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Abstract
Physically-based sound rendering enriches 3D animation. However, it is difficult to make an object with a given shape produce
a specific sound using physically-based sound rendering because the user would need to define appropriate internal material
distribution. To address this, we propose an example-based method to design physically-based sound for a 3D model. Our system
optimizes the material distribution inside the 3D model so that physically-based sound rendering produces sounds similar to the
target sounds specified by the user. A problem is that modal analysis required for this optimization is prohibitively expensive.
In order to run the optimization at an interactive rate, we present fast approximate modal analysis that enables three orders of
magnitude acceleration of the eigenproblem computation compared to standard modal analysis for an elastic object. It consists
of data-driven online coarsening of the mesh and hierarchical component mode synthesis with efficient error correction. We
demonstrate the feasibility of the method with a set of comparisons and examples.

Categories and Subject Descriptors (according to ACM CCS): Information Systems [H.5.5]: Sound and Music Computing—
Signal Synthesis Computer Graphics [I.3.6]: Methods and Techniques—Interaction Techniques; Mathematics of Computing
[G.1.6]: Optimization—;

1. Introduction

Realistic sound effects that respond to visual events in a scene sig-
nificantly enhance the user experience in virtual environments. Tra-
ditionally, sound effect designers prepared pre-recorded and pre-
edited audio samples, and these samples were synchronized to vi-
sual events by manual tweaking (e.g., for feature films) or using
scripts (e.g., for VR and games). However, it is laborious to pre-
pare appropriate audio samples for a large variety of visual events,
limiting expressiveness and variation of sound effects.

As a solution for this problem, physically-based sound synthe-
sis techniques known as sound rendering [OCE01] have been pro-
posed by the graphics community in the last decade. Modal sound
synthesis [Adr91, ZJ11] is widely used for sound simulation of
quasi-rigid bodies; it can efficiently produce physically-plausible
sounds responding to a large variation of visual events (e.g., colli-
sion, bounce, and scratch). This method reduces the effort of ma-
nipulating a large number of audio samples for sound designers
because it does not use any pre-recorded audio sample. All sounds
are automatically triggered and rendered by physical simulation re-
sponding to visual events. However, although input parameter for
these techniques is the material distribution inside the model, de-
signing the internal material distribution properly so that the sys-
tem produces a specific sound as a result of physical simulation is
difficult even for professional designers.

To address this problem, we propose an example-based interac-
tive design framework for rendering the physically-based sound of
a 3D model using material optimization (Figure 1). Our approach
enables a user to control the timbre of modal sound synthesis easily
without directly specifying the internal material distributions. The
user first provides a 3D surface model to the system as input. Next,
the user selects a few sample positions on the model surface, and as-
signs corresponding sound clips that define the target sounds to be
rendered when the positions are struck. The system then optimizes
the material distribution inside the model so that physically-based
sound simulations yield the expected sounds.

However, modal analysis that is required for obtaining the vi-
brational property of the object at an iteration in our optimization

Figure 1: The user assigns several target sounds to sample points
on given 3D model as examples. The system then optimizes the
material distribution inside the model so that physically-based
sound simulation produces the expected sounds. The user can check
the simulated sound during the optimization interactively and re-
assign additional target sounds to design the desired sounding ob-
ject. Finally, the system outputs embedded FEM mesh with eigen-
pairs which can be used for standard physically-based sound ren-
dering pipeline.

is a prohibitively expensive. To execute the optimization at an in-
teractive rate, we present a novel fast approximate modal analysis
method that achieves three orders of magnitude acceleration com-
pared to the standard modal analysis (Figure 2). Our technique
consists of data-driven finite element coarsening of the mesh and
hierarchical component mode synthesis with efficient error cor-
rection. Our data-driven online coarsening extends Chen et al.’s
method [CLSM15] to handle a large range of continuous material
settings by reducing the material parameter space, and can be eval-
uated with a constant cost for a large amount of datasets using re-
gression forests. Additionally, our highly parallelized hierarchical
component mode synthesis extends conventional methods [BC68]
to efficiently compute approximate solutions of modal analysis, and
our error correction algorithm efficiently improves its accuracy.
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Figure 2: Algorithm Overview. Our optimization algorithm consists of the precomputation and runtime. An iteration of our optimization
procedure at runtime consists of 3 steps. First, the system computes modal analysis to obtain the vibrational property of the object. Second, it
computes the similarity score between the simulated sounds of the object and user specified target sounds. According to this similarity score,
the system updates the material distribution inside the object to minimise the cost.

2. Related Work

Parameter Acquisition for Modal Sound Synthesis: To deter-
mine the material parameters used in modal sound synthesis, Pai
et al. [PvdDJ∗01] and Corbett et al. [CvdDLH07] acquired the pa-
rameters from actually measured impact sound data, and interpo-
lated them in auditory space. A robotic actuated device is used to
apply impulses on a real object at a large number of sample points,
and map the recorded impact sounds to virtual objects. However,
the measurement procedure of such a huge number of samples for
an object and manipulating them are prohibitively expensive. Fo-
leyAutomatic [vdDKP01] also employed similar approach, but in-
terpolated them in modal space for achieving rich sound interac-
tions. However, they also require sufficient amount of samples to
estimate the modal function on the surface. Same example sound
can be reused at different locations, but it causes a lack of the sound
variations when the object interacts with other objects at various
locations. This problem becomes profound when the model to be
designed has a larger scale.

To avoid measuring such a huge number of parameters for one
object from many audio clips, Lloyd et al. [LRG11] proposed a
data-driven approach to assign the sound of an object from only one
audio clip. They estimated the modal parameters from the audio
clip, and at runtime, they randomized the mixture gains of all the
tracked modes to generate imaginary varied sounds when hitting
different locations on the object. However, this method produces
unnatural artifacts because the sounds are not consistent with hit
points.

