

Parallel Collision Detection Oriented to Distributed Memory

Architectures for High-Resolution Meshes

Marcos Novalbos* and Alberto Sánchez

ETSII, Universidad Rey Juan Carlos, Madrid, Spain

*
 Corresponding author

ABSTRACT

 Higher resolution meshes should be used in graphics applications to make them as realistic as they can. However,

they imply a high computational. Several approaches have been built to solve collision detection, although most of

them do not take into account this feature. This paper presents a scalable parallel algorithm for collision detection

designed for working with high resolution meshes. The algorithm is based on distributed memory architectures

taking advantage of their benefits and overcoming their drawbacks.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Parallel processing).

1. Introduction

The goal of most graphics applications is to create

images that are as realistic as possible. Moreover, current

animated graphics, such as games, animation movies,

special effects, etc. are focused on this idea. There is a

relation between realism and render time. Thus, in most

cases where a fast answer is required, this means focusing

on real-time handling incorporating character animation

and physics simulation. This limits the realism that can be

obtained. In other cases where real time is not a must,

higher resolution meshes are used in order to make it as

realistic as they can. Scene objects are represented as sets

of triangles whose number depends on the amount of detail

needed. Nevertheless, too much time is required to render

these models and work with them.

Collision detection is a fundamental technique used by

several graphic applications. High-resolution meshes imply

a high computational cost to simulate and detect collisions.

In this sense, many researchers have chosen using low-

resolution meshes -e.g. [GKJ*05, SGG*06, VM06]

simulate only a few amounts between 5 and 80 thousand

triangles-. Most simulation techniques could fail if mesh

resolution is increased because of two problems:

robustness and tractability [SSIF09].

This article is aimed at improving the collision detection

time for high resolution meshes. Collision detection

techniques were traditionally run using a single processor.

Nowadays some parallel high performance alternatives

have been proposed mainly by using shared memory

multicore architectures [TPB07, TMT09, KHY09]

Our proposal is to cover other architectures to exploit

their benefits. We propose a load-balancing detection

collision algorithm between different objects represented

by high-resolution meshes using distributed memory

systems.

2. Related work

Collision detection is a key element to provide efficient

and realistic computer graphics. Nowadays there are

several initiatives focused on providing parallelism to

collision detection techniques to improve the performance

of the graphic process. These algorithms depend on the

parallel infrastructure where they are applied. Thus this

dependency could cause non-scalability performance.

These works can be easily divided by the high performance

architecture where parallelism is applied.

Several research works [LL02, TPB07, TMT09,

KHY09] use shared memory systems as architecture where

the parallel algorithms are develop. For instance, [TMT09]

presents a parallel algorithm for continuous collision

detection between deformable models using bounding

volume traversal tree. Furthermore they use a Bounding

Volume Test Tree (BVTT) front in parallel exploiting the

temporal coherence. But the BVTT front only works

properly when it is used in scenes that keeps temporal

coherency.

Others authors have used GPUs [SGG*06, LGS*09] and

hybrid systems [KHH*09] to improve the collision

detection performance. For instance, [KHH*09]

parallelizes the collision tree navigation in shared-memory

systems and use the GPU to make the triangle tests. This

method avoids problems with scenes that do not keep

temporal coherency. Its implementation shows better

performance results compared to [TMT09]. Furthermore,

its load balancing shows a good scalability when it works

with Uniform Memory Access (UMA) architectures.

V Ibero-American Symposium in Computers Graphics – SIACG 2011
F. Silva, D. Gutierrez, J. Rodríguez, M. Figueiredo (Editors) 157

V Ibero-American Symposium in Computers Graphics – SIACG 2011

Finally, there are only a few works that have been used

distributed memory systems [GW07, SSI*09] because this

kind of architectures implies a bottleneck in the

communications between processes. Our proposal selects

this last alternative taking advantage of their benefits and

overcoming their drawbacks. As [SSIF09], we take

advantage of the scalability capacity of these systems to

deal with high-resolution meshes. However, both

approaches are different. Whereas in [SSIF09], the authors

distribute mesh pieces between nodes, we propose that all

nodes have a complete copy of the mesh only sharing the

results regarding the triangles that have collided. For them,

their approach means a high cost to update the border mesh

pieces shared between nodes. In addition, their evaluation

shows that their results scaled to 4 threads (this may be due

to the use of a quad-core with shared memory). When the

interconnection network is required, this solution does not

properly scale.

