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Abstract
We present an algorithm that allows fast non-linear deformation editing on high-quality meshes. The proposed Fast Centroidal
Deformation (FCD) method is based on a multi-resolution framework, where a centroidal deformation graph is built over the
mesh in order to allow fast non-linear optimization at a coarse scale. The resulting deformation is then propagated to the initial
dense mesh by exploiting the relationship between the constructed deformation graph and the input mesh through a mapping
function that unifies local rotations and global translations without the need of solving a system composed by a number of linear
equations of the same magnitude of the number of vertices of the mesh. A number of flexible user constraints can be imposed
in the deformation through a handle-based metaphor where the user can redefine the position and orientation of single control
points or entire portions of the input model. The proposed method addresses the obstacle of non-linear deformation on meshes
composed by millions of vertices and is compared with the reference deformation techniques, showing significant improvements
in terms of computational efficiency without renouncing to the quality of the results given by non-linear methods.

CCS Concepts
•Computing methodologies → Mesh models;

1. Introduction

Mesh deformation is a relevant, long-time investigated, and still ac-
tive research field in Geometry Processing. Many applications re-
quire, as critical component, means to deform existing or acquired
3D models, often represented by mesh data structures. Creative
editing and 3D characters animation are among the most obvious
and popular application fields [JT05, NMK∗06, BP07], but other at
least as important domains call for high quality deformation tools
in action, for example in medical procedures [CDA99, KR15] or
in industrial design and digital manufacturing processes [MYF07,
YLL∗16, SGA∗16]. This is especially true where adjustments or
modifications are required on 3D models coming from some kind
of 3D digitization/scanning of real scenes, objects or subjects. Also
the growing metric performance of modern 3D scanners de facto
raises the bar of the application requirements that must be fulfilled
and require the development of advanced techniques capable of ro-
bustly and efficiently handle deformations on large and detailed
models without spoiling their quality.
Most of the mesh deformation methods are based on the usage of
structures (skeleton or cages) external to the mesh surface. They
are referred to as space-based techniques, where the construction of
guiding structures usually requires time and effort. This can be well
justified in contexts like 3D animation, where models (e.g. human
or animal bodies and faces) have to be deformed in many differ-
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ent poses and defined motion schemes (e.g. human skeleton driven
movements). In these specific application contexts it is good to have
a system to describe and control the motion. However, this typically
requires a specific and time-consuming preliminary work by expert
users. In this work we are instead interested in generic methods
that usually find solutions in what is referred to as surface-based
techniques, that directly work on the mesh surface and that can be
driven by simple user interaction paradigms. Moreover, we espe-
cially need fast execution times of the deformation algorithms in
order to preserve a good degree of user interactivity, an aspect that
represents a critical and open issue for surface-based techniques,
while for space-based techniques is tackled by exploiting the pri-
ory knowledge provided by the external structures.
In this work, we propose a general purpose mesh deformation tech-
nique that exploits a guiding structure that does not require a design
phase, since it is automatically created with the sole purpose (typ-
ical of the surface-based methods) to drive a coarse deformation
phase followed by a proper handling of the finer details.
Another important distinction among deformation methods is re-
lated to computational approaches, where linear techniques are
faster but suffering from some limitations especially in their capa-
bility to correctly handle large deformation [BS08]. Instead, non-
linear methods, i.e. requiring the solution of non-linear equation
systems, typically coming from non-convex optimization prob-
lems, provide more realistic and physically plausible results, but at
the price of a significantly increased computational cost, that easily
becomes prohibitive when mesh dimension grows.

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

DOI: 10.2312/stag.20181302 https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.2312/stag.20181302


A. Morsucci, M. Centin & A. Signoroni / Fast centroidal deformation for large mesh models

In this work, we want to manage large deformations, therefore
we need a non-linear method, but at the same time we want to
achieve computational performance compatible with a fluid user-
interaction and an on-the-fly definition of the deformation we want
to provide even on large mesh models. This is obtained by applying
the deformation only to the automatically generated control struc-
ture and, in a final step, by transferring the deformation over the
finer details by a suitable mapping.