As another approach, Ren et al. [RYL13] proposed a method to
estimate the material specific parameter (Rayleigh damping param-
eters) directly instead of modal parameters from a audio clip under
the assumption of uniform material distribution inside the object.
The advantage of their approach is that it enables the estimated
material parameters to be transferred to different shapes. However,
their approach requires that the real object have exactly the same
shape as the virtual model to be estimated and should be easy to
prepare. These requirements are impractical to implement in actual
scenes, which is considered in this paper.

Vibrational Property Optimization: To obtain the desired vi-
brational property of an object, Yamasaki et al. [YNY∗10] opti-
mized the shape and topology of an industrial structure using lev-

elset optimization, and controlled the several lowest eigenfrequen-
cies. Yua et al. [YJKK10, YJK13] optimized the topology of a vi-
olin’s body as specific thin shell structure to control the mode fre-
quencies and amplitudes (mode vectors) that are expected to be
largely contributed to the timbre. Bharaj et al. [BLT∗15] optimized
the shape of a common elastic structure to control both a few mode
frequencies as well as their amplitudes for fabricating metal percus-
sion instruments. Our formulation is similar to theirs, but there are
four differences. 1: We control a much larger number of modes for
dramatically changing the sound’s timbre and sacrificing the fab-
rication possibility. 2: We optimize the material distribution while
maintaining the shape whereas they optimize the shape. 3: Our op-
timization runs at an interactive rate that is enabled by an expansion
of data-driven finite elements method (FEM) [CLSM15] and highly
parallelized hierarchical component mode synthesis. 4: Our objec-
tive function considers the perceptual differences of two sounds
whereas they use square distances of frequencies and amplitudes.

Modal Analysis: is a well-studied technique in both computer
graphics and engineering. It solves the generalized eigenproblem of
the finite element stiffness and mass matrices to obtain the vibra-
tional frequencies and the corresponding deformations [HSO03].
Because modal analysis is a time-consuming operation, it is usu-
ally used for only the precomputation phase. As some exceptions,
Umetani et al. [UMIT10] introduced 2D modal analysis into an in-
teractive design tool for percussion instrument by limiting the fun-
damental mode computation. Maxwell and Bindel [MB07] com-
puted quasi-3D modal analysis of thin shell structure percussion
instruments including the several overtones at a quasi-interactive
rate. We introduced 3D modal analysis of a more complex struc-
ture into an interactive application.

Many studies focused on the improvement of the computa-
tional efficiency of modal analysis. A powerful solution is the do-
main decomposition approach called the component mode syn-
thesis method (CMS) [Hur65]. CMS decomposes a large problem
into many small problems of subdomains and merges them. There
are several variations of CMS according to how the boundaries
between subdomains are treated [CP88, YVC13]. The major ap-
proach is the Craig-Bamptom method [BC68] that treats the inter-
faces of subdomains as fixed. However, finding an optimal divi-
sion of a mesh in subdomains is non-trivial, and it should be often
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Figure 3: The user interface view. The left pane allows the user
to assign the target sounds for the model and preview the contact
sound while the right views represent the power spectrums of as-
signed sounds (green) and the sounds when the positions the user
selected are struck (red). The black arrows on the left pane repre-
sent the positions the user assigned targe sounds.

undertaken manually for improving the accuracy. It requires addi-
tional expertise and manual efforts by the user. Our approach does
not distinguish between subdomains and boundaries, and automat-
ically decomposes it as a hierarchical structure and merges them
in parallel. In addition, we improve the accuracy using the fast er-
ror correction algorithm, which consists of a combination of the
subspace iteration method [Bat13] and sparse mass-Gram-Schmidt
process [YLX∗15].

3. User Workflow

This section describes the user workflow of our interactive
physically-based sound design tool. Please see the supplemental
video for an interactive demonstration. As seen in the screen cap-
ture shown in Figure 3, the user first provides a 3D surface model as
an input. The system automatically voxelizes it and converts it into
a uniform hexahedral finite element mesh, and executes precom-
putations as described in the next section. Next, the user selects a
vertex position on the surface of the mesh using the mouse, and
assigns a sound clip to the position by a drag-and-drop operation.
The sound clip defines the sound to be rendered when the model
is stuck at the position. The assigned sound clip can be either a
pre-recorded real sound (exists in the real world) or an artificial
sound (e.g., sound generated by sound synthesizer), but it needs to
be an attenuated contact-like sound (free vibrational sound caused
by single impulse. An impulse response is ideal). The system al-
lows the user to select multiple positions for each corresponding
sound clip. After assigning sounds, the user presses the "optimize"
button, and the system optimizes the material distribution inside
the model to obtain the desired sound properties. Finally, the sys-
tem exports the optimized embedded finite element mesh for the
surface model with the eigenpairs, and the user can use it for modal
sound synthesis.

The optimization gradually progresses at an interactive rate. The
system visualizes the current material distribution inside the model
by colors and the resulting sounds when the sample positions are
struck by power spectrums. The user also can check the sound by
clicking the mouse on the mesh surface during optimization at any
time. The user can stop the optimization procedure at an arbitrary
timing, reassign another sound to a new sample point, and restart
the optimization iteratively. In this way, the user can interactively
design the physically-based sound for a 3D object as if it were a
sound synthesizer.

4. Algorithm Overview

Figure 2 shows an overview of our optimization algorithm. Our al-
gorithm consists of two stages: the precomputation stage and the
runtime. The precomputation stage consists of two parts. One is
precomputation for each material set (independent of models), and
it constructs regression forests for data-driven FEM. The regres-
sion forests are used for online mesh coarsening using data-driven
FEM (§7.1). The other is precomputation for each input model (in-
dependent of materials), and it involves voxelizing the model into a
hexahedral FEM mesh and computation of the eigenvectors of the
volumetric Laplacian of the mesh following [XLCB15]. The eigen-
vectors of the volumetric Laplacian are used for material reduction
(§6), and mesh segmentation (§7.2).

