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Abstract
Acceleration data structures such as kd-trees aim at reducing the per-ray cost which is crucial for rendering
performance. The de-facto standard for constructing kd-trees, the Surface Area Heuristic (SAH), does not take
ray termination into account and instead assumes rays never hit a geometric primitive. The Ray Termination
Surface Area Heuristic (RTSAH) is a cost metric originally used for determining the traversal order of the voxels
for occlusion rays that takes ray termination into account. We adapt this RTSAH to building kd-trees that aim
at reducing the per-ray cost of rays. Our build procedure has the same overall computational complexity and
considers the same finite set of splitting planes as the SAH. By taking ray termination into account, we favor
cutting off child voxels which are not or hardly visible to each other. This results in fundamentally different and
more qualitative kd-trees compared to the SAH.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Graphics data structures and data types I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism—Raytracing

1. Introduction

High quality acceleration data structures for ray-tracing such
as kd-trees aim to reduce the cost of tracing a ray. The stan-
dard heuristic for constructing these kd-trees is the Surface
Area Heuristic (SAH) [MB90], which assigns to each can-
didate voxel a cost equal to the product of the cost of pro-
cessing this voxel and the probability of actually processing
this voxel. A top-down construction greedily minimizes this
cost. In order to calculate these probabilities for each can-
didate voxel, the SAH assumes rays to be infinitely long, to
start outside the scene’s bounding box and the origins and
directions of the rays to be uniformly distributed. Despite
its popularity, the assumptions underlying the SAH usually
do not hold in practice. In many scenes, most of the rays
originate from inside the scene’s bounding box and termi-
nate when hitting a surface. By not taking ray termination
into account, costs are overestimated, leading to a subopti-
mal ranking of the splitting planes and even to the decision
of not splitting at all.

In this paper, we try to revise this assumption by re-
visiting the Ray Termination Surface Area Heuristic (RT-
SAH) [IH11], a cost metric originally used for determining
the traversal order of the voxels for occlusion rays taking
ray termination into account. We adapt this RTSAH to build

view-independent kd-tree acceleration structures. Our build
procedures have the same overall computational complexity
and need to consider the same finite set of splitting planes as
the SAH.

The contributions of this paper are as follows:

• We present a novel way of using the RTSAH for building
kd-trees.

• We present two fast building algorithms for qualitative kd-
trees based on the orthogonal projected and average pro-
jected surface area of the individual geometric primitives
onto the splitting plane.

• We achieve reductions in intersection tests up to 47%
for primary rays and up to 41% for shadow rays (when
traversing the voxels in order) compared to the SAH.

2. Related Work

Acceleration data structures. Rays are intersected with
the geometric primitives in the scene in order to determine
which surfaces are visible and to resolve occlusion. The
number of intersection tests can be kept between theoretical
boundaries by using appropriate acceleration data structures
(for a survey, see [WMG∗09]).
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The most well-known adaptive acceleration data struc-
tures are Bounding Volume Hierarchies (BVH) and kd-
trees. BVHs and kd-trees are usually constructed using
a greedy divide-and-conquer strategy for partitioning the
three-dimensional space or the geometric primitives. Differ-
ent traversal approaches exist for BVHs [HDW∗11] and kd-
trees [HH11].

Heuristics for building kd-trees. Heuristics are used for
partitioning the three-dimensional space in a kd-tree. The
best known and commonly used heuristic for generating
qualitative kd-trees is the SAH. The SAH is originally intro-
duced by Goldsmith and Salmon [GS87] for building BVHs
and is adapted by MacDonald and Booth [MB90] for build-
ing kd-trees. The SAH assigns to each candidate voxel a cost
equal to the product of the cost of processing this voxel and
the probability of visiting this voxel. In order to calculate
these probabilities for each voxel, the SAH assumes that:

1. the ray origins are uniformly distributed outside the
scene’s bounding box;

2. the ray directions are uniformly distributed;
3. the rays are infinitely long.

