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Abstract
We present a GPU-accelerated global registration method for registering partial shapes, a common and often performance-
critical task in many robotics, vision, and graphics applications. Global registration based on descriptor matching is highly
dependent on the quality at which a shape is sampled, and computing expressive descriptors typically incurs high computation
time. In this paper, we augment a global pair-wise registration algorithm based on hierarchical shape descriptors with a
GPU-accelerated descriptor construction process, reducing the time spent on building descriptors by an order of magnitude.
This allows for building more expressive descriptors, achieving a dual gain in both performance and accuracy. We conducted
extensive evaluations on a large set of pair-wise registration problems, demonstrating very competitive registration accuracy,
often rendering subsequent refinement with a local method unnecessary.

CCS Concepts
• Computing methodologies → Computer Graphics;Shape Modeling; Point-based models;

1. Introduction

3D sensors are becoming ubiquitous and affordable, including var-
ious types of 3D laser scanners, and RGB-D cameras (Microsoft
Kinect, Intel RealSense, Apple Truth Depth Cameras) [YLX*19].
These sensors acquire 3D shape information to varying levels of
accuracy along with additional attributes, for instance, color, etc.
The raw point clouds acquired by the sensors essentially require
an alignment step that brings together individual scans to a com-
mon frame of reference and therefore synthesize a complete model
or a large-scale scene. Precisely, it implies estimating transforma-
tion matrices between a pair of scans and simultaneously applying
the estimated transformation resulting in a complete model. Tra-
ditionally the task of point cloud registration has been of utmost
importance in numerous computer vision applications, and with re-
cent developments in sensor technologies, has drastically diversi-
fied. The accuracy of this registration step is often impaired due to
low overlap between scans, inherent noise of the environment and
sensors, spatial extent, and sparsity of the scans resulting in regis-
tration artifacts( oscillation or even holes).

Among various forms of registration, the same source pairwise
global registration, i.e.coarse registration is fundamental to the task
of multi-view registration and importantly local refinements (e.g.
the iterative Closest Point, (ICP) [BM92; RL01a] relies on a coarse
alignment for faster convergence and higher accuracy.

Global registration algorithms generally follow a two-stage
workflow, determining correspondences followed by transforma-
tion estimation. The correspondence-establishing stage consists of

keypoint detection [SOG09; SB11; WZWL20], feature descrip-
tors [JH99; PD15; QYW*22] descriptors matching, and finally
some outlier filtering [FB81; SAH19]. Correspondences between
descriptors are established based on similarity, resulting in a rigid
transformation that best aligns the set of feature points and using
some robust estimator. The widely used approach to attain pose in-
variance deploys a Local Reference Frame (LRF) centered on the
feature point and attached to the surface regardless of its orienta-
tion. Thereby, descriptors can encode the local or global geometric
information from the data with respect to a canonical reference as-
sociated with the feature point.

Although effective and fast algorithms pertaining to their com-
putation have been devised in the field of registration, these de-
scriptors are majorly impacted by sampling discrepancy of individ-
ual scans and measurement noise. Additionally, methods relying
on localized feature descriptors often suffer from a lack of gener-
ality(works well with objects of a given topology), a certain per-
centage of false matches, an outcome out-rightly caused by insuffi-
cient discriminating capabilities of the descriptor and/or an under-
performing similarity measure. An amalgamation of such factors
creates a significant impact on the overall registration accuracy and
convergence of the local iterative algorithm.

This paper is motivated by the goal of designing an approach
that can solve the registration problem of partial, low-overlap
shapes globally based on efficient descriptors. We rely on the con-
tinuous surface representation-based hierarchical descriptor pro-
posed by Dutta et al. [DRG22], itself based on the registration
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pipeline and low-overlap similarity measure introduced by Ferrero
et al. [TGA*12]. However, constructing these descriptors at higher
resolutions quickly becomes prohibitively expensive, limiting their
expressiveness and thus the achievable alignment accuracy. We
overcome this performance bottleneck by mapping the most expen-
sive part of descriptor computation to the programmable rasteriza-
tion pipeline of modern GPUs. Our contribution can be summarized
as follows:

• a conceptually effortless method of leveraging GPU hardware
for the computation of hierarchical shape descriptors

• based on that, a modified pair-wise global registration
pipeline (GPU-HER) that features
– Fast processing times
– High precision that compares favorably to state-of-the-art

global methods, making local refinement unnecessary in most
cases or at least giving close-to optimal initial guesses.