3. Algorithm

We propose a parallel collision detection algorithm

focused in scalability and efficiency for Non Uniform

Memory Access (NUMA) architectures. As starting point,

we have used the algorithm HPCCD proposed by Kim et

al. [KHH*09]. Although this algorithm was developed for

hybrid (CPUs and GPU) systems we have adapted it to

distributed memory architectures, including load balancing.

The HPCCD algorithm takes advantage of the shared

memory architecture to share data. Threads use global

variables and queues to share their workload and distribute

it in a load balanced way. In distributed memory

architectures, it should be advisable to use cache structures

to bring closer data avoiding remote access. If any process

modifies data, there is then a consistency problem, and the

cache must be updated. Cache updating and memory

management has a high computational cost. It is required

thus to design cache-friendly parallel algorithms

minimizing the number of shared memory accesses and

updates.

Our algorithm avoids shared memory updates keeping a

copy of the whole meshes close to the process that requires

them. Every process accesses the local copy to work with

it, and it shares with the other processes its results. Every

process is running in an isolated computational node, so it

cannot access to other node data unless data is sent. For

doing this, we have developed a protocol to synchronize

every process. A single node acts as a master distributing

the workload between the other nodes in a load balanced

way.

We use two kinds of processes:

Working nodes: these processes perform the actual

collision tests. They keep a complete copy of the meshes,

so they can start a collision test at any point given two

nodes of a Bounding Volume Hierarchy (BVH). When the

simulation starts, they ask the query server for a “test” job,

and then they analyze this job creating new sub-jobs. When

they have no more tests, they ask again to the query server.

Also, they can share their unfinished jobs with idle nodes.

Once the collision test finishes, every working node shares

the triangle ID pairs that were detected in collision. Each

working node can calculate the new vertices position for

every mesh in the scene, by doing the same physic

simulation to avoid sharing parts of the scene between

working nodes

Query server: This process contains the first test jobs to

share between the working nodes. It also keeps an updated

list that shows the workload of every working node. When

the simulation starts, it receives requests from the working

nodes. Then, it sends the previously queued collision test.

Once the job queue is empty, it answers the requests by

sending a message to the most loaded working node. The

selected node will share its job with the idle node. As the

query server does not know the actual workload of the

nodes, it tries to guess the most loaded node. If this

decision fails, it will search a new working node. If all

nodes are idle, the collision test is finished and it will send

an end flag to the working nodes.

4. Evaluation

This section analyzes in depth the different benefits of

the proposed approach. This analysis aims at demonstrating

the efficiency and scalability of this proposal for high-

resolution meshes on distributed memory architectures in

different scenarios.

In this case, the work environment is designed to test the

benefits of the proposal on distributed memory vs. shared

memory architectures. Thus, a NUMA environment has

been selected. Specifically, a SGI PRISM machine with 16

Intel Itanium processors and 32GB of RAM memory,

arranged in 8 biprocessor nodes with 4 GB of RAM

memory each connected by a NUMALink network, has

been used. This system can be used as both a 32 GB shared

memory machine being programmed with any thread

library or a cluster with 8 nodes with 4 GB of RAM and 2

cores each. In case of using it as a shared memory machine,

data is spread along the 8 nodes knowing that any process

running is able to access any other node’s memory.

In order to compare the results, we have implemented

both HPCCD parallel collision detection algorithm for

shared memory and our algorithm for distributed memory

on the previous environment. HPCCD algorithm has been

implemented using pthread library, whereas our proposal

uses MPI as the message library interface.

We focus our simulations in collision detection tests,

without implementing a complete physic simulation, i.e.

our simulations consist of detecting which pair of triangles

is colliding, and then using a set of prerecorded simulations

that emulates the physical response. Every frame is read

from a file and then the object’s BVH is updated. We only

are aware of the triangles that are in collision in the given

frame of animation, without performing a complete

continuous collision detection. Our MPI implementation

shares its collision test results sending a list with pairs of

triangle id which represents the triangles that collide. In

this way, every node is able to solve the collision in a real

physic environment.