At runtime, the system minimizes the perceptual difference be-
tween the user-specified input sound and simulated sound by it-
erative optimization of material distribution (§6). We consider vi-
brational property (mode frequencies and amplitudes) to measure
perceptual difference (§5). We optimized Young’s modulus at each
element of FEM, and we kept the densities and Poisson’s ratios
constant for simplicity. At each iteration, it is necessary to exe-
cute a modal analysis of the model to compute the resulting sound.
Conventional modal analysis solves the generalized eigenproblem
of large stiffness and mass matrices, but it is prohibitively expen-
sive and impractical to use during iterative optimization. To ad-
dress this, we propose a fast approximate modal analysis based on
a combination of data-driven FEM using regression forests (§7.1)
and hierarchical component mode synthesis method including error
correction (§7.2).

5. Problem Formulation

When the user assigns a sound clip onto a sample position, the
system extracts the parameters of the sound’s timbre from it. An
attenuated contact sound can be parameterized by modal parame-
ters (frequencies, amplitudes, and dampings). For the details of the
modal parameters, please see Appendix 1. We employ Ren et al.’s
technique [RYL13] to extract these parameters from a sound clip.
We also extract the residual parameters following them. After T as-
signments, the system has N sorted mode frequencies of assigned
sounds (F1, ...,FN), corresponding dampings (D1, ...,DN), corre-
sponding residuals (R1, ...,RN), and corresponding amplitudes at
T sample positions (A1

1, ...,A
1
N), ...,(A

T
1 , ...,A

T
N). We call these ex-

tracted parameters as target parameters.

For a given finite element mesh, we compute the first N
mode frequencies ( f1, ..., fN) and corresponding amplitudes at T
sample positions (a1

1, ...,a
1
N), ...,(a

T
1 , ...,a

T
N) using modal analysis.

The modal analysis computes a generalized eigenproblem: KU =
ΛMU , where K and M denote the stiffness and mass matrix respec-
tively and Λ and U denote the eigenvalues and the corresponding
eigenvectors. To compute the mode amplitudes, we assume each
sample position pi (i = 1, ...,Np) is struck by a unit force impulse
f pi

n which has the inverse direction of the surface normal n at the
position. Then, the k-th mode amplitude at the position pi is repre-
sented as api

k = uT
k f pi

n , where uk is the k-th eigenvector.

Using the target frequencies F , amplitudes A and simulated pa-
rameters, our objective function for minimizing the perceptual dif-
ference of the mode frequencies is represented as

E f =
1
2

N

∑
i=2

(
Bark(s f fi)−Bark(Fi)

)2 (1)

where Bark( f ) is a function to transform the frequency to critical
band rate [bark] [ZF99], and s f = F ′

1/ f1 is the scaling factor. The
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objective function for amplitudes is also obtained using the bal-
ances with other mode amplitudes at the position

Ea =
1
2

T

∑
j=1

N

∑
i=2

(
a j

i

a j
max
−

A j
i

A j
max

)2

. (2)

where a j
max and A j

max denote the largest amplitude at the position
j of the simulated and target’s modes respectively. These formu-
lations are similar to [BLT∗15]; however, we use the perceptual
metrics whereas they use square distances of frequencies and am-
plitudes. We minimize these functions by optimizing the Young’s
modulus Ye ∈ RM at each finite element e, where M denotes the
number of the elements. Finally, our design problem is formulated
as

argmin
Ye

: w f E f +waEa, sub ject to : Ye > 0 (3)

where w f and wa denote the positive weights.

Note that we do not optimize damping parameters. We instead
reuse the estimated damping from the assigned sound clips as
mode-dependent damping. This means that our damping is not spa-
tially constant. This setting is physically incorrect, but it makes the
problem simpler.

6. Material Optimization

The optimization of element-wise material parameters is imprac-
tical. To reduce the design space of material parameters, we in-
troduce the reduction technique of [XLCB15]. The technique ex-
presses the Young’s modulus as Y = Φz using the eigenvectors of
the volumetric mesh Laplacian Φ ∈ RM×m, and uses the general-
ized material parameters z ∈ Rm, (m << M) for the optimization.
Then, our design problem can be rewritten in the reduced space as

argmin
z

: w f E f +waEa +wrR, R =
1
2

zT Qz (4)

where wr is a weight, R is the regularization term, and Q is the
reduced Laplacian matrix which is diagonal and its entries consist
of the eigenvalues of the volumetric mesh Laplacian (please see
[XLCB15] for the details). This material reduction also has a merit
to reduce the over-fitting problem.

We solve our design problem Eq. (4) by decomposing it into two
problems min : E f and min : Ea, and minimizing them alternately.
We employ a hybrid optimization scheme [CLJ09] of evolutional
strategies (we used CMA-ES [HMK03]) and gradient descent ap-
proach (we employed the Quasi Newton method). For the details
of the gradient computation and this hybrid scheme, please see Ap-
pendix 2, 3.

7. Fast Approximate Modal Analysis

At each iteration during our optimization, a modal analysis is re-
quired for the evaluation of the objective function and its gradient.
However, standard modal analysis (solving a generalized eigen-
problem of large stiffness and mass matrices) is prohibitively ex-
pensive and impossible to execute at an interactive rate. To address
this, we present a method that combines extended data-driven on-
line coarsening of finite elements (§7.1) and highly parallelized hi-
erarchical component mode synthesis (§7.2).

