, a strict concurrency control
mechanism can limit access for other users. It depends on
the application, whether all entities of the design should
be locked or just some of them. If possible, users should
be allowed to simultaneously modify different parts of the
design, but this could lead to much more complicated
concurrency control mechanisms. Also, one should al-
ways bear in mind that designing is a constructive activ-
ity. Users can therefore be given some responsibility for
establishing a good collaboration.

Current systems also often fall short in adequately han-
dling synchronization of model data among distributed
clients. Timely updating data over a network is difficult,
since there is a certain delay between the moment data is
sent and the moment it is received at another node of the
network; during this time interval, the latter might try to
manipulate data that is not up-to-date. Mechanisms to
detect such conflicts should be available, and recovery
mechanisms provided. Good locking can also help to
avoid such situations, but sometimes it may hinder users'
flexibility.

For a collaborative CAD system to be successful, it
should combine a good level of interactivity with the sort
of powerful visualization typically provided by conven-
tional CAD systems. Users will not be able to design
properly if they have to wait a considerable time after
every operation. But increasing interactivity by just port-
ing more and more data and functionality to the clients is
not a good solution either, as synchronization problems
would then turn critical. Furthermore, fat clients are typi-
cally platform-dependent applications that require more
complex installation and maintenance procedures, and are
therefore less practical in a web-based context.

In conclusion, a good compromise solution to the diffi-
culties summarized above can better be achieved with a
web-based, client-server architecture. The next section
introduces webSPIFF, a prototype system that follows this
approach.

3. ARCHITECTURE OF webSPIFF

webSPIFF has a client-server architecture, consisting of
several components; see Figure 1. On the server side, two
main components can be identified: the SPIFF modeling
system, providing all feature modeling functionality; and

the Session Manager, providing functionality to start,
join, leave and close a modeling session, and to manage
all communication between SPIFF and the clients. The
webSPIFF portal component provides the initial access to
a webSPIFF session for new clients, and includes a web
server where model data is made available for download
by the clients.

The clients perform operations locally as much as possi-
ble, e.g. regarding visualization of, and interaction with,
the feature model, and only high-level semantic messages,
e.g. specifying modeling operations, as well as a limited
amount of model information necessary for updating the
client data, are sent over the network.

The server coordinates the collaborative session, main-
tains a central product model, and provides all function-
ality that cannot, or should not, be implemented on the
client. In particular, as soon as real feature modeling
computations are required, such as required by modeling
operations, by conversion between feature views and by
feature validity maintenance, they are executed at the
webSPIFF server, on the central product model, and their
results are eventually exported back to the clients.

An important advantage of this architecture is that there is
only one central product model in the system, thus
avoiding inconsistency between multiple versions of the
same model.

3.1. The server

As a basis for the server, the SPIFF system developed at
Delft University of Technology was chosen, which offers
several advanced modeling facilities. First, it offers mul-
tiple views on a product model, each view consisting of a
feature model with features specific for the application
corresponding to the view. The current version of web-
SPIFF provides two such views: one for design and an-
other for manufacturing planning of parts. In the design
view, the feature model consists of both additive (e.g.
protrusions) and subtractive (e.g. slots and holes) fea-
tures. In the manufacturing planning view, the feature
model consists of only subtractive features. All views on
a product model are kept consistent by feature conversion
[de Kraker et al. 1997]. Second, it offers feature validity
maintenance functionality. This can guarantee that only
valid feature models, i.e. models that satisfy all specified
requirements, are created by a user [Bidarra and Brons-
voort 2000]. Third, it offers sophisticated feature model
visualization techniques, which visualize much more spe-
cific feature information than most other systems do. For
example, feature faces that are not on the boundary of the
resulting object, such as closure faces of a through slot,
can be visualized too [Bronsvoort et al. 2001]. All these
facilities are computationally expensive, and require an
advanced product model, including a cellular model with
information on all features in all views [Bidarra et al.
1998].

The Session Manager stores information about an ongo-
ing session and its participants. It manages all information
streams between webSPIFF clients and the SPIFF modelingFigure 1. Architecture of webSPIFF

46

10º Encontro Português de Computação Gráfica

1-3 de Outubro 2001

system. Since several session participants can send mod-
eling operations and queries to the webSPIFF server at the
same time, concurrency must be handled at the Session
Manager. It is also the task of the Session Manager to
synchronize session participants, by sending them the
updated data structures, after a modeling or camera op-
eration has been processed. The Session Manager has
been implemented using the Java programming language
[Sun Microsystems 2000].