158 M. Novalbos and A. Sánchez / Parallel Collision Detection Oriented to Distributed Memory Architectures

V Ibero-American Symposium in Computers Graphics – SIACG 2011

The first scenario consists of a low-resolution cloth

composed of 91,470 triangles falling over a ball of 760

triangles. Figure 1 shows the collision detection times with

both algorithms.

Figure 1: Comparison between the collision detection

times of HPCCD and the proposed collision detection

algorithm for scenario1

In this scenario, we observe that the HPCCD parallel

collision detection algorithm does not obtain any

improvement. This is due to the NUMA memory accesses

and updates from every processor. Every thread accesses

the shared mesh triangles, causing data communication

between the memories of the processors. Therefore the

parallel collision algorithm does not scale.

Our proposal obtains better simulation times. The

collision test times are reduced when new working nodes

are added, although the simulation time increases because

of the update times (but still, it is smaller than in HPCCD).

Also, a small time is required to share the results between

the nodes. When new working nodes are added, it is

necessary to send and receive results from more nodes,

increasing the communication times.

Figure 2: A cloth draping over a ball. The right figure

represents a low-resolution cloth composed of 91,470

triangles (scenario 1). In the left figure,the same cloth is

represented by high resolution with 524,288 triangles

(scenario 2). It can be seen that the high-resolution cloth

represents more details

The second scenario tries to measure the impact of using

a high-resolution mesh. A similar simulation of the first

scenario is used, but in this case the cloth is composed of

524,288 triangles and the sphere of 1,280 triangles (see

Figure 2). Figure 3 shows the simulation times with both

algorithms, stating the benefits of our proposal

Figure 3: Comparison between the collision detection

times of HPCCD and the proposed collision detection

algorithm for scenario 2(high-resolution meshes)

We can see how the collision times are reduced using the

distributed memory-based proposal while HPCCD

collision detection algorithm does not obtain any

improvement. This scenario is defined to work with more

triangles, and our distributed-based algorithm takes

advantage of the parallelism when there are more tests.

HPCCD collision detection algorithm obtains higher

performance when it works with two threads. This happens

because the threads are allocated in the same computing

node of the machine, which means that they can take

advantage of sharing memory in a UMA environment.

Figure 4: Comparison between the collision detection

times of HPCCD and the proposed collision detection

algorithm for scenario 3

The last scenario is focused on testing a case of study

where most of the simulation time is spent in collision

detection. In this case, we test one of the high-resolution

cloth frames from the second scenario with the same frame

overlapped during five frames of simulation. It means that

every triangle in both meshes is colliding with another

triangle. More than 50% of the simulation time will be

spent in collision detection. Thus, it is a good test to see

the time reduction thanks to the parallel approach. This

scenario generates a high amount of triangle tests, so the

size of data generated that needs to be shared is increased.

M. Novalbos and A. Sánchez / Parallel Collision Detection Oriented to Distributed Memory Architectures 159

V Ibero-American Symposium in Computers Graphics – SIACG 2011

Figure 4 shows the results of the collision detection tests

for this scenario. Both algorithms scale when we add more

processors/nodes. We observe that the shared memory-

based algorithm works well vs. previous scenarios. We can

see that with 8 nodes our proposal obtains better results

than the HPCCD algorithm.

As a summary, it can be observed that for all scenarios,

our proposal obtains better results than the shared memory-

based approach. HPCCD algorithm is limited by memory

bottlenecks in the first two scenarios, only achieving a

good performance under the characteristics of the third

scenario. Our proposal on distributed memory obtains

higher performance than threads implementation when

more than 2 nodes are used.

5. Conclusions and Future Work

Collision detection refers to the problem of detecting the

intersection of two or more objects, which can be

represented by meshes. This means a computational

problem that many researches have tackled from a parallel

perspective. Nevertheless, the high resolution of the

meshes, because of the current need of realism, brings a

new scale to this problem.

In search of a scalable solution, we have presented a

distributed memory parallel algorithm for collision

detection designed for high resolution meshes. Efficiency

and scalability has been proved by experimental results in

Section 4 comparing the results of the distributed memory

approach with the HPCCD memory shared parallel

collision detection algorithm.

