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ABSTRACT

Empirical studies concerning face recognition suggest that faces may be stored in memory by a few canonical
representations. In cortical area V1 exist double-opponent colour blobs, also simple, complex and end-stopped cells
which provide input for a multiscale line/edge representation, keypoints for dynamic routing and saliency maps for
Focus-of-Attention. All these combined allow us to segregate faces. Events of different facial views are stored in memory
and combined in order to identify the view and recognise the face including facial expression. In this paper we show that
with five 2D views and their cortical representations it is possible to determine the left-right and frontal-lateral-profile
views and to achieve view-invariant recognition of 3D faces.

Categories and Subject Descriptors (according to ACM CCS): I.5.5 [Pattern Recognition]: Implementation—Special archi-
tectures

1. Introduction

One of the most important topics of image analysis is face
detection and recognition. There are several reasons for this,
such as the wide range of commercial vigilance and law-
enforcement applications. Face recognition is one of the
most important capabilities of our visual system. Informa-
tion about a person’s gender, ethnicity, age and emotions
contribute to the recognition process. For instance, in court,
a lot of credibility is placed on identifications made by eye-
witnesses, although numerous studies have shown that peo-
ple are not always reliable sources when comparing faces
with recollections [SCVC10].

Recently, because of the limitations of 2D approaches and
with the advent of 3D scanners, face recognition research has
shifted from 2D to 3D with a concurrent improvement in per-
formance. There are many face-recognition methods in 2D
and 3D; for detailed surveys see [BCF06,ARS07]. Recently,
Rashad et al. [RHSE09] presented a face recognition system
that overcomes the problem of changes in facial expressions
in 3D range images by using a local variation detection and
restoration method based on 2D principal component analy-
sis. Ramirez-Valdez et al. [RVHB09] also related 3D facial
expression to recognition. Berretti et al. [BDBP10] took into
account 3D geometrical information and encoded the rele-
vant information into a compact graph representation. The
nodes of the graph represent equal-width iso-geodesic facial
stripes. The edges between pairs of nodes are labeled by de-
scriptors, and referred to as 3D weighted walkthroughs that
capture the mutual relative spatial displacement between all
node pairs in the corresponding stripes.

State-of-the-art recognition systems have reached a cer-

tain level of maturity, but their accuracy is still limited when
imposed conditions are not perfect: problematic are all pos-
sible combinations of changes in illumination, pose and age,
with artefacts like beards, moustaches and glasses, includ-
ing different facial expressions and partial occlusions. The
robustness of commercial systems is still far away from that
of the human visual system, especially when dealing with
different views of the same person. For this reason, despite
the fact that the human visual system may not be 100% ac-
curate, the development of models of visual perception and
their application to real-world problems is important and,
eventually, may lead to a significant breakthrough.

2. Cortical background

Face perception in humans is mediated by a distributed neu-
ral system which links multiple brain regions. The functional
organisation of this system embodies a distinction between
the representation of invariant aspects of faces, which is the
basis for recognising individuals. A core system, consist-
ing of occipitotemporal regions in extrastriate visual cor-
tex, mediates visual analysis of faces [HHM02]. Face and
object detection, categorisation and recognition can be ob-
tained by means of bottom-up and top-down data streams in
the so-called “what” and “where” subsystems [DR04], in-
cluding the integration of both subsystems [Far09]. In cor-
tical area V1 there are simple and complex cells, which
are tuned to different spatial frequencies (scales) and ori-
entations, but also disparity (depth) because of neighbour-
ing left-right hypercolumns [Hub95]. These cells provide
input for grouping cells which code line and edge infor-
mation [RdB09b] and attribute depth information [RdB04].
In V1 there are also double-opponent colour blobs [TFB00]
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and end-stopped cells which, together with complicated in-
hibition processes, allow to extract keypoints (singularities,
vertices and points of high curvature) [F. 92, RdB06b] and
optical flow [FRdB11].