7.1. Data-Driven FEM using Regression Forests

In this section, we explain the data-driven online coarsening of
the FEM mesh. It takes the detailed voxel mesh (2× 2× 2× cube
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Figure 4: Data-Driven Coarsening [Chen et al. 2015] (in 2D illus-
tration). The function DDFEM() takes four material parameters
(e1,e2,e3,e4) of fine four elements (left) and returns corresponding
four coarse material parameters (E1,E2,E3,E4) at the quadrature
points (right) to minimize the error.
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Figure 5: Eight equivalent cell variations (in 2D illustration). The
top row represents four rotated variations and the bottom row rep-
resents four reflected variations.

elements) as input and generates a coarse approximated mesh (a
cube element) as output using the the material parameter map-
ping learned from training data in the precomputation step (Fig-
ure 4). The concept of our data driven FEM coarsening is based
on [CLSM15]. The goal of their data-driven FEM is obtaining

(E1, ...,E8) = DDFEM(e1, ..,e8) (5)

where DDFEM() is a function that takes eight material parame-
ters (e1, ...,e8) of a detailed mesh and returns the corresponding
eight coarse material parameters (E1, ...,E8) at the cubature points
to minimize the error. Their system computes this function for all
possible input values in precomputation and stores the result in the
main memory. The system then evaluates this function referring the
memory at runtime. It aggressively accelerates FEM while main-
taining the accuracy by reducing the Dofs (24/81) and the number
of the cubature points (8/64) although the total number of the mate-
rial parameters remains unchanged between the detailed and coarse
mesh. However, in their approach, given N discrete materials, the
number of material combinations becomes N8. Although they also
proposed a compression algorithm by retaining only the small num-
ber of representative material combinations, it still cannot be used
for our material optimization that requires a large range of contin-
uous material settings. Additionally, it is non-trivial to obtain an
actual value from such representative materials. To address this,
we present three techniques: 1: Overlapping Free Cell Ordering, 2:
Scaling Factor Separation, 3: Regression Forests. The former two
techniques reduce the parameter space of the feature vector e (the
detailed eight material parameters) for efficient machine learning,
and the last technique enables handling of a large amount of dataset
with a constant evaluation cost.

7.1.1. Overlapping Free Cell Ordering

As shown in Figure 5, the rotated and reflected variations of a ma-
terial setting are basically equivalent. To enumerate such patterns
increases the parameter space of the feature vector unnecessarily
and it should be reduced for efficiency. To address this, we define
Overlapping Free Cell Ordering algorithm which makes explicit
consideration of rotated and reflected patterns unnecessary.

First, we redefine the data-driven function DDFEM() Eq.5 as.

Ei = DDFEMi(e1, ..,e8), i = 1,2, ...,8. (6)
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Figure 6: Overlapping Free Cell Ordering (in 2D illustration). 1:
At the i-th cell evaluation (in this example, we assume i = 2), ei
becomes the origin cell e′1. 2: we compare the material values of
the adjacent cells. 3: the smaller cell becomes e′2 and the other
becomes e′3. 4: The left cell becomes e′4.

Our data-driven FEM function returns a scalar while Eq.5 outputs
a R8 vector. It means we repeat this DDFEM() evaluation eight
times to convert a detailed 2× 2× 2 element into a coarse ele-
ment. Next, we reorder the numbering of the eight cells by each
DDFEM() evaluation. We show this operation as a 2D example in
Figure 6. The indices of the cells are defined in a local R3 space
coordinate. At the i-th evaluation within the eight evaluations, we
define the i-th cell as the origin e′1. Then, we compare the value of
the Young’s modulus of the three adjacent cells of the origin cell (in
2D, two cells), and define the index the cell who has the smallest
value as e′2, the cell who has the secondary smallest value as e′3, and
the other cell as e′4. Finally, we decide the ordering of the rest four
cells by the following rule: The cell that is adjacent to e′2 and e′3
becomes e′5. The cell that is adjacent to e′3 and e′4 becomes e′6. The
cell that is adjacent to e′2 and e′4 becomes e′7. The last one becomes
e′8.

Then, using these reordered parameters, our DDFEM() function
is redefined again as

Ei = DDFEMi(e
′
1,e

′
2, ...,e

′
8), e′1 = ei (7)

By using this representation, we can avoid explicit enumeration of
the eight rotated and eight reflected patterns of a material pattern,
and reduce the input parameter space in 3D at both training and
runtime. For dataset generation at the training, we first determine
the value at the origin cell, and seed the values at the three cells e′2,
e′3, e′4 to be e′2 ≤ e′3 ≤ e′4, and the rest of the values are randomly
seeded.

7.1.2. Scaling Factor Separation

Young’s modulus has a large range of the value 10−2 (Rub-
ber)∼ 103 (Diamond) GPa while Poisson’s ratio has a small range
(−1/2, 1/2). It is difficult to treat a practical amount of data for
such a large range during training. To avoid this, we dramatically
reduce the training size by separating the scale factor.

Based on [CLSM15], our DDFEM() is constructed to minimize
the square difference of the integral of the strain energy density
functions between the detailed and coarse meshes.

argmin
Ei

∑
f∈F

(
8

∑
i=1

wiv
c
i ( f ,Ei)−

8

∑
j=1

8

∑
i=1

wiv
d
ji( f ,e′j)

)2

(8)

where w denotes the cubature weights, F denotes a set of randomly
sampled external forces, and vc and vd represent the strain energy
density function of the coarse and detailed mesh respectively. Here,
the strain energy density function in linear elastic is represented
as v( f ,e) = K(e)u(e)2 = K(e)(K−1(e) f )2 where K(e) and f are
the stiffness matrix and the external forces respectively. In addi-
tion, multiplying e by a scalar s, v( f ,s · e) = K(s · e)u(s · e)2 =

sK(e)((sK(e))−1 f )2 = v( f ,e)/s because K() is the linear function
of e. Then, the minimization problem

argmin
Ei

∑
f∈F

(
8

∑
i=1

wiv
c
i ( f ,Ei)−

8

∑
j=1

8

∑
i=1

wiv
d
ji( f ,s · e′j)