Several improvements have been made to the construction
of the SAH. Havran et al. [HB02] introduced an efficient au-
tomatic termination criterion and clipping algorithm. Wald
and Havran [WH06] encouraged cutting off large empty
child voxels by reducing the expected cost of these split-
ting planes by a constant factor. This improvement usually
results in slightly higher quality kd-trees. Hunt [Hun08] in-
cluded mail-boxing, a ray-tracing optimization that removes
redundant intersection tests. Wald and Havran [WH06] in-
troduced a robust O(N logN) build algorithm for kd-trees,
where N is the total number of geometric primitives.

In addition, several fundamentally different heuristics are
introduced to obtain a more accurate cost model since the
assumptions of the SAH do not hold well in practice. Fabi-
anowski et al. [FFD09] proposed the Scene Interior Ray Ori-
gins Heuristic which assumes ray origins to be uniformly
distributed in the space inside the scene’s bounding box.
Havran and Bittner introduced build methods which take
the actual distribution of rays into account for a fixed origin
or direction [HB99] and by subsampling the rays [BH09].
Choi et al. [CCI12] proposed the Voxel Visibility Heuris-
tic which considers the non-uniform distribution of rays by
taking the occlusion of rays by geometric primitives into ac-
count. Reinhard et al. [RKJ96] and Havran [Hav00] consid-
ered ray termination inside a voxel by including a blocking
factor. Vinkler et al. [VHS12] presented a visibility-driven
modification of the SAH for building BVHs.

All these build heuristics use a greedy divide-and-conquer
approach. When these local heuristics are extended to a
global heuristic which considers the positioning of the split-
ting planes at all levels of the tree simultaneously, the prob-
lem of building the optimal kd-tree becomes NP-hard.

Traversal order for shadow rays. Shadow rays need not
to be traced in front to back order to find the first intersec-
tion because their sole function consist of reporting occlu-
sion. Ize and Hansen [IH11] introduced the RTSAH (based
on Havran [Hav00]) for determining the traversal order for
occlusion rays in BVHs and BSPs. Their heuristic assigns to
each voxel a probability that a ray terminates upon traversal
trough the voxel. When tracing a shadow ray, voxels with
a higher termination probability are traversed first. For sim-
plicity, non-empty leaf voxels are assumed to be completely
opaque. The visibility of intermediate nodes is recursively
obtained from its child nodes. Nah and Manocha [NM14]
introduced the Surface Area Traversal Order metric which
gives a higher traversal priority to the child voxel with the
largest surface area.

Note that these algorithms, which change the traversal or-
der, are orthogonal and fully compatible with our modified
build heuristic.

Contribution. In this paper, we adapt the RTSAH to build-
ing kd-trees that reduce the cost of primary rays. By taking
ray termination into account in the cost metric, we favor cut-
ting off child voxels which are not or hardly visible to each
other. This leads to a different ranking of the splitting planes
which results in fundamentally different, more refined and
more qualitative kd-trees compared to those obtained with
the standard SAH.

For our RTSAH we introduce two new practical blocking
factor approximations based on rasterization and the average
projected surface area of the geometric primitives (not the
axis-aligned bounding boxes).

3. Theoretical Framework

Hierarchical acceleration data structures that partition three-
dimensional space such as kd-trees are often used to accel-
erate ray-tracing. To construct efficient acceleration struc-
tures, splitting planes that minimize the per-ray cost need
to be chosen at each level of the tree. For computational effi-
ciency, this is usually achieved by using appropriate (greedy)
heuristics. In this section we briefly recall the SAH and in-
troduce the modification of the original RTSAH [IH11] for
building kd-trees.

3.1. Surface Area Heuristic

The SAH estimates the cost of splitting a voxel V with a
splitting plane positioned in S into a left VL and a right VR
child voxel as:

CSAH(S : V →{VL,VR}) = Ct+ pL ·C(VL)+ pR ·C(VR) (1)

The heuristic consists of the cost of traversing the parent
voxel, Ct, and the costs of visiting the child voxels, C(VL) and
C(VR), multiplied by the probability of visiting these voxels,
pL and pR. Figure 1 illustrates the partitioning of a voxel V .
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Figure 1: The types of rays considered by the RTSAH
with their corresponding probabilities: rays piercing just
one child voxel (with probabilities pjL and pjR), rays
piercing both child voxels while hitting (with probabili-
ties pLR pfL (1−VLR) and pLR pfR (1−VRL)) or not hitting
(with probabilities pLR pfLVLR and pLR pfRVRL) a geomet-
ric primitive inside the voxel that is pierced first. The RTSAH
reduces to the SAH when VLR = VRL = 1.