Additionally, the paper contributes a broad evaluation of the pro-
posed approach and compares it to previous hierarchical descriptor-
based approaches [TGA*12; DRG22] as well as the state-of-the-art
global registration method by [ZPK16], demonstrating measurable
improvements in terms of speed, accuracy and robustness.

2. Related Work

In this section, we present an overview of the existing method-
ologies concerning the point cloud registration algorithm. We
refer the reader to the respective surveys [RL01b], Salvi et
al. [SMFF07], Tam et al. [TCL*13], Bellekens et al. [BSM14],
Huang et al.[HMZA21], Li et al. [LWZ21] for registration algo-
rithms over the years. In accordance with the aforementioned sur-
veys, registration methods can be classified based on the following
criteria.

Pairwise/Multi-Way. Pairwise registration methods [BSM14] are
focused on aligning two partially overlapping scans, a category into
which our proposed method also fits. To achieve comprehensive
dataset registration, scans can be progressively incorporated and
aligned with either their predecessors or all previous scans. In con-
trast, multi-way registration [ZPK16] involves optimizing all trans-
formations simultaneously. This is often done by iteratively per-
forming pairwise registrations or by formulating the problem with
a single registration objective.

Rigid/Non-rigid. Rigid registration techniques [BSM14] exclu-
sively permit rigid body transformations for individual scans, while
non-rigid methods provide flexibility for arbitrary transformations.
Nonetheless, non-rigid approaches [DYDZ22] often incorporate
regularization into the objective function to prevent degenerate so-
lutions (e.g., by requiring the transform to maintain as much rigid
as possible). However, a detailed discourse on non-rigid approaches
is outside the purview of this paper.

Local/Global. Local methods [BM92; BTP13; POD*18] use an
initial transform estimation (e.g. provided by the user) and refine
this transformation to optimize an objective. To date, the classic
iterative nearest point (ICP) [BM92] remains the most widely-
used point cloud matching algorithm. Many researchers [BTP13;
KYOB21] have made improvements to the ICP algorithm, which
relies on a good initial alignment position. Without this, it quickly

falls into the local optimum and cannot achieve a good registration
accuracy. Contrarily, global methods [AGV*14; ZPK16; PD15]
necessitate only the geometry as input and determine registra-
tion transforms regardless of initial alignment. While many global
methods, including those mentioned, rely on descriptor match-
ing for rigid motion parameter estimation, they typically generate
coarse registrations that can subsequently be refined using local
methods. Importantly, global methods are distinct in that they do
not rely solely on spatial proximity for registration, often incorpo-
rating geometric feature descriptors or similar approaches.

Learning-based Registration. Data-driven approaches have be-
come increasingly popular for point cloud registration in recent
years, thanks to their remarkable performance in both 2D and 3D
applications. In [ZF23], a detailed survey of deep-learning (DL)
methods for global registration algorithms is meticulously pre-
sented. This survey tabulates the performance of these methods
across various benchmark datasets. Furthermore, feature learning
methods [ZSN*17; DBI18; HGU*21] utilize deep neural networks
(NNs) to learn robust feature correspondence search. Following this
step, the transformation matrix is obtained using one-step estima-
tion techniques, such as SVD or RANSAC, eliminating the need
for iterative processes. While these NNs can indeed deliver sturdy
and precise correspondence searches, their performance is often
hindered by the availability of sizeable training data and limited
generalization capabilities. As a result, they encounter challenges
when dealing with unknown scenes that exhibit distributions differ-
ing from the training data. Conversely, end-to-end learning-based
approaches [CCG*22] tackle registration challenges with an all-
encompassing network, incorporating both correspondence search
and transformation estimation within a unified framework. This
stands in contrast to feature learning methods, which are primar-
ily centered around point feature learning.