1.1. Related Work

Early mesh deformation techniques, such as the one of Sederberg
and Parry [SP86], can be considered space-based, with the advan-
tage of being able to keep computational complexity under con-
trol by working on simplified structures. The method presented by
Botsch et al. [BPWG07], based on rigid cell, is an example of a
more recent technique that produces high quality space deforma-
tions. Another approach by Tao et al. [JSW05] efficiently maps
the external structure to the mesh by using a generalization of
Mean Value Coordinates. One main problem of these techniques
is the need to build a lattice around the mesh in order to enable
fine detail preservation. High detailed mesh can require cumber-
some user interaction to achieve good results. Other early tech-
niques were based on structures (skeletons) inside the model which
gave birth to the skinning methods (see Magnenat-Thalmann et
al. [MTLT88]). This type of deformation evolved into what are
the most diffuse techniques in animation applications, giving re-
alistic results [JT05]. Unfortunately, the main problem of this tech-
nique is the difficulty to automatize the process of skeleton con-
struction and vertex weight estimation. Surface mesh deformation
techniques introduced a new way to face this problem: regions or
points over the mesh are set to be constraints to which a transforma-
tion is applied. The region of influence (ROI) defined on the mesh
is deformed starting from these constraints. Methods using this ap-
proach can be subdivided in two groups: one that uses interpola-
tion functions or Radial Basis Functions (RBF) (M. Botsch and L.
Kobbelt [BK05]; de Boer et al. [dBvdSB07]), the other that mini-
mizes energy defined on the mesh, computing the whole deforma-
tion starting from the fixed regions (Botsch and Kobbelt [BK04],
Sorkine et al. [SCOL∗04], Botsch et al. [BPK∗07]. Surface mesh
deformation has the great advantage to work directly on the mesh,
preserving every detail, but with an increased computational cost.
For models coming from 3D scanning systems, especially those
producing large and high quality meshes, deformation with detail
preservation is a primary goal. Multiresolution approaches (Forsey
and Bartels [FB88], Zorin et al. [ZSS97], Kobbelt et al. [KCVS98],
Guskov et al. [GSS99], Lipman et al. [Lip04]) tackled the defor-
mation problem separating high frequency details from the low
frequency shape. Other techniques, instead, apply a deformation
transfer from the coarse mesh to the fine one, preserving all the
small details (Sumner and Popović [SP04], Botsch et al. [BSPG06],
Moser [MCR16]). In the first case, the methods behave very well
if the details we want to preserve can be expressed as a height map
of the coarse mesh; if this assumption does not hold, the algorithm
can lead to unsatisfying results. In the second case, transferring de-
formation form a mesh to another achieves great results avoiding
many artifacts, due to the fact that deformation is applied directly
on the detailed mesh. Deformation transfer is done solving a sparse