The cost C(V ) of visiting a voxel is defined as the cost of
testing a ray for intersection with all the geometric primitives
contained in V . The probabilities pL and pR are the condi-
tional probabilities of respectively piercing the left or right
child voxel after piercing the parent voxel. When the ray
origins and directions are uniformly distributed outside the
scene’s bounding box, these probabilities are exactly equal
to:

pL = p(VL pierced | V pierced) =
SAVL

SAV
(2)

pR = p(VR pierced | V pierced) =
SAVR

SAV
(3)

where SAVk is the surface area of Vk.

The cost of not splitting a voxel is defined as the cost
of intersecting all the geometric primitives contained in this
voxel:

Cno split(V ) = C(V ). (4)

A voxel will only be split into two child voxels when the cost
of splitting is lower than the cost of not splitting.

3.2. Ray Termination Surface Area Heuristic

By not taking the presence of geometric primitives in the
probabilities pL and pR into account, the SAH does not dis-
tinguish between rays piercing both child voxels while hit-
ting or not hitting a geometric primitive inside the voxel that
is pierced first. The RTSAH extends the SAH by distinguish-
ing between these types of rays and by taking ray termina-
tion into account. The RTSAH cost function is defined as:

CRTSAH(S : V →{VL,VR}) = Ct + pjL · C(VL)+ pjR · C(VR)+

pLR

(
pfL

(
C(VL)+VLR · C(VR)

)
+ pfR

(
C(VR)+VRL · C(VL)

))
(5)

pjL, pjR and pLR express the probability of piercing just
the left child, just the right child and both child voxels re-
spectively. When both child voxels are pierced, we distin-
guish the case where either the left or right child voxel is
pierced first using the probabilities pfL and pfR. Rays which
pierce both child voxels can potentially be terminated by a
geometric primitive in the child voxel that is pierced first.
The visibility probability, VLR (VRL), expresses the fraction
of rays, piercing the left (right) child voxel first and then the
right (left) child voxel, that reach the splitting plane with-
out being terminated by a geometric primitive inside the left
(right) child voxel. The types of rays with their correspond-
ing probabilities are illustrated in Figure 1.

We obtain expressions for the probabilities pjL, pjR and
pLR using Equation 2 and 3:

pjL = p(just VL pierced | V pierced)

= 1− pR (6)

pLR = p(VL and VR pierced | V pierced)

= 1− pjL− pjR (7)

pfL = p(VL pierced first | VL and VR pierced)

=
1
2

(8)

This is analogously for pjR and pfR. The visibility probabil-
ities between the child voxels are defined as:

VLR = p(no hit in VL | VL pierced first, then VR) (9)

VRL = p(no hit in VR | VR pierced first, then VL) (10)

Note that the RTSAH cost becomes equal to the SAH cost
when VLR = VRL = 1.

The cost of not splitting a voxel is the same as for the
SAH (Equation 4). The empty space bonus [WH06] and its
underlying motivation can also be applied to the RTSAH.

4. Practical Algorithm

In order to obtain a practical build algorithm based on the
RTSAH, we need to evaluate the splitting cost (Equation 5)
for a finite set of splitting planes.

The probabilities of a ray intersecting a single or both
child voxels can be trivially calculated using Equations 6 to
8. However, the exact calculation of the visibility probabil-
ities VLR and VRL requires the integration of the visibility
over the hemisphere of incoming directions and the area of
the splitting plane (see Figure 2a). Due to the dependence on
the geometrical distributions in the child voxels no closed-
form expression can be found for the visibility probabilities.

c© The Eurographics Association 2015.