Descriptors. Registration algorithms predominantly, global meth-
ods, rely on 3D descriptors, and as a result, substantial research
is dedicated to devising efficient and robust geometric descriptors.
An in-depth evaluation of point cloud descriptors, covering aspects
of computational efficiency and accuracy, is provided in references
[Ale12; GBS*16; HJX*18; RX20]. Point cloud descriptors can be
broadly classified based on their descriptor extraction process into
local, global, and hybrid categories. Local descriptors such as those
proposed in [RBB09; TSD10] capture spatial distribution or geo-
metric attributes in the vicinity of each point. These descriptors are
computed by generating histograms that encapsulate information
about the descriptors for individual points. While local descriptors
are effective for cluttered scenes, they may lack the highest de-
gree of discriminatory capabilities. An example of a widely used
local descriptor is the Spin Image [JH99]. It constructs a cylindri-
cal region around a designated keypoint, dividing it into radial and
vertical volumes. The descriptor then tallies the number of points
residing within each of these volumes. Conversely, global descrip-
tors are computed for the entire point cloud, yielding a single con-
text vector by aggregating a collection of features or incorporating
the spatial distribution of the entire dataset. Global-based features,
as observed in [DRG22], find applications in 3D object recogni-
tion and categorization. Some global descriptors can also be em-
ployed for object pose estimation, such as the Viewpoint Feature
Histogram (VFH) [RBTH10]. Hybrid descriptors, as discussed in
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Figure 1: Circon descriptor [TGA*12] of a continuous surface fit-
ted to a point cloud [DRG22], spawned by a keypoint defining a
local reference frame with cell division into sectors represented
in green. The red crosses mark the surface points from which the
cell values are measured. The continuous surface makes descrip-
tors largely independent from the point cloud-imposed sampling.

[OOFB08], merge local and global information to create a more
complete surface description. In summary, the selection of a suit-
able descriptor depends on the specific application context, com-
putational efficiency, and the capacity to accurately distinguish be-
tween point cloud features.

3. Methodology

Background. The proposed method relies on the core concept of
descriptor matching in order to estimate the rigid transformation.
Our approach uses the Circon descriptor proposed by Ferrero et
al. [TGA*12] which represents an ordered set of radial contours
around some point-of-interest within a point cloud. The descriptor
associated with a particular point-of-interest is used to express the
point cloud in a local reference frame.

To build a descriptor, the entire point cloud is divided into sec-
tors, each representing an angle ρθ, with the point-of-interest in the
center, and each sector is further divided radially into cells with
length ρr. By convention, the descriptor cells are indexed by a pair
of 0-based numbers i (row-index) and j (column-index) for the an-
gular and radial directions, respectively.

Surface points are mapped into cells of the descriptor in a way
that the cell-value represents the height (z-value) with respect to the
local reference frame. Figure 1 depicts a descriptor associated with
a point-of-interest (cf. section 3.1) encoding the structural informa-
tion from a shape.

Ferrero et al. also tailored a global registration scheme for this
descriptor, which finds the best alignment by tracing a hierarchy
of successively finer descriptors. The way they use the point cloud
directly to build the descriptors, however, ties the achievable accu-
racy to the point cloud resolution. Dutta et al. [DRG22] addressed
this shortcoming by working with a continuous surface represen-
tation instead, enabling higher-resolution descriptors that can cap-
ture more surface features while compensating for under-sampled
regions. The major drawback of this method is that sampling de-
scriptor cell values from the continuous surface is expensive, as the
inverse problem of finding a particular surface point corresponding

to a given descriptor cell needs to be solved, which is performed
using an elaborate ray-casting scheme.

GPU acceleration. We propose a new method for descriptor com-
putation that naturally leverages GPU hardware. This enables us to
build descriptors (section 3.2) of much higher resolution with lit-
tle performance impact, combining a dual benefit of higher final
alignment accuracy and an immense speed-up of overall descriptor
computation time. The key idea is to tessellate the surface once at
a sufficiently high fidelity to capture all important features and ras-
terize the resulting mesh from the local frame of the descriptor we
are about to compute using an orthogonal projection. The resulting
depth map can then easily be sampled in a forward fashion to ob-
tain descriptor cell values.