Regarding future work, we are planning to test the

benefits and improvements that our proposal entails in

hybrid architectures joining shared memory multicore

UMA machines, GPUs and distributed memory. At the

same time, we continue improving our algorithm to include

self-collision detection. On the other hand, our

implementation uses prerecorded simulations, which adds a

bottleneck when several nodes want to update their state. It

should be advisable to add a real physic simulation to

obtain good performance on global time simulation.

Finally, we are working on providing different mesh pieces

to different groups of nodes.

Acknowledgments

This work has been partially supported by the Madrid

Regional Authority (Comunidad de Madrid) under the

CCG10-URJC/TIC-5185 contract.

References

[GKJ*05] N. GOVINDARAJU, D. KNOTT, N. JAIN,

I. KABUL, R. TAMSTORF, R. GAYLE,

M. LIN, AND D. MANOCHA, Interactive

collision detection between deformable

models using chromatic decomposition.

ACM Trans. Graph. (SIGGRAPH Proc.),

24, 3, 991–999, 2005.

[SGG*06] A. SUD, N. GOVINDARAJU, R. GAYLE,

I. KABUL, AND D. MANOCHA,. Fast

proximity computation among deformable

models using discrete Voronoi diagrams.

ACM Trans. Graph. (SIGGRAPH Proc.),

25, 3, 1144–1153, 2006.

[VM06] P. VOLINO AND N. MAGNENAT-

THALMANN, Resolving surface collisions

through intersection contour minimization.

ACM Trans. Graph. (SIGGRAPH Proc.),

25, 3, 1154–1159, 2006.

[SSIF09] ANDREW SELLE, JONATHAN SU,

GEOFFREY IRVING, AND RONALD

FEDKIW. Robust High-Resolution Cloth

Using Parallelism, History-Based

Collisions, and Accurate Friction. IEEE

Transactions on Visualization and

Computer Graphics 15, 2 339-350. 2009

[KHH*09] DUKSU KIM, JAE-PIL HEO, JAEHYUK

HUH, JOHN KIM, SUNG-EUI YOON.

HPCCD: Hybrid Parallel Continuous

Collision Detection using CPUs and GPUs.

Computer Graphics Forum, 28, 7, 1791-

1800, 2009

[TPB07] B. THOMASZEWSKI, S. PABST, AND

W. BLOCHINGER, Exploiting parallelism

in physically-based simulations on multi-

core processor architectures. Proc.

EuroGraphics Symposium on Parallel

Graphics and Visualization, 69-76. 2007.

[LGS*09] C. LAUTERBACH, M. GARLAND, S.

SENGUPTA, D. LUEBKE, D.

MANOCHA. Fast BVH Construction on

GPUs. Computer Graphics Forum, 28, 2,

375-384, 2009

[GW07] I. GRINBERG AND Y. WISEMAN,

Scalable Parallel Collision Detection

Simulation, Proc. Signal and Image

Processing (SIP-2007), 380-385, 2007

[LL02] ORION SKY LAWLOR AND

LAXMIKANT V. KAL. A voxel-based

parallel collision detection algorithm. Proc.

16th International Conference on

Supercomputing (ICS '02). ACM, 2002

[KHY09] DUKSU KIM, JAE-PIL HEO, SUNG-EUI

YOON. PCCD: Parallel Continuous

Collision Detection. SIGGRAPH Posters,

2009

[TMT09] MIN TANG, DINESH MANOCHA, AND

RUOFENG TONG. Multi-core collision

detection between deformable models.

Proc. 2009 SIAM/ACM Joint Conference

on Geometric and Physical Modeling (SPM

'09). ACM, 2009

[SGG*06] AVNEESH SUD, NAGA

GOVINDARAJU, RUSSELL GAYLE,

ILKNUR KABUL, AND DINESH

MANOCHA. Fast proximity computation

among deformable models using discrete

Voronoi diagrams. ACM Trans. Graph. 25,

3, 285-293 2006.

160 M. Novalbos and A. Sánchez / Parallel Collision Detection Oriented to Distributed Memory Architectures

V Ibero-American Symposium in Computers Graphics – SIACG 2011