On the basis of these models and neural process-
ing schemes, it is now possible to create a corti-
cal architecture bootstrapped by global and local gist
[MRdB09, RdB11], with face and figure-ground segrega-
tion [RdB06b,RdB09b,FRdB11], Focus-of-Attention (FoA)
[RdB06b,MRdB09], face/object categorisation and recogni-
tion [RdB06b, RdB09b], including recognition of facial ex-
pressions [SRdB10].

There are several open questions related to the perception
and recognition of faces in the brain. One of those is which
and how many templates do we store of a person’s face, and
how those templates are related to create the notion of a 3D
face in our brain. In this paper we focus on a cortical model
for 3D face recognition. The present model is based on a
previous one [RdB09b] which employs multiscale line/edge
representations and keypoints based on cells in area V1 of
the visual cortex. That model was shown to give good results
for frontal and frontal-to-3/4 views, also with small occlu-
sions. In the present paper we go much further. We test faces
with any degree of rotation (y-rotated ±90o, pan; x-rotated
±10o, tilt), the number of 2D templates needed to represent
a 3D face, the relation between them, and the detected view
(left-right and profile-lateral-frontal).

The rest of this paper is organised as follows: In Section 3
the keypoint, line and edge extractions with the construction
of the saliency maps for FoA are explained. Section 4 ex-
plains the face recognition model. Experimental results and
discussion are reported in Section 5, and we conclude in Sec-
tion 6.

3. Multiscale line, edge, keypoint and saliency maps

There is extensive evidence that the visual input is processed
at different spatial scales, from coarse to fine ones, and
both psychophysical and computational studies have shown
that different scales offer different qualities of information
[Bar04, OT06].

Gabor quadrature filters provide a model of cortical sim-
ple cells [RdB06b]. In the spatial domain (x,y) they consist
of a real cosine and an imaginary sine, both with a Gaussian
envelope. A receptive field (RF) is denoted by

Gλ,σ,θ,ϕ(x,y) = exp

(
− x̃2 + γỹ2

2σ2

)
· cos

(
2πx̃
λ

+ϕ
)
,

with x̃ = xcosθ+ ysinθ and ỹ = ycosθ− x sinθ, the aspect
ratio γ = 0.5 and σ the size of the RF. The spatial frequency
is 1/λ, with λ being the wavelength. For the bandwidth σ/λ
we use 0.56, which yields a half-response width of one oc-
tave. The angle θ determines the orientation (we use 8 orien-
tations), and the phase ϕ the symmetry (0 or −π/2). Below,
the scale of analysis will be given by λ expressed in pixels,
where λ = 1 corresponds to 1 pixel. All tested images have
256×256 pixels.

Responses of even and odd simple cells, which corre-
spond to real and imaginary parts of a Gabor kernel, are
obtained by convolving the input image with the RFs, and
are denoted by RE

s,i(x,y) and RO
s,i(x,y), s being the scale, i the

orientation (θi = iπ/Nθ) and Nθ the number of orientations
(here 8) with i = [0,Nθ −1]. Responses of complex cells are
then modelled by the modulus

Cs,i(x,y) = [{RE
s,i(x,y)}2 +{RO

s,i(x,y)}2]1/2.

A basic scheme for line and edge detection (LEs) is based
on responses of simple cells: a positive (negative) line is de-
tected where RE shows a local maximum (minimum) and
RO shows a zero crossing. In the case of edges, the even
and odd responses are swapped. This gives four possibili-
ties for positive and negative events (polarity). An improved
scheme [RdB09b] consists of combining responses of simple
and complex cells, i.e., simple cells serve to detect positions
and event types, whereas complex cells are used to increase
the confidence. Lateral and cross-orientation inhibition are
used to suppress spurious cell responses beyond line and
edge terminations, and assemblies of grouping cells serve
to improve event continuity in the case of curved events.

