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Figure 1: SPIDER: Our SPherical Indoor Depth Renderer framework consists of three modules: a single RGB panoramic image of an
indoor environment snapped using 360◦ camera (left) is fed into various deep learning models for abstracting depth signal and semantic
content, and removing all clutter (middle). The viewer allows users to perform interactive exploration and basic editing operations on the
reconstructed indoor scene, including: virtual object insertion and refurnishing (transferring portions of rooms), and lighting effects on
various graphical representations, such as triangle meshes and point clouds. These rendering operations can be utilized for several virtual
staging applications.

Abstract
Today’s Extended Reality (XR) applications that call for specific Diminished Reality (DR) strategies to hide specific classes of
objects are increasingly using 360◦ cameras, which can capture entire areas in a single picture. In this work, we present an
interactive-based image editing and rendering system named SPIDER, that takes a spherical 360◦ indoor scene as input. The
system incorporates the output of deep learning models to abstract the segmentation and depth images of full and empty rooms
to allow users to perform interactive exploration and basic editing operations on the reconstructed indoor scene, namely: i)
rendering of the scene in various modalities (point cloud, polygonal, wireframe) ii) refurnishing (transferring portions of rooms)
iii) deferred shading through the usage of precomputed normal maps. These kinds of scene editing and manipulations can be
used for assessing the inference from deep learning models and enable several Mixed Reality (XR) applications in areas such
as furniture retails, interior designs, and real estates. Moreover, it can also be useful in data augmentation, arts, designs, and
paintings.

CCS Concepts
• Applied computing → Architecture (buildings); • Computing methodologies → Image-based rendering; Reconstruction;

1. Introduction

Recently, 360◦ cameras or omnidirectional cameras, that are ca-
pable to capture full environments in a single shot, became ex-
tremely popular for a variety of applications, ranging from egocen-
tric videos [JMK*22] to virtual reality applications [PD21]. Con-
currently with the diffusion of these imaging devices, the explosion
of AI-based computer vision technologies have enabled a variety

of methods for automatically extracting information about the sur-
rounding environment, with a variety of applications, ranging from
object tracking for security to autonomous driving [YZR*21]. Be-
tween the various application domains that obtained great benefit
from deep learning technologies, one of the most popular is the ar-
chitectural design of indoor environments, both for entertainment
industry (3D games and animation) and for real estate and construc-
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tion industry. Realistic 3D indoor scenes are in high demand due
to the quick development of VR/AR technology and new applica-
tions [Ma17; MLZ*16]. However creating and manipulating com-
plex 360◦ indoor settings takes a lot of time and demands strong
3D modeling and designing abilities [VTS21].

Furthermore, when looking for a potential home or apartment to
rent or buy, the spaces are usually packed with furniture and other
clutter, making it challenging to envision how it may appear empty
or, preferably, with our own stuff in place. Moreover, before buying
a new sofa for even our own occupied apartment, we want to see
how it would appear in our lounge. Additionally, with the present
pandemic-related limitations and many people working from home,
house sales are increasing significantly. Remote house shopping is
becoming widely attractive, and efficient solutions to support vir-
tual home tours are desperately needed. One such solution is virtual
staging: how would furniture fit in a home and what would it look
like if specific settings (e.g., object size, and location, sun orien-
tation, flooring) were changed? Panoramas are increasingly being
utilized to display properties in order to give good imagery for stag-
ing. Panoramas give surround information, but approaches created
for images with a narrow field of view cannot be immediately ap-
plied [ZCB*22].