linear system, and this can be done quite efficiently by using mod-
ern sparse solvers (Botsch et al. [BBK05]). Unfortunately, this ef-
ficiency decays when mesh dimension starts growing: even if the
solution can be achieved through only one step of factorization, the
computation cost of this step is too expensive for large datasets.
Moreover, even if real-time deformation could be achieved with
multiresolution techniques or deformation transfer, linear methods
cannot provide the best results from the point of view of realism. In
fact, high quality large deformation can be obtained only by using
non-linear deformation techniques. Many non-linear methods have
been proposed providing high quality results. In the PriMo method,
proposed by Botsch et al. [BPGK06], a prism-based structure over
the mesh is constructed, where each prism is connected with its
neighborhood by elastic forces. The transformation of every prism
is computed by minimizing the elastic energy and then the de-
formation is transferred to the mesh surface. As-rigid-as-possible
(ARAP) deformation, based on non-linear energy minimization,
was proposed by Sorkine and Alexa [SA07] with the aim to provide
robust and physically plausible deformation results. This technique
fails to achieve satisfactory results for certain type of deformations
and has been recently improved by Levi and Gotsman [LG15] with
a technique called Smooth Rotation enhanced ARAP (SR-ARAP),
where the deformation energy is extended with a further factor that
penalizes too different rotations of close vertices, significantly in-
creasing the quality of the final result in many situations. In Huang
et al. [HSL∗06] another non-linear energy term is defined that takes
into account volume, projection and skeleton constraints and the fi-
nal result is obtained through a least-square minimization of this
energy. Other interesting approaches are the one proposed by Shi
et al. [SZT∗07], where a different way to approach skinning defor-
mation is proposed, and by Chao et al. [CPSS10], where an elastic
energy is exploited to generate physical plausible deformations.
The main disadvantage of non-linear methods is the high computa-
tional cost, that increases drastically when the number of vertices
grows. To overcome this problem, many techniques based on spa-
tial reduction have been presented. These methods provide tools to
compute subspace of the mesh deformation problem, giving a direct
relationship between the full space and the subspace. The designed
subspace can be a coarser version of the original mesh or a sub-
set of the possible deformations (Wang et al. [WJBK15], Barbič
and James [BJ05], Hildebrandt et al. [HSTP11], von Radziewsky
et al. [vRESH16]). Even if these methods are based on a very solid
mathematical basis and provide high quality results, they require a
lot of pre-computation to actually be fast during the deformation
session. This computational complexity is a bottleneck of most of
these applications when large meshes (e.g. over 1M vertices) must
be handled. Even techniques that require just one pre-factorization
of a sparse matrix (such as [BBK05] or [WJBK15]) are not fully
suitable for the purpose. Sieger et al. [SGA∗16] exploits a Moving
Least Square (MLS) technique in order to reduce the dimensional-
ity of the deformation problem, computing a basis for each control
point; unfortunately however, this technique becomes impractica-
ble for large meshes.
Sumner et al. [SSP07] define an embedded deformation, in order
to link different data types (meshes, point clouds, particles, ...) to
theirs coarse versions. This allows directly transferring of the de-
formation from a coarse graph to the fine mesh. This work, unfor-
tunately, does not provide a reliable mesh deformation technique,
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introducing artifacts for large deformations, such as pinching phe-
nomena. The idea of using a coarser scale graph of patches over
large meshes to propagate deformations in a smooth way was re-
cently used also in [PBGC18] in a non-rigid deformation context
within a technique similar to [BSB14].

1.2. Contribution

In this paper we present a non-linear space-based deformation tech-
nique. The construction of the control structure, called deformation
graph is completely automatized (Sec. 2.1), with no need of inter-
action by the user: this procedure overcomes one of the most impor-
tant disadvantages of space deformation techniques. Where many
other methods fail to do so, our method can apply a non-linear de-
formation to mesh of millions of vertices in a very small amount
of time, since it avoids requiring matrix factorization for solving
sparse linear system with dimensions of the order of the number of
vertices. This boosts the performance of both pre-processing and
actual mesh deformation (Sec. 2.2). Thanks to the presence of the
structure, our method does not require to directly act on finer lo-
cal details on mesh surface, but, thanks to the relationship between
graph and mesh, it can map coherently a global deformation applied
to the graph to the mesh surface: it does not try to separate differ-
ent frequencies, but can express and map mesh detail as a weighted
function of the deformation over the graph control points (Sec. 2.3).

2. Proposed method

The description of the proposed method based on Fast Centroidal
Deformation (FCD) follows the workflow depicted in Fig. 1 where
we show the various phases described in the following subsections
along with a demonstrative result of application of the method. The
first and second steps (described in Sec. 2.1) allow the automatic
construction of the reference deformation graph. The third step
(Sec. 2.2) is responsible for a non-linear deformation applied the
reference graph. The fourth, and last, step (Sec. 2.3) performs the
mapping of the original mesh on the deformed graph by producing
the resulting deformed mesh. The deformation works according to
a handle-based interaction, where handles can be one single graph
point or a set of points selected by the user, which has also the
task of providing a rigid transformation of the handles. This is typi-
cally accomplished with the help of proper interaction tools for the
definition of translation, rotation around an axis and their combi-
nations. The user can even choose the region of influence of the
deformation, deciding which vertices of the original mesh can be
moved. Thanks to our FCD based on an automated reference struc-
ture (graph) generation, we enable highly interactive and respon-
sive editing sessions, with users having the possibility to ignore
any disturbing underlying complexity.