)2

(9)

is equivalent to

argmin
E′

i =Ei/s
∑
f∈F

(
8

∑
i=1

wiv
c
i ( f ,E′

i )−
8

∑
j=1

8

∑
i=1

wiv
d
ji( f ,e′j)

)2

(10)

This means that we can separate the input parameter space of our
DDFEM() problem by the multiplication of the value of the origin
cell as a scale factor and their quotients. Finally, we can obtain our
DDFEM() function as

Ei = ei ·DDFEMi

(
e′2
ei
, ...,

e′8
ei

)
(11)

An advantage of this representation is that it reduces not only the
range of dataset but also the dimensions of the feature vector from
R8 to R7. Note that we assume our model as linear elastics although
the original DDFEM() treats nonlinearity because the vibrational
analysis discussed in this paper is a linear analysis. Introducing the
nonlinearity for large deformation is a future work.

7.1.3. Regression Forests

In contract with Chen et al.’s method [CLSM15], we do not con-
struct the database of data-driven materials because of two rea-
sons. First, their database approach cannot handle the inputs that
are not included in the training dataset because it has no general-
ization ability. Second, the evaluation cost at runtime is increased at
a rate proportional to the amount of the dataset although the amount
of the dataset should be increased for handling more material pat-
terns. To address these problems, we train our DDFEM() func-
tion using two regression forests. Our regression forests are similar
to [LJS∗15] which construct each tree through two steps training:
tree structure construction with a subset of learning data and least-
square solve for the regression coefficients at each leaf node with
all the dataset. The regression forest has an advantage of constant
cost evaluation even if the amount of the dataset is increased. Fi-
nally, our DDFEM() becomes{

Ei = ē ·Reg1(
e′2
ē , ...,

e′8
ē ) (ei = 0)

Ei = ei ·Reg2(
e′2
ei
, ...,

e′8
ei
) (ei > 0)

(12)

where Reg() represents the regression function, and ē is the average
of the Young’s modulus in the target eight cells.

7.2. Hierarchical Component Mode Synthesis

After coarsening the mesh, we compute modal analysis using a
novel hierarchical component mode synthesis method (HCMS) in-
cluding an efficient error correction algorithm (Figure 7). It takes
the coarse voxel mesh as input and solves a generalized eigenprob-
lem via hierarchical merging. It first decomposes the mesh into
small components and solves a generalized eigenproblem for each
component. It then hierarchically merges adjacent components and
solves generalized eigenproblems for the merged component. Con-
ventional CMS [BC68] computes the eigenmodes of a structure
by combining several small local subdomains after decomposing it
into several small subdomains. Our HCMS decomposes a structure
into finer subdomains compared to conventional CMS to increase
the computational efficiency while sacrificing accuracy. To com-
pensate for the loss of accuracy, we apply a subspace iterative error
correction using the result of HCMS as an initial solution.
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Error Correction (§7.2.1)

Domain Decomposition (§7.2)

Coarse Voxel Mesh

(The Output of DDFEM*)
Subdomains

Local Eigen Problem Solves in Parallel

(D: Local Eigenvalues, U: Local Eigenvectors)
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{D2,U2}

{D3,U3}
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{D6,U6}

{D7,U7}

{D8,U8}
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Hierarchical Merge by Eq. (15)
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{D13,U13}

{D14,U14}
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{D21,U21}

{D31,U31}

{D41,U41}

Merge adjacent domains in parallel

Global Solution

Figure 7: Hierarchical Component Mode Synthesis. After coarsening the mesh, we decompose it into many subdomains and hierarchically
merges them with reducing their DoFs in parallel. Finally, we improve the accuracy using an error correction algorithm.

To simplify the explanation for our HCMS, we first begin
with assuming that a model can be decomposed into two non-
overlapping domains S1 and S2 as in conventional CMS, and the
eigenpairs of each domain are already known. Under this assump-
tion, the entire stiffness matrix Ktotal and the entire mass matrix
Mtotal can be represented as

Ktotal =

[
K11 K12
K12 K22

]
, Mtotal =

[
M1 0
0 M2

]
(13)

where K11, K22 and M1, M2 denote the local stiffness and mass ma-
trices of each sub-domain respectively. K12 and K21 are the inter-
face matrices that connect the domains S1 and S2. If the eigenvec-
tors of each domain U1 and U2 are already known, we can rewrite
the Eq. (13) using the reduced matrices of each domain with re-
maining the lower frequency modes as

K′
total =

[
D1 U1T K12U2

U2T KT
12U1 D2

]
(14)

where D1 =U1T K11U1 and D2 =U2T K22U2 are diagonal matri-
ces in which each diagonal entry is the eigenvalue of the respective
subdomain. Note that the entire mass matrix also takes the same
form for, UT

1 M1U1 = I, and UT
2 M2U2 = I, meaning that the en-

tire mass matrix becomes an identity matrix. Athough conventional
CMS distinguishes the interface of adjacent subdomains and sub-
domains, and assumes the interface as fixed [BC68] or considers
the boundary modes [YXG∗13], our approach neither distinguish
them nor fix the interface, and does not treat the interface explic-
itly. We can obtain a reduced eigenproblem of the entire structure
as K′

totalU
′
total = ΛtotalU

′
total , where Λtotal is a diagonal matrix

in which each diagonal entry is the eigenvalues of the entire do-
main. We solve this reduced eigenproblem, and finally recover the
global eigenvectors by

Utotal =

[
U1
U2

]
U ′

total . (15)

We apply the pair wise merger explained above in a hierarchical
manner. We divide a large structure into many small subdomains
and merge them in a hierarchical manner (Figure 7). The system
first decomposes the volumetric mesh after coarsening into many
small subdomains S1,S2, ...,SN by a domain decomposition. To de-
compose a mesh, we use [WLAT14] by expanding it into volu-
metric mesh, which decomposes the mesh by K-Means++ cluster-
ing [AV07] of the eigenvectors of the volumetric mesh Laplacian.
It requires no additional precomputation costs since the volumetric
mesh Laplacian has been already obtained at the precomputation
stage as described in §4.