In this paper, we present a real time renderer for spherical im-
ages representing indoor environments, that we dub SPIDER. The
system exploits recent methods for instant removal of clutter from a
scene [PAAG22], together with the output of deep learning models
to abstract the semantic content [SSC21] and depth information for
full [PAA*21] and empty rooms [PAAG22]. The system enables
the insertion of virtual objects into a single panoramic photo of an
empty room. The objects are inserted as a tessellated meshes that
can be interactively moved, scaled, and lit according to simple illu-
mination models and environment mapping. The system also allow
users to perform other interactive exploration and basic editing op-
erations on the reconstructed indoor scene, namely: i) rendering of
the scene in various modalities (point cloud, polygonal, wireframe)
ii) refurnishing (transferring portions of rooms) iii) deferred shad-
ing through the usage of normal maps. These kinds of scene editing
and manipulations enables several XR applications in areas such as
furniture retails, interior designs, and real estates.

In summary, our system provides the following advantages:

• Interactivity: we provide an interactive system that allow users
to explore and edit 360◦ indoor scenes in a flexible way. Our
system provides an interactive and dynamic 3D representation
of the scene, either in form of polygonal representation of the
environment through spherical tessellation, or in form of a sparse
point cloud.

• Simplicity: Our proposed interactive system is simple to the ex-
tent that it allows even a non-expert users to intuitively edit in-
door layout and greatly reduces the design time cost. Almost all
the operations can be achieved by click and drag operations.

• 360◦ scene manipulation: contrary with previous frameworks
that work mostly on perspective images and geometric represen-
tations, our systems uses only 360◦ images representing indoor
scenes and automatically inferred metadata.

To our knowledge, none of the existing systems combine the

above mentioned contributions and editing operations on spherical
360◦ indoor scenes.

2. Related work

This work deals with processing, editing, rendering and interac-
tive exploration of 3D scenes reconstructed from panoramic 360
degree images representing indoor environments. We do not aim
to provide here a full review of these topics: we refer readers to
recent surveys about deep learning methods for VR content cre-
ation [WLLZ20], 3D reconstruction of indoor environments in gen-
eral [PMG*20; KYYC20], and 3D scene reconstruction from 360
imagery [dSPMJ22]. In the following we will discuss the methods
that most closely relate to our framework.

Reconstruction of 3D indoor scenes from single panoramic
images Since the explosion in the consumer market of omnidi-
rectional (360 degree cameras), that are able to provide a field
of view that covers approximately the entire sphere by compos-
ing multiple fish-eye lenses, various computer vision applications
have been developed, ranging from immersive videos representing
sport actions [FLPH19] to virtual tours for the real estate mar-
ket [SAB*20]. This imaging technology have been rapidly be-
come very popular for acquisition of indoor environments, because
one single image acquired from the center of one room is able
in most cases to provide an adequate representation of the scene
and it can be used for various applications. In last decade, vari-
ous groups investigated automatic methods for extracting 3D in-
formation from single panoramic image, using various technolo-
gies from geometric reasoning up to convolutional neural networks.
Pintore et al. [PGG*16] recover 2.5D layout of rooms exhibiting
Manhattan world properties from omnidirectional images by us-
ing a specialized spatial transform based on catadioptric theory
to define a parametric model for a global optimization problem.
The same authors extended this technology to reconstruct room 3D
layouts on less restrictive Atlanta world scenes [PAG20] through
the usage of Recurrent Neural Networks (RNNs) and a customized
training strategy based on domain-specific knowledge, and full tri-
angulated 3D meshes representing the room layout without any
constraint through Graph Convolutional Networks [PAAG21]. As
long as public large datasets containing annotated panoramic im-
ages representing indoor environments have been made available
to the computer vision community, like Matterport3D [CDF*17]
and Structured3D [ZZL*20], various automatic technologies ex-
ploiting deep learning have been developed for inferring additional
information about the indoor scenes, like depth signals [PAA*21;
JSI*22; ZLW*22; YLR22], or semantic labelling for detection of
objects and features [SSC21; ZKG20]. Very recently, deep learn-
ing technologies have targeted the extraction of geometric infor-
mation for improving mixed reality applications: for example, Pin-
tore et al. [PAAG22] developed a method for automatic emptying
indoor scenes that can be used for interactive editing, while Li et
al. [LWH*22] investigated the problem of physics-based inverse
lighting for panoramic indoor scenes, and their system is able to
insert virtual objects in the indoor scene with realistic lighting ef-
fects. Our framework integrates the outputs of various 3D recon-
struction models, like depth inference [PAA*21], semantic segmen-
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tation [SSC21] and automatic room emptying [PAAG22], for pro-
viding an interactive indoor scene editing and exploration system.