2.1. Deformation graph generation

We aim to the automated generation of a graph derived from
the original mesh. This should act as a guiding structure (in this
sense our method can be classified space-based) by providing
control points from which the deformation can be computed and
then transferred to the mesh. This graph structure is made by
undirected edges and can be non-manifold and made of multiple

connected components. The only requirement needed for our
method to work is the knowledge of graph connectivity: this allows
exploiting surface-based mesh deformation techniques that require
the knowledge of vertices’ neighborhood. Moreover, we want
the graph generation to be effective and fast even on large mesh
models and we also want to have the control on the simplification
level we want to obtain (which can be linked to a metric of the
graph).
The generation and exploitation of a graph in the context of
embedded (space-based) mesh deformation was proposed by
Sumner et al. [SSP07]. In their work a uniform mesh subsampling
is operated where the deformation graph connectivity is defined
on the sampled points according to how control points influence
mesh vertexes in the final deformation mapping. However, this can
easily generate topological changes of the graph with respect to the
original mesh. This is why we here adopt a topology aware graph
generation able to properly propagate connectivity information
within the mesh simplification process. The construction of our
deformation graph is similar to the one proposed by Cohen-Steiner
et al. [CSAD04] where we also build on a k-means formula-
tion [Mac67,Llo82] while differing by the use of euclidean distance
metric for surface partitioning, by allowing the obtained graph to be
non-manifold and by introducing a mechanism to adapt the number
of generated graph nodes based on a user-defined metric parameter.

Given a subset K0 of a predefined number k0 of points ran-
domly selected from the setM comprising all the vertices of the
input mesh, we start considering the points in K0 as centers of the
patches, and we associate every point inM to a patch according to
a point-to-point proximity distance criteria. In our case, we consider
the Euclidean distance between the mesh point and its candidate
patch-center. In concrete, patches grow considering mesh connec-
tivity with a prioritized queue (to prevent creation of interferences
and not connected regions). Then an iterative patch splitting and
adjustment starts which is driven by a user defined distance D (re-
flecting a simplification strength parameter). This parameter is used
to split a patch if one point is found to be at a distance greater than D
from its center. This allows the user to metrically guide the subsam-
pling without having to be constrained to define a fixed and more
abstract patch number k0. Moreover by defining a value of D lower
than what can be expected to be the average length of the graph
induced by the random subsampling, i.e. D0 ≈ davg ∗

√
(m/k0)

(where m is the number vertices and davg the average edge length
of the original mesh), we can produce a more uniform subsampling
with respect to the purely random one, and this is beneficial to our
method. The rule that governs patch splitting related to the intro-
duction of the metric bound D is that every patch can be possibly
split only once at each iteration. This avoids generating centers too
close to each other. The algorithm iterates by updating all centers
to the patch barycenter (assigning as new center its closest mesh
vertex). At iteration n the updated set of centers Kn undergo the
described split and adjust process until convergence is reached with
a final number of patches kN .
During the above shape simplification process, the graph is simulta-
neously extracted thanks to the intrinsic possibility to keep tracked
the connectivity relations among the different patches subdivid-
ing our mesh. More specifically the adjacency matrix A is com-
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Figure 1: Workflow and application of our method: Hulk (1.4M vertices) needs some stretching (top raw), before doing gym (bottom raw).

puted and updated at every iteration and the deformation graph
G, the one used in the deformation process, is defined as the dual
graph of the sampled mesh. This way, every center of each patch
(the sampled vertices) is a node of the graph and the edges of the
graph are the connections between adjacent centers. The edges are
undirected and this type of construction can lead to non-manifold
graphs, against which our method is robust.
In Figure 2 examples of our sampling method are shown, where
every patch has been colored with a different color and where the
main parameters related to the graph generation are specified along
with timings. Our method allows a rapid convergence to a mesh par-
titioning reflecting the desired patch dimension, expressed by the
parameter D, even starting from large and dense meshes. Conver-
gence behavior is similar to the typical one of moving means clus-
tering since, once the patch splitting induced by D is completed, the
method evolves as a pure k-means, therefore converging to a local
minima in a finite number of steps by minimizing a cost function E
of the following nature:

E = ∑
c∈K

∑
p∈Pc

||p− c||2 (1)

with Pc is the patch associated to a center c.