3.2. The clients

The clients of webSPIFF make use of standard web brows-
ers. When a new client connects to the webSPIFF portal, a
Java applet is loaded, implementing a simple graphical
user interface (GUI), from which a connection with the
Session Manager is set up. Different clients can connect
from various locations, local through a network or remote
via Internet, in order to start or join a modeling session.

Once connected to the server, the user can join an ongo-
ing collaborative session, or start a new one, by specify-
ing the product model he wants to work on. Also, the de-
sired view on the model has to be specified. Information
on the feature model of that view is retrieved from the
server, and used to build the client's GUI, through which
the user can start active participation in the modeling ses-
sion.

The bottom line is obviously that clients should be able to
specify modeling operations in terms of features and their
entities; for example, a feature, to be added to a model,
should be attachable to entities of features already in the
model (e.g. faces and datums). After a feature modeling
operation, with all its operands, has been fully specified,
the user can confirm the operation. The operation is then
sent to the server, where it is checked for validity and
scheduled for execution. Notice that this can result in an
update of the product model on the server, and thus also
of the feature model in the view of each session partici-
pant.

In addition to the above functionality, several visualiza-
tion and interactive facilities of the SPIFF system have
also been ported to the clients. All these facilities of web-
SPIFF clients make use of so-called camera windows, i.e.
separate windows in which a graphical representation of
the product model is shown. Visualization facilities in-
clude displaying of sophisticated feature model images,
rendering of a 3D model that supports interactive modifi-
cation of camera viewing parameters (e.g. rotation and
zoom operations) and a collaborative, shared camera.
These will be dealt with in Section 4. webSPIFF cameras
also provide facilities for interactive specification of
modeling operations, e.g. assisting the user in selecting
features or feature entities by having them picked on a
sophisticated image of the model. The interactive func-
tionality of webSPIFF cameras is described in detail in
Section 5.

3.3. Distribution of model data

As explained above, only one central product model is
maintained at the server. This feature model includes all
canonical shapes, representing individual features in a
specific view, and the cellular model. To support visuali-
zation and interaction facilities, however, the webSPIFF
clients need to locally dispose of some model data. This
data is derived by the server from its central model, but it
does not make up a real feature model. webSPIFF clients
need just enough model information in order to be able to
autonomously interact with the feature model, i.e. without
continuously requesting feedback from the server.

Model data at the clients can be classified into the fol-
lowing three categories:

Textual data

This data is used for specific sets of model information,
mostly in list form. The most important are:

• List of feature classes: contains the names of all fea-
ture classes available in a given view. It is used to fill
a GUI list widget when adding a new feature in-
stance, and is requested from the server at client ini-
tialization time. This list does not need to be re-
freshed during a modeling session.

• List of feature instances: contains the names of all
feature instances in a given view of the model. It is
used to fill a GUI list widget when editing or re-
moving an existing feature instance. This list is set
upon initialization of the client, and is refreshed after
each modeling operation.

• List of parameter values: contains the values of all
parameters of a given feature instance, in a pre-
defined order. It is used to fill various GUI entry
widgets when editing the selected feature instance,
and is always queried before a feature editing opera-
tion.

Graphical data

This comprises the sophisticated feature model images,
rendered at the SPIFF server, and displayed in camera
windows at the clients. These images provide very power-
ful visualizations of a feature model, as explained in Sub-
section 4.1. Many visualization options can be specified.
A separate image is needed for each camera, and it must
be updated every time the model or the camera settings
are changed. The images are stored in the web server to
be downloaded by the respective clients.

Geometric data

This comprises two kinds of models: the visualization
model and the selection model.

• visualization model: represents the global shape of
the product model. The visualization model is gener-
ated by SPIFF, and it is used at the clients for interac-
tively changing the camera viewing parameters, as
explained in Subsection 4.2. All cameras on a par-
ticular client use the same local visualization model,

47

10º Encontro Português de Computação Gráfica

1-3 de Outubro 2001

but each camera displays it with its own viewing pa-
rameters.