33



Matthias Moulin, Niels Billen, Philip Dutré / Efficient visibility heuristics for kd-trees using the RTSAH

While the visibility probabilities can be calculated via
Monte Carlo integration techniques, this is impractical due
to the absence of an acceleration data structure during the
construction phase. Furthermore, performing a Monte Carlo
sampling of the visibility probabilities at each possible split-
ting plane would result in prohibitively large build times.
The number of samples needs to be low when lots of geo-
metric primitives overlap the voxel that must be split, which
is the case for the first split decisions of the kd-tree. On the
contrary, the choice of splitting plane is more important and
decisive at these first split decisions and thus asks for an ac-
curate estimator.

In order to maintain a tractable build time, we aim at a
practical algorithm which for each split decision:

1. considers only a finite set of splitting planes including the
best splitting plane according to our approximated RT-
SAH;

2. allows for an incremental calculation of the visibility
probabilities.

Both conditions are hard to achieve due to the directional
dependence of the visibility probabilities. Therefore, we sug-
gest to eliminate this dependence by considering only a sin-
gle direction: the orthogonal projection direction (section
4.1) and the average projected direction (section 4.2) onto
the splitting plane. In section 4.3, we validate these approxi-
mations. In sections 4.4 and 4.5, we show that these approxi-
mations to the visibility probabilities lead to a practical build
algorithm based on the RTSAH for which both conditions
are satisfied.

4.1. All Points One Direction RTSAH

The All Points One Direction (APOD) RTSAH considers all
the points on the splitting plane and ignores the directional
dependence by considering only the direction orthogonal to
the splitting plane. This corresponds to projecting the geo-
metric primitives onto the splitting plane. The visibility is
than equal to the area of the splitting plane which is not
covered by the projected primitives divided by the total area
of the splitting plane. This can be calculated efficiently us-
ing rasterization. To perform the rasterization, the splitting
plane is partitioned into a finite number of square rasteriza-
tion cells of which the center is called a rasterization point. A
rasterization cell is covered by a geometric primitive if and
only if the orthogonal projection of the geometric primitive
covers the rasterization point of this cell. Figure 2b illustrates
this idea.

The idea of calculating the visibility between two neigh-
bouring child voxels with an orthogonal projection onto the
splitting plane is similar to calculating the blocking factor of
a child voxel in [RKJ96]. In contrast to [RKJ96], we do not
use the axis aligned bounding boxes of the geometric primi-
tives, but use the actual geometric primitives during rasteri-
zation. Furthermore, we implicitly avoid overlapping of geo-

(a) All Points All Directions (b) All Points One Direction

(c) Average Projected Surface Area

Figure 2: The ideas behind the different approximations to
the RTSAH. (a) shows the ground truth, where we integrate
over the splitting plane’s area and the hemisphere of incom-
ing directions. (b) shows our APOD approximation, where
we integrate over every point but only take the direction or-
thogonal to the splitting plane into account. (c) the average
projected surface area of a convex solid.

metric primitives by rasterizing and obtain both a cost model
and build procedure.

The rasterization can be seen as a special form of sam-
pling, resulting in a biased estimator. The rasterization of ge-
ometric primitives is however computationally cheaper than
testing random rays for intersection, reuses intersection in-
formation while shifting the splitting plane in the orthogonal
direction and does not require a second kd-tree compared
to [Hav00].

4.2. Average Projected Surface Area RTSAH

Cauchy showed that the average projected area of a three-
dimensional convex solid is one fourth of its surface area
(see Figure 2c). This property is used for obtaining the prob-
abilities pL and pR of Equation 2 and 3.

The Average Projected Surface Area (APSA) RTSAH ap-
proximates the visibility probabilities as the fraction of the
area of the splitting plane that remains after subtracting the
average projected surface area of the geometry contained in
a child voxel:

VLR ≈ 1−min
(SAGVL

4SAS
,1
)
,VRL ≈ 1−min

(SAGVR

4SAS
,1
)

(11)
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Where SAGVk
is the surface area of all the geometric primi-

tives contained in voxel Vk and SAS the surface area of the
splitting plane. Note that when the sets GVL and GVR repre-
sent a convex solid fully contained in VL and VR respectively,
the above approximations are exact.