At each (x,y) in the multiscale line and edge event space,
four gating LE cells code the 4 event types: positive line,
negative line, positive edge and negative edge [RdB09b].
These are coded by different levels of gray, from white to
black, in the 3rd row of Fig. 1. It shows 3 scales of the face
in the 2nd row, middle column. For the results presented in
this paper we used λ = [4,24] and Δλ = 1, scale s = 1 corre-
sponding to λ = 4. With this LEs information plus the low-
pass information available through special retinal ganglion
cells [Ber03], we can reconstruct in our visual system the
face; for details and illustrations see [RdB09b].

Keypoints are based on end-stopped cells [RdB06b]. They
provide important information because they code local im-
age complexity. There are two types of end-stopped cells,
single (S) and double (D). If [·]+ denotes the suppression of
negative values, then

Ss,i(x,y) =

[Cs,i(x+dSs,i,y−dCs,i)−Cs,i(x−dSs,i,y+dCs,i)]
+

and

Ds,i(x,y) =

[Cs,i(x,y)−
1
2

Cs,i(x+2dSs,i,y−2dCs,i)−
1
2

Cs,i(x−2dSs,i,y+2dCs,i)]
+

with Ci = cosθi and Si = sinθi.

The distance d is scaled linearly with filter scale s: d =
0.6s. All end-stopped responses along straight lines and
edges are suppressed, for which tangential (T ) and radial (R)
inhibition, Is = IT

s + IR
s , are used [RdB06b]. Keypoints are

detected by the local maxima of Ks(x,y) in x and y, where

Ks(x,y) =

max{
Nθ−1

∑
i=0

Ss,i(x,y)−gIs(x,y),
Nθ−1

∑
i=0

Ds,i(x,y)−gIs(x,y)},

with g ≈ 1.0. Keypoints are shown by the diamond shapes
in the 4th row of Fig. 1, at the same scales as the LEs in-
formation in the 3rd row. For a detailed explanation with
illustrations see [RdB06b].

The “what” and “where” subsystems are steered, top-
down, on the basis of expected faces or objects and positions
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in the prefrontal (PF) cortex [DR04]. Our eyes are constantly
moving in order to suppress static projections of blood ves-
sels etc. in our retinae. During a fixation, stable information
propagates from the retinae via the LGN to V1, where first
features are extracted, and then, also during the next saccade,
to higher areas. Fixation points in regions where complex
and therefore important information can be found are much
more important than points in homogeneous regions. Focus-
of-attention, for guiding the where system in parallel with
the steering of our eyes, is thought to be driven by an atten-
tion component in the PF cortex because of overt attention:
while strongly fixating our eyes to one point, we can direct
mental attention to points in the neighbourhood [PLN02].

For modeling FoA we need a map, called saliency map
S, which indicates the most important points to be analysed
(fixated). We propose a simple scheme based on the mul-
tiscale keypoint representation, because keypoints code lo-
cal image complexity. The activities of all keypoint cells at
position (x,y) are summed over scales s by grouping cells,
assuming that each keypoint has a certain Region-of-Interest
(RoI). The size of this is coupled to the scale (size) of the un-
derlying simple and complex cells. At positions where key-
points are stable over many scales, this summation map will
show distinct peaks at the centres of faces, also at important
facial and contour landmarks. This data stream is data-driven
and bottom-up, and could be combined with top-down pro-
cessing from the inferior-temporal cortex in order to actively
probe the presence of faces (or facial landmarks) and objects
in the visual field [DR04]. The bottom row of Fig. 1 shows
the saliency maps of the face views on the 2nd row. For more
details and illustrations see [RdB06b].

For illustration purposes and tests we used the “Gav-
abDB” 3D face database [MS04]. It contains 549 three-
dimensional images of facial surfaces. These meshes cor-
respond to 61 different individuals (45 male and 16 female)
with 9 meshes of each person. All individuals are Caucasian
and their age is between 18 and 40 years. Each image is
given by a mesh of connected 3D points of the facial surface
without texture. The database provides systematic variations
with respect to pose and facial expression. In particular, the 9
images corresponding to each individual are: 2 frontal views
with neutral expression; 2 x-rotated views (±30o, looking
up and looking down respectively) with neutral expression;
2 y-rotated views (±90o, left and right profiles respectively)
with neutral expression; and 3 frontal non-neutral expres-
sions (laugh, smile and a random one chosen by the individ-
ual).