• selection model: is a collection of three-dimensional
objects representing the canonical shapes of all fea-
tures in a given view of the model. It is also gener-
ated by SPIFF, with the purpose of supporting the in-
teractive selection of feature faces on a client’s cam-
era, during the specification of a modeling operation,
as explained in Section 5. Again, the selection model
is identical for all cameras on a client, each applying
its own viewing parameters.

Client model data is never modified directly by the clients
themselves. Instead, after a modeling operation has been
sent to the server and executed, updated model data is
sent back to the client. In addition, if the central product
model has been changed, appropriate updated model data
is sent to all other session participants as well. This con-
sists of, possibly several, new model images, a new visu-
alization model, and an incremental update of the selec-
tion model (containing only new and/or modified feature
canonical shapes).

Similarly, when a client modifies any camera settings, the
corresponding camera operation is sent to the webSPIFF
server, which generates a new sophisticated feature model
image. Since the feature model remains unaffected by
camera operations, the server only needs to send the new
sophisticated feature model image back to the client that

requested the camera update.

Temporary local inconsistencies can still occur at a client,
for example after the execution of a modeling operation.
Since sending information from the server to all clients
takes some time, for a short period model information on
the clients is not up-to-date. Avoiding conflicts arising
from this transitory mismatch is one of the main tasks of
the Session Manager.

4. PRODUCT MODEL VISUALIZATION

As anticipated in Subsection 3.2, webSPIFF provides cli-
ents with three ways of visualising a product model, all
making use of camera windows. Each client may create
as many cameras as desired. First, a sophisticated feature
model image can be displayed. Second, a model can be
rendered that supports interactive modification of camera
viewing parameters, e.g. rotation and zoom operations.
Third, shared cameras may be created that support col-
laborative, synchronized visualization of the model
among several users.

4.1. Sophisticated feature model images

The most powerful visualisation technique generates so-
phisticated feature model images, which can very effec-
tively support the user during the modeling process.
These camera images provide not only a plain visualisa-
tion of the resulting final shape of the product model.
Several advanced visualisation techniques are available
that allow the user to customise the images to a variety of

(a) camera window displaying a
sophisticated feature model image,
highlighting the closure edges for

some selected features

(b) model visualization parameters

(c) viewing parameters

Figure 2. webSPIFF camera panels

48

10º Encontro Português de Computação Gráfica

1-3 de Outubro 2001

needs [Bronsvoort et al. 2001]. Sometimes, a user wants
to have a closer look at a particular feature in a model,
e.g. because he wants to fine-tune its parameters. Using
different visualisation techniques for a selected feature
and the rest of the model, extra insight into the selected
feature is offered, e.g. on its shape and location in the
model. For example, the selected feature may be visual-
ised with shaded faces, and the rest of the model as a wire
frame or with visible lines only. As already mentioned in
Subsection 3.1, also additional feature information, such
as closure faces of subtractive features, can be visualised.
The facilities for rendering such images make extensive
use of the ACIS Modeling Kernel [Spatial 2000], and are
therefore not available on the clients. Instead, the images
are rendered by the SPIFF modeling system, and sent by
the Session Manager to the clients, where they are dis-
played in a camera; see Figure 2(a).

In addition to the settings for the above-mentioned tech-
niques, several viewing parameters (such as center of
projection, view reference point, projection type, etc.) can
be set per camera. The camera panels of the webSPIFF
GUI offer the clients functionality to specify and modify
any camera parameter by means of menus, control boxes
and checkboxes; see Figure 2(b) and (c). Interactive
specification of the viewing parameters will be elaborated
in Subsection 4.2.

The sophisticated image displayed in a camera has to be
updated whenever the client modifies any of its camera
parameters. Similarly, the image no longer reflects the
current state of the model when any session participant
has modified the model. In both cases, the image is re-
generated on the server and resent to the client(s). Both
GIF and JPG image formats provide satisfactory results;
see Figure 2(a) for a sophisticated image example. Send-
ing an image from the server to a client is therefore very
cheap, both in terms of network load (approximately 10
Kbytes) and display time at the client.