4.3. Validation

To validate our approximations of the visibility probabili-
ties, we constructed an artificial scene consisting of a vari-
able number of stratified placed icosahedrons. The visibil-
ity probabilities in this context express the probability that a
ray passes through the different planes of the scenes’ bound-
ing box. To obtain ground truth visibility probabilities, the
scenes’ bounding box got pierced by 100M rays which are
uniformly distributed on the scenes’ bounding sphere and
are guaranteed to pierce the scenes’ bounding box. For the
APOD we used different numbers (162, 322, 642, 1282,
2562, 5122, 10242) of rasterization points. The results are
shown in Figure 3.

The APSA consistently results in the smallest difference
between the approximated and exact visibility probabilities
for the 6 planes of a scene’s bounding box compared to the
APOD. Note the slow linear increase of these underestima-
tions compared to the exponential increase in the number of
icosahedrons. The APOD which rasterizes onto 10242 points
does slightly worse. Unfortunately, the APOD needs a small
number of rasterization points to result in a fast build pro-
cedure. For these scenes this is not problematic since the
other APOD approximations differ at most 5% with an ex-
ception for the approximation which uses 162 rasterization
points. Considering only 16 rasterization points in 1D is not
accurate enough given the number of geometric primitives in
these scenes. Furthermore, the result becomes too sensitive
to small shifts of the rasterization points. The APSA results
on average in an underestimation of 12.7% in the scene with
2048 icosahedrons which is still a reasonable approximation
given the difficulty of calculating the exact visibility proba-
bilities for this scene.

We conclude that for these difficult (with regard to visibil-
ity) scenes, the APSA results in satisfactory approximations
of the visibility probabilities. The APOD on the other hand
is less accurate and depends on the number of rasterization
points used. In the following section, we use at least 16 and
at most 64 rasterization points in 1D depending on the num-
ber of geometric primitives that overlap the voxel that must
be split.

4.4. Split candidates

For simplicity, we do not clip geometric primitives that over-
lap multiple voxels when rasterizing (APOD) or calculat-
ing surface areas (APSA). Therefore, the APOD and APSA
RTSAH cost functions increase or decrease monotonously
in the region between two consecutive geometric primitive

(a) Region of no interest (b) Splitting planes

Figure 4: (a) Shows a region (green) where the SAH, APOD
and APSA RTSAH cost functions are monotonously increas-
ing/decreasing. (b) The finite set of splitting planes (green)
along a single direction considered by the SAH, APOD RT-
SAH and APSA RTSAH to obtain the optimal splitting plane
according to their respective metrics.

boundaries along the same axis (illustrated in Figure 4a).
Within such a region, the approximations of the visibility
probabilities VLR, VRL remain constant and pjL, pjR are both
linear functions of the position of the splitting plane. This
means that we only have to consider splitting planes at the
boundaries of the geometric primitives in order to obtain the
best splitting plane according to our cost metric (see Figure
4b). This is the same set of splitting planes considered by the
SAH.

4.5. Build algorithm

We only have to make some small modifications to the build
procedure for the SAH without changing the overall compu-
tational complexity. Obtaining pjL, pjR, pLR is very similar
to calculating pL and pR. The visibility probabilities are in-
crementally updated during a single pass through the split-
ting candidates for each primary direction. When moving the
splitting plane from the left to the right, this requires incre-
mentally decreasing VLR and increasing VRL. The calcula-
tion of the visibility probabilities depends on the approxi-
mation used:

APOD RTSAH: For VLR we need to keep track which ras-
terization points are not overlapped by geometric primitives
contained in VL (invariant). For VRL we need to keep track
how many geometric primitives contained in VR cover each
rasterization point (invariant). Therefore, all geometric prim-
itives contained in V need to be rasterized onto the splitting
plane prior to determining the costs of each split candidate.

APSA RTSAH: To calculate VLR and VRL, we have to keep
track of the sum of the surface area of all geometric primi-
tives contained in the left and right child voxel respectively
(invariants). This can be done incrementally by initializing
VRL with the sum of the surface area’s of all the geometric
primitives contained in voxel V .

The data structures that needs to guarantee these invari-
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Figure 3: The difference between the approximated and exact (100M rays) visibility probabilities for the 6 planes of the scene’s
bounding box. A positive (negative) difference corresponds to an underestimation (overestimation).

ants, must be updated (incremented/decremented) appropri-
ately when a geometric primitive starts overlapping the left
child voxel or stops overlapping the right child voxel.