We retained non-uniform rational B-splines (NURBS) for the
continuous surface representation as suggested by [DRG22] on the
account that there are now no performance considerations offset-
ting their advantages (ability to exactly represent relevant algebraic
shapes, their use in CAD to design the real objects we are likely
to scan), including the parameter-space trimming curve fitted to the
silhouette of the point cloud to represent the shape border. Our pro-
posed modified algorithm can be summarized as follows:
AL.1 (pre-processing) Fit NURBS surfaces [MV13] and trimming

curves (implemented in PCL [RC11], default parameters)
to the source and target point clouds. Euclidean cluster-
ing [Rus10] (see Appendix A: section A.2.1) on both clouds
accounts for highly fragmented scans, and each cluster is fit-
ted with its own surface. We refer to the union of all surfaces
fitted to a point cloud as the surface of the point cloud.

AL.2 (pre-processing) Tessellate both surfaces and evaluate and
store per-vertex trimmed status (section 3.2)

AL.3 (pre-processing) Point-of-interest (poi) selection for both
surfaces (section 3.1).

AL.4 (pre-processing) Initial sorting of poi (section 3.4) pairs at
a coarse resolution according to their similarity score (sec-
tion 3.3), so step AL.5 can start with the most promising
pairs.

AL.5 Traverse through the descriptor pyramid (section 3.4) for
a pair of poi from source and target surface. Descriptors
for the next level are computed on-the-fly using our GPU-
accelerated method (section 3.2).

AL.6 Estimate transformation from point-pairs with the highest
similarity score at maximum resolution (user-defined) and
evaluate stopping criterion.

AL.7 Repeat from AL.5 until the stopping is criterion satisfied.

The computation of descriptors is performed potentially thousands
of times as the hierarchies are traced in AL.5, representing the ma-
jor bottleneck of the method. Our contribution is the speedup of
this step via GPU acceleration (section 3.2), but in the interest of
providing a comprehensive understanding of the whole method, we
reiterate all key aspects of the algorithm in the following sections,
in the order that they are required during execution.

3.1. Selecting Points-of-Interest

Points-of-interest for the source and target shapes define where de-
scriptors are initially constructed and should be chosen in a way
such that the resulting descriptors cover every location on the shape
at least once. Since we are not restricted to points from the original
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Figure 2: The GPU-augmented descriptor construction pipeline. Pre-processing: (AL.1) The NURBS surface is fitted to the input point
cloud (clustering is omitted for brevity), with the trimming curve fitted in NURBS parameter space. (AL.2) The surface is tessellated with
per-vertex discard flags stored based on the trimming curve. Here, the intra-triangle trim boundary results from a threshold of d = 0.5.
(AL.3) poi are selected from untrimmed vertices. Descriptor construction (required inside steps AL.4-5): (1) A poi becomes keyppoint for
a descriptor. (2) A reference frame tangential to the surface at the keypoint is chosen. (3) The surface is rasterized by the GPU from the
reference frame into a depth map. (4) The depth map is sampled at the descriptor cell centers to compute the cell values.

point cloud, we will henceforth use the term keypoint to refer to
any location on a surface around which we build a descriptor. We
will refer to those surface locations that we select explicitly to be
keypoints for the initial, most coarse descriptors, as the points-of-
interest, or poi for short.

The original registration algorithm by Ferrero et al. [TGA*12]
adopts a strategy to select non-edge points by performing edge de-
tection and thresholding based on the Laplacian of the normal vec-
tors, essentially restricting their selection to relatively flat areas.
Dutta et al. [DRG22] did not find this to provide measurable bene-
fits, and suggest choosing poi based on a random sampling of loca-
tions on the respective surfaces instead.

Our GPU-based descriptor construction requires a one-time tes-
sellation of each surface (see section 3.2) – meaning we can just
randomly choose a subset of m, n points from the position sam-
ples we use for tessellating the source and target surfaces to ob-
tain the sets of points-of-interest spoi =

{
si

poi ∈ PS | i = 1..m
}

and
tpoi =

{
t i
poi ∈ PT | i = 1..n

}
, m < |PS|, n < |PT |, where PS and

PT are the sets of position samples from the tessellation of the
source (S) and target (T ) surface respectively. In practice, we found
m = n = 100 poi per shape to be sufficient.