4.2. Interactive visualization model

As described in the previous subsection, changing the
viewing parameters of a camera can be done by specify-
ing values for them using the camera panels. This is con-
venient, for example, when the user wishes to position the
viewing camera at an exact location. Often, however, it is
much more practical to be able to position and orient the
viewing camera in 3D space in an interactive way, using
the mouse, as usual in most CAD systems. As the mouse
moves, the viewing parameters are modified continuously
according to the mouse events generated, creating a
smooth animation. Rendering a sophisticated feature
model image at the server, and sending it back to a client,
takes quite some time, which makes it impossible to up-
date the sophisticated image in real time: the time elapsed
between arrival of two successive images at the client
would simply be too long, hindering smooth interaction.

The requirement for graphical interaction led to the intro-
duction of a visualization model, which is a polygon
mesh, generated at the server in VRML format [Ames et

al. 1997], and sent to the client, where it is loaded into a
Java3D scene. Unlike the cellular model on the server, it
contains no information about features, except possibly
different color attributes for faces originating from differ-
ent features. Figure 3 shows a camera window with an
image of a visualization model.

By maintaining the visualization model at the clients,
viewing cameras can be interactively oriented and posi-
tioned in virtual space as follows. As default, a sophisti-
cated feature model image is shown in a camera window,
while the visualization model is hidden. When a mouse
button is pressed on the camera, the sophisticated feature
model image disappears, and the visualization model is
displayed instead. The user can then interactively adjust
the viewing parameters, until the camera has the desired
position and orientation. After being confirmed by the
user, the new camera parameters are sent to the server,
which in turn generates a new sophisticated feature model
image according to the new parameters. This is then de-
livered back to the client, where it is displayed in the
camera window, hiding the visualization model again.

The visualization model only needs to be regenerated by
the server and updated at the clients whenever any user
modifies the product model. Sending the VRML file to
the clients is reasonably cheap in terms of network load
(in the order of 100 Kbytes for a moderately complex
feature model). Taking into account these file sizes, it can
be questioned whether compressing them before trans-
mission to the clients would further improve system
throughput, due to the overhead introduced by the com-
pression and decompression algorithms. It would proba-
bly be more effective to use techniques for incremental or
progressive transmission of the VRML data; see, for ex-
ample, [Gueziec et al. 1999].

Figure 3. Camera window displaying the visualization
model of the part used in Figure 2

49

10º Encontro Português de Computação Gráfica

1-3 de Outubro 2001

4.3. Shared cameras

In a collaborative modeling environment, synchronous
communication channels play an important role. Among
the various techniques available for supporting collabo-
rative modeling work, one of the most effective is the use
of shared cameras. In a shared camera, several distrib-
uted users share the same viewing parameters on the visu-
alized product model. These parameters are permanently
synchronized, so that everytime one user modifies any of
them, the shared cameras of all other users are automati-
cally updated.

In webSPIFF, shared cameras were very easily imple-
mented, because every client already disposes locally of
its own visualization model, introduced in the previous
subsection. The only requirement here is the propagation
to all users of the changing viewing parameters, so that
these can be adjusted for the local shared camera. This is
very effectively handled using the Remote Method Invo-
cation (RMI) facilities of Java, via the Session Manager,
which receives from any client the modified parameters,
and forwards them to the remaining users.

In addition to the above, webSPIFF provides each user of a
shared camera with a personalized telepointer. The tele-
pointers of all participants in a shared camera session are
also constantly updated in all shared cameras. In this way,
e.g. when discussing on some local geometric detail
(typically using some phone conferencing facility), par-
ticipants in a shared camera can always precisely trace
back where each interlocutor is pointing at.

Another advantage of this use of shared cameras within
the multiple-view feature modeling framework of web-
SPIFF is that what each participant sees rendered in his
shared camera is (the visualization model of) his own
view specific feature model. Figure 4 illustrated this,
showing two shared cameras in the same session. The

user in (a) is working on the design view, and hence his
shared camera visualizes the design view of the product
model; the user in (b), however, is working on the manu-
facturing planning view, and sees therefore the feature
model of that view in his shared camera. Although each
one ‘sees’ only feature instances that are meaningful
within his own view on the product, the presence of tele-
pointers facilitates focusing their dialogue on a mutual
region of interest for their discussion.