5. Experimental Results

We have implemented the APOD and APSA RTSAH in
PBRT [PH10]. Our test scenes are shown in Figure 5. We
compare the obtained kd-tree structures in 5.1 and the per-
formance with regard to the number of intersection tests and
traversal steps in Section 5.2 as opposed to the SAH.

5.1. Kd-tree properties

Table 1 summarizes the properties of the obtained kd-trees.
The kd-trees obtained with the APSA RTSAH contain less
geometric primitives per leaf as opposed to the SAH. There-
fore leaves are traversed faster on average. On the other
hand, the subtrees are more refined, resulting in 30 to 60%
as many voxels and more duplicated references to geometric
primitives for the same maximal depth. Therefore the aver-
age number of traversed voxels will be higher, more memory
needs to be allocated, but also fundamentally better kd-trees
can be obtained as opposed to the SAH.

We see similar results with regard to the number of
(empty) leaves and geometric primitives for the kd-trees ob-
tained with the APOD RTSAH. Only the sponza scene is
less refined compared to the SAH. Despite the refinement,
the number of geometric primitives per leaf as opposed to
the APSA RTSAH is less ideal.

Both RTSAH build times are higher than the SAH due
to the larger and deeper obtained kd-trees. Therefore, the
APSA RTSAH results in minimal overhead compared to the

SAH for the same number of split decisions. The APOD RT-
SAH does worse, because rasterizing at the highest levels
of the kd-tree is computationally expensive. Our APOD or
APSA RTSAH (CPU) build procedures are not optimized
and do not cache surface areas or rasterization info for ge-
ometric primitives. These improvements can still result in a
speedup, but are not tested.

5.2. Performance

Table 2 shows the difference in geometric primitive intersec-
tion tests, traversed voxels for different rays and the differ-
ence in total rendering time. As expected due to the proper-
ties of the kd-trees, more voxels need to be traversed for the
APOD and APSA RTSAH due to the more refined subtrees
compared to the SAH.

More importantly, we clearly see a large reduction in ge-
ometric primitive intersection tests for the APSA RTSAH.
We obtain reductions up to 47% for primary rays for the
sibenik and sponza scenes. In these scenes, ray termi-
nation is important to consider by a build heuristic since ev-
ery ray will eventually hit some surface. We obtain a small
increase in intersection tests for the bunny scene consist-
ing of a single object and a floor plate. The APSA RTSAH
needs less tests on the bunny, but performs slightly worse on
the floor plate. Despite only focusing on exterior rays, we
even see reductions to 41% for shadow rays (when travers-
ing the voxels in order). This is due to the larger number of
duplicated references to geometric primitives.

The APSA RTSAH generally outperforms the APOD RT-
SAH in more complex scenes (such as the sibenik and
sponza scenes). By considering only the incoming nor-
mal direction for the APOD RTSAH, we note a difference
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sponza1 sponza2 sponza3 sponza4 sibenik1 sibenik3

icosahedron bunny sibenik2

Figure 5: Test scenes. The icosahedron scene consists of approximately 7k, the bunny scene of 69k, the sibenik scenes
of 80k and the sponza scenes of 66k geometric primitives.

scene build time #leafs #empty leafs

SAH APOD APSA SAH APOD APSA SAH APOD APSA

icosahedron 0.1s 3.3s 0.2s 65 k 87 k 94 k 6 k 6 k 6 k
bunny 0.6s 30.2s 2.1s 873 k 1.17 M 1.22 M 198 k 224 k 219 k
sibenik 0.7s 31.7s 2.5s 607 k 829 k 888 k 127 k 142 k 156 k
sponza 0.6s 16.3s 2.1s 502 k 452 k 823 k 130 k 109 k 176 k

scene #references to geometric
primitives

maximum #geometric
primitives/leaf

average #geometric primitives
/non-empty leaf

SAH APOD APSA SAH APOD APSA SAH APOD APSA

icosahedron 170 k 224 k 239 k 11 8 8 2.86 2.78 2.71
bunny 1.80 M 2.46 M 2.53 M 12 11 11 2.67 2.59 2.52
sibenik 1.97 M 2.87 M 2.95 M 81 72 36 4.10 4.18 4.03
sponza 1.64 M 1.66 M 2.59 M 57 54 44 4.41 4.84 4.01

Table 1: Kd-tree structures obtained for the SAH, APOD and APSA RTSAH build heuristics for the test scenes.

between sibenik1 (perspective camera) and sibenik3
(orthographic camera). On the contrary, the APSA RTSAH
results in similar gains independent of the type of camera
used.