Interactive exploration/editing of indoor scenes Recently, var-
ious frameworks have been proposed for interactive explo-
ration and modelling of man-made scenes [ZAQW20; TCC*21;
MLZ*16; ZCC16; PLWZ19; CK17; IZZE17; QCJK18; WLZ*18;
VTS21]. However, some of them are applied only to outdoor im-
ages [ZAQW20; PLWZ19; CK17; LLWL20], while others do not
support interactivity [TCC*21; QCJK18], or are limited to per-
spective images [IZZE17]. Recently, Vazquez et al. [VTS21] pre-
sented Home Studio, a web-based tool that integrates Matterport
scan and generate photorealistic renders of products in the user’s
context. On the other side, our framework works directly on sin-
gle panoramic images and inferred pixel-to-pixel representations.
It also integrates the outputs of various 3D reconstruction models,
like depth inference [PAA*21], semantic segmentation [SSC21]
and automatic room emptying [PAAG22], for providing an inter-
active indoor scene editing and exploration system. In addition, our
system allows the insertion and manipulation of virtual objects.
Very recently, Zi et al [ZCB*22] used semantic segmentation for
appearance decomposition in a way to enable various photoreal-
istic operations, like virtual furniture insertion, floor material re-
placement. Since their technology is based on panoramic images,
their method can be incorporated in our framework.

3. Methods

Overview SPIDER is a deep learning/OpenGL-based graphical
application tool that allows users to edit and manipulate 360◦ in-
door scenes. As shown in Figure 1, the tool takes as input, a sin-
gle spherical indoor scene snapped using a 360◦ camera (Figure 1-
Left). The input RGB image is then used for automatic inference of
additional panoramic images (Figure 1-Middle) to support the ren-
dering operations. The images are generated through various deep
learning models: [PAA*21] is used to generate the depth for the
original image, while [PAAG22] is utilized to automatically gener-
ate the emptied panoramic indoor scene in form of RGB and depth
image, and finally [SSC21] is incorporated to our framework for
generating semantic segmentation of the panoramic image.

The renderer (Figure 1-Right) is implemented in C++ by us-
ing Qt and OpenGL libraries inside QtCreator environment. The
shaders are written on OpenGL Shading Language (GLSL) and the
code is written in the way to ensure full portability with mobile
devices (OpenGL ES 3.0) . Several editing operations can be per-
formed using the proposed renderer.

Processing pipeline Our system incorporates the output of various
deep learning models for the inference of the following information
from single RGB panoramic images:

• Depth inference: we use the architecture proposed in
SliceNet [PAA*21], that exploits the role of gravity in man-made
indoor scenes, for deriving a compact representation of the scene
into vertical slices of the sphere. Long- and short-term relation-
ships among slices are then incorporated in a residual Convolu-
tional Neural Network to recover the equirectangular depth map.

The output of the model is a 16-bit single channel image con-
taining the depth signal at millimetric resolution in which every
pixel is representing the distance between the scene object and
the camera.

• Clutter removal: we use the method proposed by Pintore et
al. [PAAG22] for instant automatic emptying of indoor scenes.
The approach computes an attention mask of the clutter in the
image based on the geometric difference between full and empty
scenes, and propagates it through gated convolutions that drive
the generation of the output image and its depth. For obtain-
ing that, it exploits, during supervised training, geometric losses
of different orders, including robust pixel-wise geometric losses
and high-order 3D constraints typical of indoor structures.