5. INTERACTIVE SELECTION OF FEATURE
ENTITIES

As explained in Subsection 3.2, an essential characteristic
of the SPIFF system is that its modeling operations are
specified in terms of features and feature faces. The inter-
face of webSPIFF clients provides a panel for the specifi-
cation of feature modeling operations, presenting the re-
quired menus filled with appropriate names (e.g. of all
features, or of all faces of a particular feature). The user
can then browse through these names to specify the oper-
ands of modeling operations, as he might do when work-
ing directly at a CAD station running the SPIFF system.

However, graphical interaction is very useful, not only for
visualization of the product model, as described in Sec-
tion 4, but also for assisting the user in selecting model
entities, specifically for modeling operations. In fact, it is
often much more convenient to graphically select those
entities directly on an image of the visualized product
model than from a menu.

For this, the selection model was introduced at the web
clients. It consists of a set of feature canonical shapes,
each of which comprises a number of uniquely named
entities, in particular the feature faces. Each canonical
shape is generated at the server into a separated file in
VRML format, and loaded into the Java3D scene at the
client.

(a) design view (b) manufacturing planning view

Figure 4. Shared cameras at two users with different views on the same product model

50

10º Encontro Português de Computação Gráfica

1-3 de Outubro 2001

The canonical shapes in the selection model are never
fully displayed simultaneously. Instead, they are kept
invisible in the camera, until the user selects a point with
the mouse. At that moment, a conceptual ray is deter-
mined from the position of the selected point and the
viewing parameters used to generate the image. The fea-
ture faces intersected by the ray are subsequently high-
lighted for possible selection, until the user confirms the
selection of one of them; see Figure 5 for an example.
Notice that in this way also feature faces can be selected
that are (partly or totally) not on the boundary of the re-
sulting object, as shown in Figure 5.(b).

When the camera viewing parameters have been modi-
fied, the canonical shapes of the selection model do not
need to be updated at the client: the only thing needed is
to visualize them according to the new viewing transfor-
mation, similarly to what is done with the visualization
model. A canonical shape only needs to be regenerated by
the server, and reloaded by the client, when the parame-
ters or the position of the corresponding feature are modi-
fied, as a result of some modeling operation. Sending
VRML files of the canonical shapes to the clients is again
cheap in terms of network load (in the order of 5 Kbytes
per canonical shape).

6. CONCLUSIONS

This paper discussed a number of user interaction facili-
ties suitable for web-based, collaborative feature model-
ing. These have been implemented in the new collabora-
tive modeling system webSPIFF, which has a client-server
architecture. The webSPIFF server runs on a HP B180L
Visualise workstation. So far, webSPIFF clients running on
Unix, Windows and Linux platforms have successfully
participated in collaborative sessions. The only require-
ment at the client side is a Java/Java3D-enabled web
browser. The webSPIFF portal has a demo version avail-
able on Internet for users to experiment with, at
www.webSPIFF.org.

webSPIFF provides a powerful framework for investigat-
ing many issues involved in collaborative feature model-

ing systems, including synchronization, concurrency and
user interaction aspects. The proposed distribution of
functionality between the server and the clients has re-
sulted in a well-balanced system. On the one hand, the
full functionality of an advanced feature modeling system
is offered by the server. On the other hand, all desirable
interactive modeling functionality is offered by the cli-
ents, ranging from display of sophisticated images of
feature models to interactive selection facilities. The
Java-based client application is quite simple, and a good
compromise between interactivity on the clients and net-
work load has been achieved.

As Internet technology rapidly improves, faster and better
collaboration becomes possible. It can therefore be ex-
pected that, although the development of collaborative
modeling systems is still at its early stages, such systems
will soon play an important role in the product develop-
ment process.