The false color images in Figure 6 show a more detailed
comparison between the build heuristics. Here we can for
example see that less intersection tests are performed near
the pillars of the sponza scenes due to the inclusion of ray
termination in our RTSAH approximations.

While we achieve significant reductions in intersection
tests, the impact on the total rendering time is less pro-
nounced. Our profiler showed that (depending on the scene
and build heuristic) less than 35% of the time is spent on
testing geometric primitives for intersection or traversing the
acceleration data structure. Therefore, the reductions in ren-
dering time are smaller.

6. Conclusions and further work

Our RTSAHs result in more qualitative kd-trees compared
to the SAH by taking ray termination into account. Further-
more, our RTSAH build procedures have the same overall
computational complexity and need to consider the same fi-
nite set of splitting planes as the SAH.

We plan to precisely investigate the differences between
the acceleration data structures generated by the SAH and
our RTSAHs and to further validate the underlying as-
sumptions and simplifications. Furthermore, we want to use
our approximated visibility probabilities to determine the
traversal order for shadow rays as opposed to the (origi-
nal) RTSAH introduced by Ize and Hansen [IH11]. Both
the SAH and RTSAH do not take the actual ray distribu-
tion nor the presence of internal rays into account. The SAH
for scene-interior ray origins introduced by Fabianowski et
al. [FFD09] could also benefit from the ray termination of
our RTSAHs.
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SAH APOD RTSAH APSA RTSAH ∆ APOD RTSAH ∆ APSA RTSAH

Low High

Figure 6: False color images for the number of intersection tests for primary rays for the SAH, APOD and APSA RTSAH and
the difference (blue (red) corresponds to a gain (loss)) between the SAH and RTSAH approximations. All scenes are rendered
with a Whitted ray tracer [Whi80] using 512 samples per pixel. The scale is linear.
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scene ∆ intersection tests
for primary rays

∆ intersection tests
for shadow rays

∆ traversed voxels
for primary rays

∆ traversed voxels
for shadow rays

∆ total rendering
time

APOD APSA APOD APSA APOD APSA APOD APSA APOD APSA

icosahedron -1.7% -0.5% -1.8% -8.5% 1.2% -0.6% 3.0% -0.8% -3,6% -4,4%
bunny -1.8% 0.9% -1.5% -3.7% 5.5% 2.6% 7.4% 2.7% 1.8% -1.0%
sibenik1 -13.5% -18.7% -3.9% -13.8% 13.4% 11.6% 15.5% 15.6% -1.6% -3.5%
sibenik2 -10.6% -20.2% -9.1% -17.7% 8.0% 6.7% 12.3% 12.0% -3.2% -4.8%
sibenik3 -17.9% -17.9% -8.0% -9.3% 13.7% 10.7% 14.3% 15.2% 0.4% -0.1%
sponza1 -12.5% -25.5% -3.1% -22.1% 8.2% 7.6% -2.2% 10.6% -3.9% -4.8%
sponza2 -38.0% -46.7% -6.0% -29.2% 3.0% 20.0% -0.5% 14.4% -7.4% -7.6%
sponza3 -20.5% -30.7% -18.9% -40.8% 4.6% 12.2% 1.3% 10.8% -7.5% -8.5%
sponza4 -12.9% -27.4% -14.8% -33.8% 18.6% 7.1% 3.4% 10.4% -0.4% -3.1%

Table 2: The difference in geometric primitive intersection tests, traversed voxels for primary and shadow rays and total
rendering time for the APOD and APSA RTSAH relative to the SAH, where a negative (positive) percentage corresponds to
a decrease (increase). All scenes are rendered with a Whitted ray tracer [Whi80] using 512 samples per pixel (on 8 logical
threads).
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