• Semantic content: we apply the method proposed in Ho-
HoNet [SSC21] for deriving a labelled representation of the in-
door scene, able to separate floor, ceiling, walls and the various
furniture items.

Additional signals can be automatically derived from a single
panoramic image, like various light contributions [ZCB*22], nor-
mal maps, or global effects. Currently, we compute normal maps
though differentiation of the depth map, and we use it for creat-
ing simple lighting effects through diffuse Lambert model. Fig. 2
shows an example of a portion of a scene with texture mapped the
original RGB signal (left), the extracted semantic content (middle),
and the computed normal map (right).

Rendering pipeline The renderer takes as input the original RGB
equirectangular image together with the inferred images (depth,
normal, and semantic content) to construct an interactive 3D repre-
sentation of the indoor environment, with and without clutter. For
doing that, the pipeline is composed by the following steps, to be
applied to both the cluttered and empty environment:

• Geometry generation: we start from a subdivision sphere, that
we use for texturing the panoramic images. We obtain it as iter-
ative subdivision of an icosahedron through midpoint edge split-
ting. For each subdivision level and for each triangle the scheme
creates four new triangles (see Fig. 3). For all results generated
in this paper, we considered L = 8 as subdivision level, in a
way to obtain a tessellated sphere containing 1.3M vertices and
1.3M triangles, that is comparable to the pixel resolution of input
panoramic images (1024X768).

• Depth application: the depth signal is applied to the spheri-
cal dome through a geometry shader that, for each point in the
sphere, fetches the corresponding depth from the depth image
and computes the world coordinates of the scene point through
the ray tracing from the camera position. The recomputed scene
can be visualized as rasterized polygons (filled or wireframed)
or as a sparse point cloud (see Fig. 4 for some examples).

• Lighting: for lighting the reconstructed scene and the inserted
virtual objects, we perform deferred shading in the fragment
shader, by exploiting the information contained in the normal
maps. We apply a simple Lambertian diffuse model with a single
point light for the spherical scene, and an additional environment
map for virtual inserted objects (see Fig.8 for some examples).

• Scene modification: we can perform insertion of virtual objects,
as triangular meshes, and we can transfer portion of scenes be-
tween the full environment and the empty environment, by ex-
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Figure 2: Signals used in SPIDER: original RGB image(left), semantic segmentation content(middle), normal map(right).

Figure 3: The panoramic image is texture mapped on a sphere
generated through iterative subdivision of an icosahedron (top).
At each iteration, triangles are subdivided through midpoint edge
splitting (bottom).

ploiting the semantic map through picking operation. The vir-
tual objects can be modified inside the scene (panning, scaling,
rotating) (see Fig. 8).

User interface The current viewer interface is based on simple
click and point operations (see Fig. 5). We provide two side views
of the indoor scene: on the left the original cluttered scene, and on
the right the empty scene, ready to be filled with novel 3D content
or with portions of the original scene. For better visual understand-
ing of the scene, we also provide an additional inset containing a
view of the scene from the top. Users can transfer semantic por-
tions of the scene through mouse picking operations, and can move
the virtual objects through mouse panning and rotations. The op-
erations for changing visual representations are instead attached to
keyboard inputs, as well as the operations for creating exploration
animations.

4. Applications

The SPIDER prototype can be used for interactive exploration of
indoor scenes with a variety of applications.

Assessment of deep learning models The proposed system can
be used for checking accuracy, qualitative results, and individuating
artifacts, for example in the generation of depth signal. In Fig. 6 we

Figure 4: Examples of point cloud rendering from various posi-
tions and different point size.

show an error related to depth inference due to refractive properties
of the window glass(left), and an example of the limitations in the
generation of semantic content of the model proposed in [SSC21].

We used extensively the system for qualitative assessment of our
recent deep learning framework for automatic emptying indoor en-
vironments [PAAG22], especially for generating rendering results.
Fig. 7 visualizes examples of real-time emptying of two different
panoramic indoor scenes. We will use in the future for testing mod-
els for automatic segmentation, computation of normal maps, and
light signal separation [ZCB*22].