7. REFERENCES

Ames, A., Nadeau, D. and Moreland, J. (1997) The
VRML 2.0 Sourcebook. Second Edition, John Wiley
& Sons, New York

Autodesk (2000) AutoCAD 2000 Online. Autodesk Inc.,
San Rafael, CA, USA. http://www.autodesk.com

Bidarra, R., van den Berg, E. and Bronsvoort, W.F.
(2001) Collaborative modeling with features. TBP
in: CD-ROM Proceedings of the ASME 2001 De-
sign Engineering Technical Conferences, Pittsburgh,
PA, USA, ASME, New York

Bidarra, R. and Bronsvoort, W.F. (1999) Validity mainte-
nance of semantic feature models. Proceedings of
Solid Modeling '99 – Fifth Symposium on Solid
Modeling and Applications, Bronsvoort, W.F. and
Anderson, D.C (Eds.), ACM Press, NY, pp. 85–96

Bidarra, R. and Bronsvoort, W.F. (2000) Semantic feature
modelling. Computer-Aided Design, 32(3): 201–225

(a) (b) (c)

Figure 5. Selection of the step bottom face using the selection model

51

10º Encontro Português de Computação Gráfica

1-3 de Outubro 2001

Bidarra, R., de Kraker, K.J. and Bronsvoort, W.F. (1998)
Representation and management of feature informa-
tion in a cellular model. Computer-Aided Design,
30(4): 301–313

Bronsvoort, W.F., Bidarra, R. and Noort, A. (2001) Fea-
ture model visualization. Submitted for publication

Chan, S., Wong, M. and Ng, V. (1999) Collaborative
solid modeling on the WWW. Proceedings of the
1999 ACM Symposium on Applied Computing, San
Antonio, CA, pp. 598–602

CoCreate (2000) Shared engineering. http://www.
cocreate.com/onespace/documentation/whitepapers/
shared_eng.pdf

CollabWare (2000) An introduction to GS–Design Beta.
https://www.prodeveloper.net/downloads/whitepaper
.pdf

Comerford, R. (2000) Software, piecewise. IEEE Spec-
trum, 37(2): 60–61

Gueziec A., Taubin, G., Horn, B. and Lazarus, F. (1999)
A framework for streaming geometry in VRML.
IEEE Computer Graphics and Applications, 19(2):
68–78

Hoffmann, C.M. and Joan-Arinyo, R. (1998) CAD and
the product master model. Computer-Aided Design
30(11): 905–918

Kagan, P., Fischer, A. and Bar-Yoseph, P.Z. (1999) Inte-
grated mechanically-based CAE System. Proceed-
ings of Solid Modeling '99 – Fifth Symposium on
Solid Modeling and Applications, Bronsvoort, W.F.
and Anderson, D.C (Eds.), ACM Press, NY, pp. 23–
30. Also in: Computer-Aided Design, 32(8/9): 539–
552

Kaon (2001) HyperSpace-3DForum. Kaon Interactive
Inc., Cambridge, MA, USA. http://www.kaon.com

de Kraker, K.J., Dohmen, M. and Bronsvoort, W.F.
(1997) Maintaining multiple views in feature mod-
eling. Proceedings of Solid Modeling '97 – Fourth
Symposium on Solid Modeling and Applications,
Hoffmann, C.M. and Bronsvoort, W.F. (Eds.), ACM
Press, NY, pp. 123– 130

Lee J.Y., Kim, H., Han, S.B. and Park, S.B. (1999) Net-
work-centric feature-based modeling. Proceedings
of Pacific Graphics '99, Kim, M.-S. and Seidel, H.-
P. (Eds.), IEEE Computer Society, CA, pp. 280–289

Lewandowski, S. (1998) Frameworks for component-
based client/server computing. ACM Computing
Surveys, 30(1): 3–27

Nam, T.J. and Wright, D.K. (1998) CollIDE: A shared 3D
workspace for CAD. Proceedings of the 1998
Conference on Network Entities, Leeds. http://
interaction.brunel.ac.uk/~dtpgtjn/neties98/nam.pdf

Parametric (2000) Pro/ENGINEER 2001i. Parametric
Technologies Corporation, Waltham, MA, USA.
http://www. ptc.com

Stork, A. and Jasnoch, U. (1997) A collaborative engi-
neering environment. Proceedings of TeamCAD '97
Workshop on Collaborative Design, Atlanta, GA,
pp. 25–33

Spatial (2000) ACIS 3D Modeling Kernel, Version 6.2.
Spatial Technology Inc., Boulder, CO, USA.
http://www.spatial. com

Sun Microsystems (2000) The Sun Java Technology
Homepage. http://java.sun.com

52

10º Encontro Português de Computação Gráfica

1-3 de Outubro 2001