As demonstrated in Figure 2, our method is able to reach con-
vergence in very few steps while allowing to obtain a near-uniform
subsampling according to a desired level of simplification and re-
flecting the mesh structure according to the desired level of detail.

2.2. Non-Linear deformation

Among mesh deformation methods able to work starting from the
definition of positional constraints (deformation handles), the as-
rigid-as-possible (ARAP) approach by Sorkine and Alexa [SA07]
gained popularity. The original ARAP formulation is based on the
minimization of an energy term that takes into account non-rigid
distortions in the 1-ring of the mesh vertices. An evolution of this
method has been proposed by Gotsman and Levi [LG15], where
a smooth rotation SR-ARAP solution was aiming to solve both
computational and deformation quality drawbacks of the original
ARAP surface deformation approach. However, also in this case,
efficiency issues remains if the method is applied to large mesh
models. In this work, we adopt an evolution of SR-ARAP defor-
mation which is adapted to be used on generic graphs, as the de-
formation graphs described in Sec. 2.1. The deformation energy is
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Description Hurricane Dragon
m number of vertices 214627 3609455
davg[mm] mesh average edge length 1.16 0.11
k0 number of initial seeds 300 300
t0[ms] initialization time 14 441
D[mm] target patch radius 19.13 16.34
k1 n. of seeds at 1st iteration 548 481
t1[ms] time for 1st iteration 2203 5505
N total number of iterations 5 6
kN+1 final number of seeds 779 547
tN+1[ms] time for last iteration 270 6198

Figure 2: Examples of our sampling algorithm, generated non-manifold deformation graphs and main parameters summarized in the table.

defined as a sum of weighted rotated edge differences plus a penalty
coefficient used to promote smooth rotations.

Given K the set of the k control points on the graph G and defin-
ing ei j as the edge connecting the control points ci and c j on the
original graph and e′i j as the edge connecting the control points c′i
and c′j on the deformed graph, the energy function defined on the
graph is the following

E(G) = ∑
i∈K

∑
j∈N (i)

wi j||e′i j−Riei j||2 +αA||Ri−R j||2F (2)

with Ri and N (i) respectively the local rotation matrix and the
neighborhood (1-ring) associated to the i-th control point, wi j the
Laplacian weight of the i j-th edge of the graph and || · ||F the Frobe-
nious Norm (which was chosen in [LG15] to derive a proper dis-
cretization of the continuous SR-ARAP formulation and to consis-
tently promote small rotations). The coefficient α is a penalization
weight that is scaled by the total mesh area A, in order to prevent
scale variance. In the original definition of SR-ARAP the weights
wi j are the Laplacian coefficients computed on the mesh surfaces.
Our method applies this algorithm on the deformation graph, that
can be a generic graph, even not manifold neither watertight. To be
able to apply the SR-ARAP algorithm on a generic graph we de-
rive the wi j weights from its Laplacian matrix. Given the adjacency
matrix A, that tracks graph connectivity, defined as

Ai j =

{
1 if ci is adjacent to c j

0 otherwise
(3)

the Laplacian matrix L of the graph is computed as L = D−A,
where D is the degree matrix of the graph, computed as

Di j =

{
deg(i) if i = j
0 otherwise

(4)

where deg(i) is the number of edges incident to the i-th vertex.
Using this particular type of weights, we don’t rely any more on

the surface characteristics, allowing our deformation technique to
be completely transparent to any defects on the mesh.

In order to find the deformation graph G that minimizes the en-
ergy in (2), we need to minimize the local rotations of all edges,
trying to achieve the most rigid transformation possible. To do so,
the energy must be minimized according to both its degrees of free-
dom: the new vertex positions and the local rotation matrices. The
process of solving this non linear problem is composed by an iter-
ative procedure subdivided in two steps.
In the first step, called local step, the energy is minimized with
respect to the local matrix rotations, keeping the new vertices posi-
tions fixed. Defining the matrix