We compute the local generalized eigenproblem of N sub-
domains in parallel and reduce the DoFs using the eigenvectors at
each subdomain. Next, we iteratively merge two adjacent subdo-
mains by Eq. (14), and solve the reduced eigenproblem, and Eq.

(15) to obtain the eigenvectors of the merged subdomain. This pro-
cedure also can be executed in parallel until all the subdomains are
merged. Finally, we merge all the subdomains and obtain the ap-
proximate eigenvector of the entire structure. The order of merg-
ing subdomains is irrelevant in our algorithm because the error
caused by suboptimal order will be fixed later in our error correc-
tion (§7.2.1). We note that this hierarchical merging procedure is
new. We implemented local eigenprobrem solves of each subdo-
main by a combination of incomplete Lanczos matrix triangulation
and QR method.

7.2.1. Error Correction

HCMS is just an approximation method and sacrifices the accu-
racy for computational efficiency. To correct this error, we intro-
duce the subspace iteration method [Bat13] using reduced mass
Gram-Shmidzt process [YLX∗15]. We set approximated eigenvec-
tors of HCMS as the starting iteration vectors X0 and execute the
following iteration k = 1,2,3... until it converges.

Solve PCG : KU = MXk−1 (16)

U ← ReducedMGS(U) (17)

K′ =UT KU , M′ =UT MU (18)

Solve QR : K′Q = ΛM′Q (19)

Xk = U +Σ(UQ−U) (20)

Xk ← ReducedMGS(Xk) (21)

where ReducedMGS() is the reduced mass Modified Gram-
Schmidt process to orthogonalize the eigenvectors [YLX∗15], Σ
denotes a diagonal matrix in which each diagonal corresponds
to the overrelaxation weight of the i-th eigenvalue to accelerate
the convergence [BR80]. We solve the first line Eq. (16) by in-
complete cholesky factorized pre-conditioned conjugate gradient
method with respect to each column vector in parallel, and imple-
ment the QR method Eq. (19) on GPU.

8. Results

8.1. Validation of Modal Analysis

In this subsection, we verify the accuracy and computational ef-
ficiency of our fast approximate modal analysis. As the ground
truth, we used the result of the full-DoF standard modal analysis
using ARPack (with sufficiently fine-resolution uniform hexahe-
dral mesh). We used CPU: Intel Core i7 2.6 GHz, RAM: 16GB,
GPU: NVIDIA GeForce GT 750M as the equipments in §8 exclud-
ing the DDFEM trainings. We set the Poisson’s ratio as 0.25 and
the density as 1.0 kg/m3 for all experiments.

Data-Driven FEM: We call our data-driven FEM as extended
data-driven FEM (DDFEM*) for distinguishing from Chen et al.’s
method [CLSM15] (DDFEM). We used two regression forests, and
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Ground Truth

(21.9min)

HCMS

(3.3min)

HCMS + EC

(12.5min)

t = 0 t = 1 t = 2 t = 3 t = 4time:

Figure 8: Comparison of the deformation of the 7-th modes be-
tween HCSM with/without EC and the ground truth. Our error cor-
rection algorithm efficiently improve the accuracy within an addi-
tional few minutes.

Method Training Time Evaluation Cost Storage Error

Native Coarsening zero 1 μs zero 0.0383003

Chen et al. 2015 2 hours 1 ms 3.82 MB 3.88114E-05

Ours (DDFEM  ) 12.5 days 0.2 ms 529.9 MB 4.19069E-05

With [0, 10] GPa Young’s modulus

(trained range)

With [100, 10000] GPa Young’s modulus

(outrange of the trained dataset for our regression forests)

Method Training Time Evaluation Cost Storage Error

Native Coarsening zero 1 μs zero 0.00360124

Chen et al. 2015 2 hours 2 .3 ms 8.11 MB 3.66629E-05

Ours (DDFEM  ) zero 0.2 ms 529.9 MB 3.6882E-05

*

*

Figure 9: Comparison of the accuracy of data-driven FEM. Top:
The results with [0, 10] GPa range of Young’s modulus (trained
range of our regression forests). Bottom: The results with [100,
10000] GPa range of Young’s modulus (untrained range of our re-
gression forests).

three regression trees for each forest, and set the maximum depth of
all the trees as 20. We trained each regression forest for DDFEM*
by 1 billion entries of the dataset for constructing the tree struc-
tures and 10 billion entries of the dataset for training each leaf
node (regression function construction). For the dataset generation
of data-driven FEM (a sample includes 8 material parameters of
detailed 2× 2× 2 blocks and the corresponding 8 coarse material
parameters), we used 1,000 force directions and sample 5 sample
magnitudes in each direction, resulting in 5,000 force samples for
each material combination. We seeded the material combinations
randomly with [0, 10] GPa of range of Young’s modulus using hy-
percube sampling. The training time took about ten days for data
generation, two days for the tree structure training using clusters of
12 computers, and a half day for training the leaves. Finally, our
regression forests required 529.9 MB for storage.