Figure 1 shows on the top row two expressions of the
same face with the possible rotation intervals. The second
row shows, from left to right, five 2D views, i.e., left pro-
file, left lateral, frontal, right lateral and right profile of the
y-rotated neutral face. The following rows illustrate the mul-
tiscale feature extractions described in this section, but only
at three of all scales, λ = {4,12,24}.

4. Face recognition framework

Humans detect a face in a wide range of conditions, such
as poor lighting and/or distances. Colour is one of the pri-
mary attributes in detection, but needs to be integrated with
other attributes like keypoints for the detection of facial land-
marks and their geometric relationships [RdB06b]. There

Figure 1: Top row: two expressions of the same face with
possible rotation intervals. Second row: profile, lateral and
frontal 2D views of the neutral face (y-rotated). Third
row: multiscale line and edge coding at three scales λ =
{4,12,24} of the frontal face view on the 2nd row. Fourth
row: detected keypoints at the same scales. The bottom row
shows saliency maps of the 2D views on the 2nd row.

are several methods based on skin colour for face detec-
tion [KMB07]. Agbinya and Silva [AS05], although without
a biological background, presented interesting results. Their
method is now being implemented by using a biologically-
inspired representation based on double-opponent colour
blobs in V1 [TFB00], also combining other attributes to
achieve accurate face segregation.

These authors propose segmentation of skin colour by fil-
tering the colours of all pixels in HSV colour space. First,
they compute the probability of each pixel belonging to skin,
using a number of samples of skin colours. This informa-
tion is aggregated and thresholds are used to create binary
images in which each zone is independently tagged. In the
next step—they only considered frontal views—to each zone
containing at least two holes (the eyes) a face template is ap-
plied and checked for subsequent validation.

At the end of this process, face segregation is achieved
using only the skin region and its location. As face segre-
gation is beyond the scope of this paper, we consider faces
that are already segregated, as in the “GavabDB” database.
The scheme presented below is a simplification, because in
real vision the system starts first with a categorisation, for
example on the basis of the colour of the hair or gender.
After having a first gist, the system will dynamically select
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(in PF cortex) a group of possible templates, optimising the
recognition process by changing parameters. Here we skip
categorisation and focus on recognition. For this reason we
consider all faces in our database as possible templates.

From the “GavabDB” database we randomly selected 10
individuals. Of each individual we took one 3D mesh with
neutral expression to create five 2D views; see examples
on the 2nd row in Fig. 1 and the top three rows in Fig. 3.
These are used as templates stored in memory: frontal, lat-
eral (±45o y-rotated) and profile (±90o y-rotated); see also
[VAE97]. For testing and for each face, 10 random images of
each face were selected, considering: a) neutral or different
expression, but discarding extreme expressions; b) any de-
gree of y-rotation (pan); c) a maximum x-rotation of ±10o

(tilt); and d) a maximum z-rotation of ±2o. Images with the
same rotation angles as the templates were excluded.

For each face, the templates stored in PF cortex are:
the LEs maps (in the present tests, 20 scales) with events
characterised by type and polarity (4: line/edge and posi-
tive/negative) for each view (5: frontal, lateral right/left and
profile right/left), and the multiscale KPs maps (the same 20
scales used for LEs). The last are used in conjunction with
other processing schemes for dynamic routing to achieve
normalisation of the pair to be matched (“face”/template)
[RdB09a]. Figure 2 shows on the first 2 rows part of the
templates stored in memory, in the case of the frontal view
shown in Fig. 1: left to right, the multiscale KPs and LEs
maps at 5 of the 20 scales, equally spaced from fine to coarse
scales on λ ∈ [4,24]). The 3rd row shows examples of faces
to be recognised. The fourth and fifth row show, for the left-
most image on the second row marked by a red quare, the
multiscale KPs and LEs at the same scales as in the 1st row.
The bottom row shows the summed KPs map with the accu-
mulated keypoints (see below) marked in red. Also marked
(in green) are the limits of the segregated face. On the right
is the saliency map with the combined RoIs in white. The
model consists of the following steps:

(A) Segregate the face from the scene: This step con-
sists of extracting the region where there is a face, for in-
stance using colour information as briefly explained above.
For small faces and/or rotated (z-rotated) faces, size normal-
isation can be achieved by dynamic routing, see [RdB09b].
Here the faces are already segregated and normalised.