Si =−2( ∑
j∈N (i)

wi j(ei je
′T
i j +αAR j)) (5)

and its SVD decomposition Si = UiΣV T
i , for each control point ci

its minimal local rotation matrix Ri is computed as Ri =ViUT
i . On a

generic matrix, SVD is an expensive operation: luckily in this case
Si are 3x3 matrices and the decomposition can be efficiently com-
puted.
In the second step, called global step, the energy is minimized with
respect to new vertices positions, keeping fixed the rotations com-
puted in the previous step. This minimization ends up with solving
a sparse linear system with k− kc equations and k− kc unknowns
(with kc number of control points which positions have been deter-
mined by the user, i.e. handle and fixed nodes). The system to solve
is then

∑
j∈N (i)

wi j(c
′
i− c′j) = ∑

j∈N (i)

wi j

2
(Ri +R j)(ci− c j) (6)

Considered ∀i ∈ [1,k], it can be expressed in matricial form as
Lc′ = b. The positional constraints imposed by the user have to be
inserted in this equation, deleting the respective rows and columns
from L and subtracting the known elements from the right-hand
side. Therefore, the system matrix is a sub-matrix extracted from
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the Laplacian matrix of the graph. This matrix is the same at every
iteration, what changes is the right hand side of the system, i.e. the
vector b. In order to speed up the computation time required by this
minimization, the system matrix can be pre-factorized, only once
before the first iteration, and re-used at each iteration to compute
the new solutions. Being the dimension of the matrix k− kc in the
order of many hundreds, but sparse, the factorization can be done
very efficiently and therefore is fast.
The iteration of these two steps guarantees the minimization of the
total energy converging after a certain number of iterations. To re-
duce the number of iterations needed to reach convergence, the ini-
tial guess should be as close as possible to the final position: the
naïve bi-Laplacian over nodes displacement has turned out to be a
good starting point.

2.3. Graph-mesh mapping

The deformation obtained on the graph has to be transferred to the
initial mesh. For this step we still aim to avoid any expensive com-
putation without renouncing to the preservation of finer mesh de-
tails. Based on the work done by Sumner et al. [SSP07], we im-
plemented a simple and intuitive way to propagate global deforma-
tions where every point of the mesh pi is reconstructed through a
weighted sum of the transformations of control points c j:

p′i = ∑
j∈K

wi j[R j(pi− c j)+ c j + t j] (7)

where R j is the local rotation matrix of the j-th control point and
t j is its displacement, such that c′j = c j + t j. These parameters
are available from the deformation energy minimization (Sec.2.2)
where every transformations is defined as a local rotation and a
translation.
Weight definition in (7) is a delicate matter since spreading over
all mesh surface the computation of the rotation and translation for
every vertex allows aesthetically pleasant results but risks to be
computationally critical and can represent a bottleneck when the
number of vertices and control points starts growing. On the other
hand relying only on closest control points is computationally ef-
fective but can introduce unpleasant discontinuities to the mapping
caused by significant changes of the set and relative influence of in-
volved control points when crossing the patch borders. To avoid the
above drawback, the weights wi j are chosen to be a function of the
distance of each vertex from every control point. This does solve
the problem of the computational cost, because we can impose
a decreasing function that goes to zero after a certain distance dmax.

The sampling algorithm previously described allows obtaining a
nearly uniform sampling on the mesh surface. Unfortunately, the
sampling algorithm is not truly uniform, with the possibility to cre-
ate patches with different sizes. Due to this differences, using the
same identical mapping function for each patch could introduce
some artifacts on the final result. In order to avoid these defects of
the deformation algorithm, we introduce a modulation coefficient
that takes care of the not perfect uniform distribution of the nodes
on mesh surface. Analytically, the weights are defined as

wi j =

{
(1− ri j

d j
)2 if ri j < d j

0 otherwise
(8)

with ri j = ||pi− c j|| and d j maximum distance between the j-th
center and all points inside the j-th patch.
Transferring both rotations and translation of each graph node to
the mesh, allows preserving rotations and stretching introduced by
the non-linear deformation algorithm, smoothly interpolating every
finer local detail on the mesh surface.