We verified the accuracy and the evaluation cost of our data-
driven FEM by comparing it with a native coarsening approach
(simply averaged material setting of the detailed elements) and
Chen et al’s method [CLSM15]. We prepared 10,000 detailed
2× 2× 2 FEM cube blocks with randomized material distribution
and applied them to 2,000 random external force samples. We de-
fine the error of coarsening as the average of the square distances of
the displacements between detailed simulation (ground truth) and
coarse simulation over the samples. Because the detailed elements
and the coarse element have different numbers of vertices, we mea-
sured the error by creating a detailed mesh from the coarse simu-

Ground truth

CMS without EC

CMS with EC (4 iterations)

CMS with EC (8 iterations)

CMS with EC (16 iterations)

Eigenvalue

Mode Number

0 50 100 150 200
0

0.5

1

1.5

2

2.5
x 10

4

Eigenvalue

Mode Number

Ground truth

CMS without EC

CMS with EC (4 iterations)

CMS with EC (8 iterations)

CMS with EC (16 iterations)

Random starting vectors (16 iterations)

Figure 10: The accuracy of HCMS with/without EC. Our error cor-
rection algorithm dramatically improves the accuracy within a few
iterations. The horizontal axis: the mode number, the vertical axis:
the eigenvalues.

lation by trilinear interpolation and computing the distance of their
displacements. In addition, we defined the evaluation cost as the
time for coarsening a 2× 2× 2 elements to an element. Since the
evaluation cost of DDFEM depends on the database size and the
search algorithm, we then prepared the sorted index of the database
at precomputation, and searched them by quick search at runtime.

Figure 9:Top shows the result of this experiment for the sam-
ples with randomly generated Young’s modulus setting using
[0,10] GPa range. This material parameter range is included in
the training dataset for our regression forests. Our regression
forests successfully reduce the error on a level with Chen et al.’s
method [CLSM15] while native coarsening approach causes a large
error. Next, Figure 9:Bottom shows the result by the samples with
the range of Young’s modulus [100,10000] GPa that is clearly out
of range of the trained dataset for DDFEM*. The result shows our
method can also handle this range of inputs and returns good re-
sults with no additional training while DDFEM requires additional
trainings for new data. It is enabled by our scaling parameter sepa-
ration algorithm. In addition, the evaluation cost of our DDFEM* is
constant even if the amount of dataset is increased and much faster
than DDFEM whose cost is increased in proportion to the amount
of the dataset.

Hierarchical Component Mode Synthesis: For the evaluation
of HCMS, we decomposed each model of Figure 11 into 10∼20
subdomains and hierarchically merged them. When two subdo-
mains are merged, we retained min(Nsub,512) DoFs where Nsub
denotes the total DoFs of the two subdomains.

Figure 10 shows the error comparison of eigenvalue computa-
tion of HCMS with/without error correction (EC) and the ground
truth using the Chinese dragon model. We can see that our error
correction algorithm converges very quickly in only a few itera-
tions and efficiently reduces the error. In addition, the break line in
Figure 10 shows comparison of the error correction using the result
of HCMS and randomized (with N(0,1) Gaussian) and orthogo-
nalized vectors as the starting vectors. We can see that the iteration
with randomized starting vectors does not converge within a few
iterations. This shows that the approximate solution of HCMS is a
good starting vectors for the subspace iteration method.

Next, we show the comparisons between the modal deforma-
tions by standard modal derivatives and our method’s (HCMS and
HCMS + EC) at the 7th mode in Figure 8 for example. The re-
sults show that our HCMS can capture rough motions of the elastic
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Model DoF Precomputation ARPack DDFEM HCMS HCMS + EC DDFEM  + HCMS + EC

Stanford Bunny 31419 18.8m 4.1h 15.3m 9.8m 28.4m 2.6s

Asian Dragon 6009 23s 14.8m 2.1m 1.1m 4.3m 0.86s

Utah Teapot 12057 1.5m 52.8m 5.7m 4.9m 17.2m 1.1s

Chinese Dragon 11394 50s 21.9m 3.2m 3.3m 12.5m 1.4s

Pitcher 15927 2.3m 37,6m 6.4m 3.4m 17.8m 2.3s

Snare Drum 35484 21.5m 3.9h 12.3m 9.7m 25.6m 2.4s

* *

Figure 11: Computation time comparison of modal analysis. We computed the first 256 modes for all model.
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Figure 12: Comparison of between two deformation trajectories
of the dragon’s nose (red circle at the top thumbnails) produced
with standard modal derivatives (red) and our method (DDFEM*
+ HCMS + EC) (blue). The white arrows at the top thumbnails
represent the applied force impulse to drive them.

object in both lower and higher frequency domains, and the error
correction algorithm successfully brings the approximate solution
close to to the ground truth within an additional few minutes.

Combination of Extended Data-Driven FEM and HCMS:
Figure 11 shows the computational times of each modal analy-
sis method using DDFEM*, HCMS with/without EC, and their
combination with several models, respectively, while ARPack de-
notes the standard modal analysis (conventional method). The pre-
computation column in Figure 11 represents the precomputation
times taken for each model (The voxelization and the eigenproblem
solves for the volumetric Laplacian matrix). The computation times
of DDFEM* include the time for the online coarsening procedure.
We achieve two orders of magnitudes acceleration with each of
DDFEM* and HCMS + EC respectively, and three orders of mag-
nitudes acceleration in total compared to the conventional modal
analysis by their combination. The exact computational time using
the combination method becomes 0.5∼3.0 secs, which is accept-
able for interactive evaluation.

Figure 12 shows comparison between two deformation trajecto-
ries produced with standard modal derivatives (ground truth) and
our fast approximate modal analysis method after applying a unit
force impulse at the location pointed by the white arrow in the top
thumbnails. We also provide the time series of magnitudes of the
displacement at the dragon’s nose in Figure 12:Bottom. The two
trajectories plot quite a similar form, which shows that our method
gives good approximation for the conventional approach with much
faster operation.

Finally, Figure 13 shows the spectrograms of the sound produced
by a rigid body physics animation using ground truth and our com-
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Figure 13: Comparison of the modal sound synthesis from a sim-
ple rigid body physics simulation between standard modal analysis
(left) and our fast approximate modal analysis (right).

bination method. Naturally, the spectrogram of the ground truth in-
cludes more high frequency components than that of ours because
it uses a detailed FEM mesh. However, our result can capture a bet-
ter portion of the major components enough for our optimization
problem.