Virtual staging Using 3D virtual staging, real estate experts can
decorate and fill a vacant property without ever moving a mus-
cle (or spending thousands on staging). It begins with the rep-
resentation of empty rooms, which are then transformed into
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Figure 5: The user interface of our prototype renderer contains two views: the cluttered scene (left) and the empty room (right). Users
can compose a new scene by placing new virtual objects or by transferring content from the full scene and empty scene through picking
operations.

Figure 6: Inference assessment: SPIDER can be used for finding
artifacts during the inference of depth signal (left) or semantic con-
tent (right).

lived-in spaces through virtual furnishing. Styldod [Sty22], Stuc-
cco [Stu22], and PadStyler [Pad22] are a few firms that offer virtual
staging services. Users may upload images of their rooms, and the
firm will furnish and render them for them. However, the major-
ity of them require significant manual modelling efforts. By con-
trast, our viewer enables the insertion of virtual objects as tessel-
lated item that can be interactively moved and scaled. Moreover,
simple picking operations allow users to transfer semantic content
from the full room to the empty room. Fig. 8 shows some examples
of insertion of virtual objects in the indoor empty scene, as well as
transfer of scene portions from the full original scene to empty one.

Immersive exploration of indoor scenes The viewer is using Qt
for Android and can be easily deployed to mobile devices, to be
used for stereoscopic visualization of indoor scenes (see Figure 9).
The mobile tool exploits IMU sensors and can be used together
with VR headsets like Google cardboard for providing immersive
exploration of the original scenes, the uncluttered ones and the re-
furnished ones. In this prototype application, users can explore the
stereoscopic edited scene by using two kind of interfaces: the stan-
dard touch interface for implementing arcball motion, or the inertial
sensors, through the Qt QRotationReading mechanism, that pro-
vides the orientation of the device in three-dimensional space. In
the future, we will extend to work on HTC Vive for full immersive

experiences, also for what concerns the editing process, while the
mobile application will be used only for deploying edited scenes
for virtual exploration.

5. Conclusions and future work

In this work, we presented a novel OpenGL/deep learning based
tool that enables editing and manipulating 360◦ panoramic in-
door scenes. Relying on some deep learning models to abstract
the segmentation, empty, and depth images, our method allows
several multiple virtual staging tasks comprising object inser-
tion/movement, automatic room emptying, refurnishing (transfer-
ring portions of rooms), rendering of the scene in various modal-
ities (point cloud, polygonal, wireframe), and deferred shading
through the usage of normal maps. We believe that these can be
used for assessing the inference from deep learning models, and
enable several XR applications in areas such as furniture retails, in-
terior designs, and real estates. Furthermore, it can also be useful in
data augmentation, arts, designs, and paintings. Despite the promis-
ing results, our prototype system contains various limitations, that
we plan to address in future work:

• style transfer and material editing: we plan to investigate
methods for automatic transfer of styles between indoor environ-
ments, in a way to allow semiautomatic change of appearance of
floor, ceiling and furnitures [HJN22].

• illumination effects and materials: currently we are using sim-
ple shading effects based on environment maps, resulting in
lack of shadows for what concerns the insertion of virtual ob-
jects. We plan to investigate more complex illumination ef-
fects [MRNK21], like global occlusion, automatic models for
the inference of light contributions [ZCB*22], and procedural
models for material appearance [GHS*22].

• immersive virtual staging: we plan to extend the system for the
creation of immersive virtual staging applications using Head
Mounted Displays, that would enable the fast modelling of in-
door scene through the integration of natural interfaces, geome-
try processing components, deep learning models for automatic
scene understanding and data-driven guided exploration of scene
and material databases.
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Figure 7: Interactive exploration of automatically emptied rooms. Various examples processed through the method in [PAAG22]
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