3. Results

The results obtained with the proposed technique have been
compared with the reference non-linear deformation methods
ARAP [SA07] and SR-ARAP [LG15] both implemented in CGAL
libraries [LSHXY17]. To provide faithful and accurate compari-
son between these methods we arranged our code implementation
such that every algorithm can import a file where two things are
specified: a tagging for every vertex and a transformation matrix
for every tag. This file can be easily produced in a separate user-
interaction phase and this allows to use the same handles and posi-
tional constraints for the different deformation techniques. Thanks
to the tagging, vertices can be easily subdivided in regions and their
final position computed thanks to the transformation matrices. We
analyze and compare results in terms of visual quality of the defor-
mation and computation times. Some of the meshes used to gener-
ate these results are courtesy of Stanford Computer Graphics Lab-
oratory†.

3.1. Deformation benchmarks

To verify that our mesh deformation technique behaves similarly
according to other techniques, we first compare our system on
the benchmark set introduced by Botsch and Sorkine in [BS08].
Four different examples are proposed: 135◦ twist (bar), 70◦ bend
(cactus), 120◦ bend (cylinder), pure translation (knubbel). The de-
formed meshes obtained using the different methods are shown in
Table 1, where colors are associated to handles (red), fixed regions
(blue) and deformable regions (yellow). We represent both ARAP
and SR-ARAP in two different instants: the first one, called snap-
shot, is the the result at the iteration step at which our algorithm
reaches convergence (60 iterations for the Bar, 400 for the Cactus,
40 for the Cylinder and 100 for the Plane); the second one, instead,
shows the results when they reach convergence.
From a visual quality point of view, ARAP behaves poorly in every
case except for the Plane one. In the other cases its main disad-
vantage is that the deformation is done without minimally taking
into account the volume of the object, i.e. meshes are treated as
empty objects and this provides unsatisfying results [LG15]. SR-
ARAP, instead, generates results very similarly to our method, but
requires more iteration to converge to a suitable result. The corre-
sponding computational time comparison is provided in Table 2.
Even in these simpler cases, where involved meshes are not yet
large, the difference between our method and the others is already
significant. What most clearly emerge is the speed at which our
method reaches convergence: it as at least one order of magnitude
faster, but it can reach (in the Plane case) a speed up of two orders
of magnitude.

† The Stanford 3D Scanning: http://graphics.stanford.edu/data/3Dscanrep/
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Table 1: Benchmark model deformations. From top to bottom: Bar (twisted), Cactus (bent), Cylinder (bent) and Knubbel (side translated).

ARAP SR-ARAP FCD

ORIGINAL SNAPSHOT CONVERGENCE SNAPSHOT CONVERGENCE CONVERGENCE

3.2. Large mesh examples

We consider the main target of our work, which is providing a fast
method able to produce high quality deformations even on large
meshes (of the order of 1M vertices and more), with timings com-
patible with fluid user interactions. In this case, due to the high
computational cost for the deformation techniques we compare
with, only the pre-processing time and the time for one iteration
has been compared. The pre-processing for ARAP and SR-ARAP
consists in the computation and Cholesky factorization of the bi-
Laplacian matrix while, in our case, it is the computation of the
deformation graph. When applied to meshes having a high num-
ber of vertices, the difference between our method and the others
becomes more defined. Examples of resulting meshes deformed
with our method are shown in Figure 3 where it was not feasible
to produce deformed meshes with ARAP and SR-ARAP with the
hardware in use (a PC with an Intel Core i5 and 8 GB of RAM).
Meshes tested in this session have not been chosen casually, they
provide some specific examples in order to show the potential of

our method. The David mesh, has a dirty topology, causing cor-
ruptions on the Laplacian matrix, making it impossible to pass the
pre-process stage for both ARAP and SR-ARAP. On the contrary,
being the neighborhood the only mesh information exploited by
our algorithm during pre-processing, we could have failures only
if isolated vertices are present, which is not the case in most cases.
Dragon is too big for other methods to be pre-processed: the hard-
ware used for testing froze most of the times, otherwise taking
high computation times. Hulk, instead, is an example of a mesh
for which our method proceeds flawlessly, while for other methods
is already heavy to process. In all examples even in presence of
imposed large deformations we observe pleasantly deformed ob-
jects. What is even more significant is what is shown in Table 3
where computational performance of our solution are compared
and where it is evident how much faster and less expensive is our al-
gorithm with respect to the others. Deformation graph construction
convergence can be achieved in less than 20s for a mesh with more
than 1 Million vertices. The other techniques require at least one
minute only for pre-processing and ten minutes to compute 100 it-
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erations of the methods, while still being far away from the desired
final result.