8.2. Physically-Based Sound Design

In this subsection, we demonstrate our physically-based sound de-
sign framework. For all the examples, we used the results of our fast
approximate modal analysis to render the sound. We set the weights
in Eq. (4) to w f = 1.0, wa = 10.0, wr = 10−5 in our experiment.

Basic Sound Assignment: Figure 14 shows an example of as-
signing two sounds to a frying pan model. The frying pan consists
of a handle made of wood and plate made of iron. We stuck the
pan at the handle and the plate, and recorded the respective sounds.
We used these recorded sounds as input to the system. In this ex-
ample, 30 extracted target modes were extracted from these two
sound clips, and we controlled the first 30 modes of the model ex-
cluding the six rigid modes. The two spectrograms at the top row
in Figure 14 represent the rendered sounds when each position is
struck before the optimization. The spectrograms at the middle row
are target sounds, and at the bottom row are the results after one
minute of optimization. Apparently, the two spectrograms after the
optimization closely resemble each target sound. In addition, even
if a different position from the one assigned is struck, the sound
characteristics of the target sounds near the position is produced
in a physically plausible manner (Figure 14:Bottom). This result
shows that over-fitting is not a serious problem in our optimization.
Furthermore, our approach requires less amount of example sounds
for designing the sound of an object, which reduces the user’s ef-
fort. For example, in [vdDKP01], there is a frying pan example
which is similar to our experiment. They used five example sounds
to design the sound of the plate alone (except the handle) while we
used only one example sound for each part.

Interactive Editing: Next, we demonstrate an example of the
interactive editing procedure of physically-based sound using a
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Figure 14: The result of assigning two target sounds to a frying pan
model after a minute of optimization. We assigned the metal sound
to position 1 (plate) and wooden sound to position 2 (handle). Top
right shows the convergence curve of the cost (Eq. 4)

teapot model. Please see the supplemental video for an interac-
tive demonstration. We first assigned a sound caused by a metal
plate being hit to the teapot’s body and started the optimization.
During the optimization, we checked the intermediate result on
the UI view (Figure 3) and stopped the iteration when the sound
of the object was sufficiently close to the given target sound. In
this timing, all the positions indicated sounds similar to the tar-
get sound. To append more varied sound properties, we assigned
two additional target sounds (two different metal sounds) to the
lid and spout one by one. As seen in this example, the user can
design the sound of an object while running the optimization and
the user’s edits are immediately reflected in the simulation within
a few seconds. The user can iteratively re-edit the sound property
of the object with checking the intermediate results. This type of
interactive physically-based sound design workflow has not been
presented before.

Imaginary Sound Assignment: Our system allows the user to
assign imaginary target sounds to a 3D model (Figure 15). In this
example, we assigned a piano C4 sound to the head of the bunny,
a piano E4 sound to the body, a piano G4 sound to the tail, and
a piano F3 sound to the leg, and optimized. The result after four
minutes of optimization is shown in Figure 15 by spectrograms.
Although an object that has such sounds does not exist in the real
world, our system produces a physically convincing result. This
is also an advantage of our approach compared to the previous
method [RYL13].

A Complicated Scenario Example including Various Ob-
jects: Finally, we demonstrate a complicated scenario involving
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Figure 15: The result of assigning four target sounds to stanford
bunny model after four minutes of optimization.

Figure 16: The result animation including various objects.

several objects as shown in Figure 16. We include this animation
scene in the accompanying video. In this scene, the sounds of the
all objects are designed by our system, and all sounds are triggered
automatically by rigid body simulations. It took 30 minutes for us
to design sound of all the object in the scene using our tool, one
week for rigid-body simulator setting, and three days for visual ren-
dering.

9. Conclusion and Future Work

We presented a novel example-based design framework of
physically-based sound of a 3D model using material optimization.
In addition, our material optimization is third orders of magnitudes
accelerated to the level of interactive rate by a novel fast approxi-
mate modal analysis that consists of data-driven online coarsening
of the mesh and hierarchical component mode synthesis with ef-
ficient error correction. We demonstrated our framework provides
the user to intuitive design workflow of the sound of an object with
a set of examples.

However, several limitations are observed in our work, which re-
main to be addressed in future work. A critical limitation is that our
sound design technique cannot be used for fabrication because we
employ continuous material optimization, which simulates materi-
als that do not exist in the real world. Although the usage of com-
binatorial optimization using existing materials can also be consid-
ered, it is still difficult to make an object consist of various materials
that have a large range of material parameters seamlessly using ex-
isting fabrication tools. Second, our current optimization does not
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consider the effects of sound radiation and propagation. However,
radiation and propagation effects are important for sound design
and thus we plan to extend our method to support them using Li et
al. [LFZ15]’s technique in the future.

We only optimized Young’s moduli in this paper. which limits
the reproducibility of the example sounds. As an improvement,
Poisson’s ratios could be treated similarly by converting Young’s
moduli and Poisson’s ratios to the 2-dimensional space of Lame’
parameters [STC∗13] and performing the optimization in this linear
space. However, the dimension of the feature vector for inputting
data-driven FEM increases, and it could reduce the training effi-
ciency of our regression forests. There is a similar problem for
treating the densities. To treat such a large parameter space with
a machine learning technique remains as future work.

Naturally, our fast approximate modal analysis pipeline can also
be used for deformable animation. Applying our approach to large
deformable simulation or combining it with [YLX∗15] could be
also useful and promising work. Finally, we use voxel elements.
The fineness of the details of the model depends on the voxel reso-
lution. To address this, adaptive coarsening could be useful. How-
ever, how to treat such an adaptive mesh with machine learning
technique is non-trivial and remains as future work.
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