(B) Multiscale keypoint and line/edge detection: For
each input face we compute the keypoints, and lines and
edges with their polarity. We use 20 scales λ = [4,24] with
Δλ = 1.

(C) Determine the view of the input face: We com-
pute the accumulated keypoints or AKPs. The AKPs are
computed as follows: at each (x,y) in the multiscale key-
point space, detected keypoints are first summed by group-
ing cells over all 20 scales, mKP = ∑s KPs. Then, by using
two other grouping cells with large dendritic fields (DFs)
the size of the segregated face, all existing mKP are summed
over x and y, AKPx = ∑x mKP ∗ x and AKPy = ∑y mKP ∗ y.
The two AKPs yield a single central position with coordi-
nates x and y: (x,y)AKP = (AKPy/m̃KP,AKPy/m̃KP) where
m̃KP = ∑DF mKP. The AKP position is marked in red in
Fig. 2 (bottom-left).

From the mKP map we compute the minimum and max-
imum coordinates in x and y, denoted by CKPmin/max,x/y.

Figure 2: Top two rows, left to right: fine to coarse scales of
the KPs and LEs maps stored in memory in the case of the
frontal view shown in Fig. 1. Third row: examples of faces
to be tested. Fourth and fifth rows: KPs and LEs of the face
marked by a red square in the 3rd row. Bottom row: the AKP
marked in red on the left and saliency map on the right.

These are the first and last position in x and y where mKP
has at least a value of 2; they are marked in green in Fig. 2
(bottom-left). This means that at least two keypoint cells
must have responded at the same position. With this infor-
mation we can compute the aspect ratio AR of the input face.
Mathematically

AR =
CKPmax,x −CKPmin,x

CKPmax,y −CKPmin,y
.

(C-i) Six gating cells are used to select the face view:
frontal if AR =]0.61,1], frontal-lateral if AR =]0.50,0.61],
lateral-frontal if AR =]0.40,0.50], lateral-profile if AR =
]0.33,0.40], profile-lateral if AR =]0.31,0.33] and profile if
AR=]0,0.31]. These values were determined using the infor-
mation from the templates, i.e., the ARs of the frontal, lateral
and profile views were computed for each template and the
average of all templates with the same view was calculated.
The different levels of views were equally spaced between
the anchor thresholds.

(C-ii) Two gating cells are used to select the lateral side:
a face is seen from the right if coordinate AKPx is closer to
CKPmax,x or from the left if it is closer to CKPmin,x.

The above processes may occur mainly in the dorsal
where stream, i.e., the occipito-parietal area which exhibits
object-selective responses and many 3D cues of shape, and
can relay the information to cue-invariant and view-invariant
representations in the ventral what stream [Far09].
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(D) Construction of saliency and symbolic represen-
tation maps: For each input image we build the saliency
map as explained in Section 3, and the symbolic representa-
tion maps where events (positions) are expanded by Gaus-
sian cross-profiles (lines) and bipolar, Gaussian-truncated
errorfunction profiles (edges). The sizes of these are cou-
pled to the scale of the underlying simple and complex cells;
see [RdB06a] for details and illustrations.

(E) Recognition process: We assume that templates
(views) of faces are stored in memory and that these have
been built through experience. Each face template in mem-
ory is represented by 5 views times 20 scales times 4 types
of events (line/edge, positive/negative), which involves 400
maps.