3.3. Limitations and future works

One aspect that seems to introduce an undue computational over-
load is to adopt a large neighborhood for the graph to mesh defor-
mation mapping. However, a suitably wide influence area for trans-
form mapping is necessary to avoid artifacts generated by change of
the set of neighboring patches. In case of too small neighborhood
this might introduce discontinuity effects such as those shown in
Fig.4 that depicts an example of the usage of different radii, high-
lighting the defects created by the smaller one.
Another limitation, somehow related to the former one, is due to the
approximation we make when considering the Euclidean distance
in the mapping. As already noted by Sumner et al. [SSP07], this
could in some cases generate unwanted influences from seemingly
close but erroneously included control points which actually are at
higher geodesic distance. Unfortunately, the calculation of geodesic
distance would weigh down the method too much. Therefore a pos-
sible advancement could be to find heuristics to reliably enough
replacing the geodesic distance estimates in the area of weighting
influence, so as to reduce most critical manifestations of the prob-
lem. Many other literature solutions could have been considered in
principle to complete our comparisons, however we excluded any
method we found to require either a relevant overload for the user
or already order of seconds computation time for relatively small
models (up to 100k points).
In our future works we want to explore new methods to map the
deformation applied to the graph to the whole mesh surface, ex-
ploiting the information derived from the non-linear deformation
algorithm and from graph generation: the mapping problems are
intrinsically avoided by the deformation algorithm, that knows the
connectivity. Exploiting this information, distant regions on mesh
surface should be able to ignore each other. The directions to ex-
plore can be different, based on what we want to change: from one
point of view, changing the quantity to interpolate can bring to more
satisfying results; from another point of view, instead, modifying
the weights used for interpolation can completely remove all the
artifacts generated by the method. In this latter case, the desired
result would be a function that, for every control point, propagates
smoothly over the surface, avoiding any inconsistency introduced
by the difference between geodesic and Euclidean distances.

Table 3: Comparison of computational times (High dimensionality
dataset)

ARAP SR-ARAP FCD

David
(507k)

Pre-Process FAIL FAIL 3.6s

Iteration 100 - - 1.7s

Hulk
(1.4M)

Pre-Process 50s 60s 13s

Iteration 100 ∼670s ∼600s 2.2s

Dragon
(3.6M)

Pre-Process 128s 120s 36s

Iteration 100 ∼9800s ∼8000s 5s

Table 2: Comparison of computational times (Benchmark exam-
ples)

ARAP SR-ARAP FCD

Bar
(6k)

Pre-Process 33ms 33ms 33ms

Iteration 60 770ms 630ms 138ms

Convergence 5.2s 14.6s 138ms

Cactus
(5k)

Pre-Process 25ms 26ms 27ms

Iteration 400 3.1s 3.9s 691ms

Convergence 4.7s 10.0s 691ms

Cylinder
(5k)

Pre-Process 24ms 26ms 30ms

Iteration 40 279ms 317ms 129ms

Convergence 5.2s 5.9s 91ms

Plane
(40k)

Pre-Process 388ms 377ms 246ms

Iteration 100 10.1s 7.9s 793ms

Convergence 216s 196s 793ms

4. Conclusion

Our method introduces a fast deformation technique able to exploit
non-linear deformations to meshes with millions vertices. This is
done avoiding any pre-computation (details extraction, subspace
creation,...) that would require the resolution of a sparse linear sys-
tem or harmonic subspaces. Our solution evolves from the work of
Sumner et al. [SSP07] where we use an adaptation of a non-linear
SR-ARAP [LG15] to an automatically generated centroidal defor-
mation graph. However, this combination and adaptation yield very
much more than the sum of the parts, since we have overcome the
limitations of both originating approaches, obtaining the possibil-
ity of making large and free deformations on large meshes in times
compatible with a free interaction of the user. As far as we know
this had not yet been obtained before. This can also be seen as a
starting point for further developments that are to be done to over-
come the residual limitations and to bring this technique exploited
in professional fields.
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