3.2. Descriptor Construction
The local reference frame of a Circon descriptor is defined by the
normal zl at the keypoint (queried from the shape NURBS repre-
sentation), some perpendicular vectors yl and xl = zl ×yl , as well as
the keypoint itself as the origin. We refer to the plane with normal
zl that the keypoint lies on as the reference plane of the descriptor.

In this regard, the descriptors are identical to [TGA*12;
DRG22]. However, for actually constructing descriptors, we pro-
pose to render the surface from the descriptor reference frame using
the programmable GPU rasterization pipeline, resulting in a depth
map that can be efficiently sampled to gather cell values. This gets
rid of the major performance bottleneck in [DRG22], where cell
values are obtained by ray-casting the transformed NURBS surface
using a costly iterative procedure.

For efficient rendering, we first tessellate each NURBS sur-
face into a triangle mesh. The tessellation depends on the surfaces

only and remains constant, thus it is done just once during pre-
processing. The fidelity of the meshes should be sufficient to repro-
duce all features of the NURBS surfaces, which in turn we assume
to have been fitted with an appropriate amount of smoothing for
the input data. We found 1024× 1024 vertices to work quite well
for most real-life data including high-quality scans while rendering
virtually instantaneously (between 500µs ∼ 1ms depending on the
GPU). In performance-critical applications, an adaptive tessella-
tion scheme could speed up descriptor construction even more, but
would have to be weighed against increased pre-processing times or
require hardware support like tessellation [BG21] or mesh shaders
[Eri22]. In addition to the vertex positions in their respective source
or target spaces, we also store a discard flag d indicating whether
the vertex is outside the trimming curve (d = 1) or inside (d = 0).

We use an orthographic projection for rasterization to enable ef-
ficient lookup of the resulting depth map. Note that the resolution
of the depth map (and corresponding frame buffer for rendering)
should be high enough for the chosen maximum descriptor res-
olution. Determining this resolution is not straightforward, since
Circon descriptor cells increase in size radially outwards. We use
twice the resolution of the most detailed descriptor level, which
works well in practice. As a possible enhancement, foveated ren-
dering could be used to better match the radially decreasing spatial
resolution of Circon descriptors.

Either way, since the orientation of the descriptor can be ar-
bitrary, the frame buffer can be square irrespective of the actual
shapes of source and target, which is reflected in the projection
matrix. The matrix also has a scaling component that ensures the
larger one of either source or target shape can fit into the ortho-
graphic frustum. In the case of OpenGL, this matrix is

Opro j =


1
f 0 0 0
0 1

f 0 0
0 0 − 1

f 0
0 0 0 1

 (1)

f =
s
2
, where s is the largest shape extent (2)
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The vertex shader then transforms each mesh vertex with the matrix

M = Opro j ·W Tl (3)

where W Tl is the sytem transformation into the local frame l of
a descriptor from world space W (see section 3.4). The trimming
flag d is barycentrically interpolated by the rasterizer and passed on
to the fragment shader, where we can discard fragments we deem
outside the trimming curve (we use d = 0.5 as the threshold).

This concludes the rendering process – for the remaining steps
of descriptor construction, the depth map is made visible to host
memory for further processing on the CPU, where calculating a
descriptor cell value simply requires sampling the depth map at the
corresponding pixel coordinates (iD, jD):

iD =
⌈w

2
+ f j ρr cos(−(i−1) ρθ)

⌉
jD =

⌈w
2
+ f j ρr sin(−(i−1) ρθ)

⌉ (4)

where (i, j) form the 2D-index of the descriptor cell, ρr, ρθ are the
radial and angular resolutions, and w is the pixel resolution of the
w×w depth map. When the pixel depth dz = [0,1] is smaller than
one, the cell is valid and we un-project the corresponding point into
the descriptor reference frame using the inverse projection O−1

pro j .
Since we are only interested in the z-coordinate of the un-projected
point, this reduces to

z =−(2dz −1) f (5)

The actual cell value ci, j can now be obtained by quantizing the
z-coordinate with respect to the height resolution ρz:

ci, j = ⌈ z
ρz

⌉ (6)

As the descriptor embeds the entire region around the keypoint, it
represents a closed sequence such that the first and last row (each
row represents a radial sector as pointed out in Figure 1) are con-
sidered adjacent and also the elements with the same column in-
dex correspond to an adjacent cell. Hence, the descriptor exhibits
a cyclical property that is crucial for matching and determining
the rotation parameter of the alignment transformation it represents
(see section 3.4).