The recognition scheme compares representations of in-
put images (in the database) with those of templates (in
memory). Depending on the input face view selected in step
(C), the two more similar views of the templates are selected
and weighted. If the input face is classified as frontal, the
two selected templates are: the frontal and—depending on
the detected face side, for instance the right one—the lateral-
right template. The weight of each template is determined as
a function of the aspect ratio AR, as shown in Tab. 1; the
values of A and B etc. are shown in Tab. 2.

At each scale (duplicated for the two selected views’ tem-
plates), events in the 4 representation maps of the input im-
age are compared with those in the corresponding maps of
the templates, but only in the regions where the saliency map
of the input image is active. These are the white regions
in Fig. 2 (bottom-right). Event co-occurrences are summed
by grouping cells, which is a sort of event-type and scale-
specific correlation. The outputs of the 4 event-type group-
ing cells are summed by another grouping cell (correlation
over all event types). The global co-occurrence is determined
by one more grouping cell which sums over all scales. A
final grouping cell sums the results of the two views. The
template (of the combined two views) with the maximum is
selected by non-maximum suppression.

The multiscale line/edge representation is being exploited
because this characterises facial features. Saliency maps
which have been used for Focus-of-Attention are used to
“gate” detected lines and edges in associated RoIs. This re-
sembles the bottom-up data streams in the where (FoA) and
what (lines/edges) subsystems. However, it remains a sim-
plification because processing is limited to cortical area V1,
whereas in reality the two subsystems contain higher-level
feature extractions in areas V2, V4, etc. [Ham05]. The same
way, top-down data streams are simplified by assuming that
face templates held in memory are limited to lines, edges
and keypoints, and 2D canonical views are limited to frontal
plus left/right lateral and left/right profile.

5. RESULTS AND DISCUSSION

For testing the model we used 100 images, 10 views per per-
son, with different expressions (including the neutral) and
also with different degrees of rotation: x axis [−10o,+10o],
y axis [−90o,+90o] and z axis [−2o,+2o]. Figure 3 shows
representative examples on the bottom three rows.

We tested the algorithm for: (a) The correct face side
(left/right), which yielded a result of 99%. (b) The correct

input face Templ. view 1weightTempl. view 2weight
Frontal R/L Frontal A Lateral R/L 1-A

Frontal-Lateral R/L Frontal B Lateral R/L 1-B
Lateral-Frontal R/L Lateral R/L C Frontal 1-C
Lateral-Profile R/L Lateral R/L C Profile R/L 1-C
Profile-Lateral R/L Profile R/L B Lateral R/L 1-B

Profile R/L Profile R/L A Lateral R/L 1-A

Table 1: Weights applied to each template view as a function
of the view assigned to the input image. Right is denoted by
R and left by L.

view must correspond to one of the three categories frontal,
lateral or profile. For this we considered that an image re-
turning frontal or frontal-lateral fits the frontal class, lateral-
frontal and lateral-profile fit the lateral class, and profile and
profile-lateral fit the profile class. The overall recognition
rate was 93%, with the following misclassifications: 3% lat-
eral assigned to profile and 4% profile assigned to lateral.

We also tested (c) different numbers of templates and dif-
ferent weights of the pairs of template views. The best result
of 91% was achieved using the 5 views (templates) of each
face, combined in pairs of two in function of the the input
view (see Tab. 1), with A = 0.8 and B =C = 0.6. These three
parameters fine-tune the model and should change from face
to face in function of the initial gist, the gender and facial ex-
pression etc. This dynamic weighting remains to be imple-
mented. Table 2 summarises the most important tests, using
either two combined views for each template face or a single
view.

We must briefly explain how the tests reported in Tab. 2
were conducted. In the cases of “single view” step C (de-
termine the view of the input face) was removed from the
model. In the cases of “two views” frontal & lateral or frontal
& profile, only the right/left detection of step C was applied,
with both views equally weighted. In the case of “two views
- f(input)" the entire model was applied. From the results we
can see that using a single frontal view (56%) is not enough
to recognise a face in different views. Nevertheless, using
two views (frontal & lateral) plus the face side and 3 tem-
plates per face (frontal, lateral-right and -left), the results
approach the best result achieved. As expected, this means
that 5 templates give the best characterisation of the differ-
ent face views, but if the view selection is undetermined or
fuzzy, the most important templates to be used are the frontal
and lateral ones.

It is possible to compare our results with those of
other models which were tested on the GavabDB database.
Moreno and Sanchez [MS04], who created GavabDB, de-
veloped a feature-based model and reported a recognition
rate of 78.0%. Celenk and Aljarrah [CA06] projected the
face scans to 2D range images and applied a PCA approach,
achieving 92.0%. In their work only frontal projections of 60
persons were tested, the same projections as used in [LJZ09],
but now with a recognition rate of 94.7%. Li et al. [LJZ09]
also reported results from 4 more authors who used the same
database, the results ranging from 83.0% to 91.0%. Rashad
et al. [RHSE09] used 427 surface images of all 61 persons
in the database, and achieved a recognition rate of 80.3%.

Although only based on 10 randomly selected persons
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templates weights results
two views- f(input) A=0.8;B=0.6;C=0.6 91%
two views- f(input) A=0.5;B=0.5;C=0.5 90%
two views- f(input) A=0.9; B=0.2; C=0.6 90%

two views- frontal & lateral 0.5 88%
two views- frontal & profile 0.5 73%

single view- frontal – 56%
single view- lateral R/L – 58%/23%
single view- profile R/L – 37%/27%

Table 2: Results using different weights for two views and
using a single view; see text.

from all 61 in the database, our best result of 91% is close
to the best results achieved by the other groups, despite the
fact that most only considered frontal views. In addition, our
method is the only biologically-inspired one which can cope
with different views of the same person.

Figure 3: Examples of other templates (top 3 rows) and
tested faces (bottom 3 rows).

6. Conclusions

We presented a bio-inspired face-recognition model
that can determine the side (left/right) and the view
(frontal/lateral/profile) of a face to be recognised, as well as
recognise faces with different views and facial expressions.
Nevertheless, the model presented is a simplification, be-
cause in real vision the system starts with a first segregation
and categorisation, for example on the basis of the colour of
the hair and skin. After having a first gist (a group of possi-
ble face templates), the system will dynamically select the
template views according to the view of the input face, and
optimise the recognition process by changing parameters
in relation to the gender and facial expression, etc. In view
of the tremendous amount of data already involved in our

simple experiments, the entire system has been developed
in different modules which will be integrated in the future
with GPU processing.

The system achieves good results mainly because the
line/edge representation at coarser scales provides a stable
abstraction of facial features. This explains, at least partly,
the generalisation that allows us to classify faces with dif-
ferent expressions and views. The problem of normalisation,
which is not addressed here, can be solved by using a seg-
regated face based on colour with detected keypoints and
dynamic routing [RdB06b]. Keypoints can be used to de-
termine facial landmarks (eye, nose, mouth), which was al-
ready implemented and tested for frontal views [RdB06b]. In
this paper we also showed that keypoints can also determine
the view of the face. A complementary approach is to com-
pute the disparity, distances, angles and areas between points
on the 3D facial surface. This procedure can also guarantee
that templates in memory are really representative.

An interesting aspect for future research is the incorpo-
ration of age and biometric differences (e.g. gender, colour
of the skin, age, birth marks, etc.), also expression classifi-
cation already achieved by using multiscale lines and edges
[SRdB10]. As for now, face recognition with extreme ex-
pressions or newly grown beards etc. remains a big chal-
lenge. Furthermore, occlusions caused by objects like sun-
glasses must be addressed in a systematic way.

Despite the problems and possible solutions mentioned
above, the results obtained are very encouraging. We expect
significant improvements by implementing a dynamic sys-
tem, in which successive tests are performed each time that
more complete information is available, starting at coarse
scales and adding then finer scales, such that all effort can
be spent on scrutinising the images which have not yet been
identified with absolute certainty. This procedure simulates
the processing in the bottom-up and top-down data streams
in the what and where subsystems of our visual system.
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