An overview of the modified, GPU-enabled descriptor construc-
tion pipeline is shown in Figure 2.

3.3. Similarity Measure

To compare the source and target descriptors for each resolution,
the algorithm employs the tailor-made similarity measure by Fer-
rero et al. [TLRS09]. This measure allows for finding those key-
points on source and target (and associated orientations) for which
the descriptors appear maximally similar.

In point clouds with low overlap regions, it is likely that the ge-
ometry around the corresponding keypoints of source and target
scans could randomly appear similar, resulting in the selection of
false correspondences. Likewise, differences originating from non-
overlapping regions should not result in severely lowered similarity.
To this end, the measure contains a heuristic for downweighting the
contribution of cells deemed non-overlapping. As a result, the ap-
proach remains effective in cases of low overlap, making it partic-
ularly well-suited for challenging 3D registration tasks in complex

environments. The detailed derivation and additional concepts are
provided in [TGA*12].

3.4. Multi-resolution Descriptor and Matching

The descriptor computation in Section 3.2 and the similarity mea-
sure in Section 3.3 constitute the fundamental building blocks of
the hierarchical registration pipeline. Circon descriptors can form
a hierarchy, as each cell, in turn, implies another keypoint that
spawns a descriptor. By doubling the resolution at each level, a tree
of coarse-to-fine representations is formed, with the similarity to
the target surface deciding which sub-tree to follow. The points-
of-interest determined as per section 3.1 form the roots of such a
hierarchy.

The algorithm initially exhaustively matches descriptors at a
coarse resolution of 16×16 between the two sets spoi and tpoi. The
pairs (si

poi, t
j
poi) are sorted in decreasing order of their coarse simi-

larity to obtain starting points for the hierarchical matching of de-
scriptors. The highest-ranked pairs are tried first, avoiding initial
match-ups that are unlikely to yield good results. The actual pro-
cess of descriptor comparison then works on each (si

poi, t
j
poi) pair

in isolation until the stopping criterion (section 3.5) indicates a
valid alignment. The initial pair of descriptors at some resolution
is called the primary descriptors for source and target. A search
over each cell of the primary source descriptor and their associ-
ated keypoints results in a set of secondary source descriptors that
have their greatest similarity to the target at some row shift k. This
row shift represents rotation around the normal of the keypoint that
spawned the secondary descriptor, determining the remaining free
parameter needed to form a rigid transformation. When the rows
of the secondary source descriptor had to be shifted k times for the
highest similarity, then the rotation angle is kρθ, where ρθ is the
angular step at the given resolution.

The 3D point and rotation associated with the secondary descrip-
tor that gave the best match at the current resolution become the
starting point for the primary descriptor at the next higher resolu-
tion. The search space further down in the hierarchy is reduced by
halving the percentage of columns (i.e. radial steps away from the
contour center) considered at each level. Figure 3 depicts a series of
primary descriptors from coarse to fine resolution. The process ter-
minates for a specific (si

poi, t
j
poi) pair once the specified maximum

resolution is reached.
The alignment transformation for the current poi pair then re-

sults from the model transformation W T−1
s associated with refer-

ence frame of the best-matching secondary source descriptor at the
highest resolution, the optimal row shift k and the system trans-
formation W Tt associated with the reference frame of the target
descriptor:

Talign =
W T−1

s · R(k) · W Tt (7)

The transformation W Tl for some descriptor reference frame l re-
sults from the keypoint p that spawned the descriptor and its asso-
ciated normal n (see section 3.2). The rotational part of the trans-
formation from W to l is obtained as follows:

W Rl = [⃗xl n⃗× x⃗l n⃗]T (8)
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(a) 32X32 (b) 64X64 (c) 128X128 (d) 256X256 (e) 512X512

Figure 3: Descriptor cell values mapped to an image at the top and corresponding point cloud represented by the descriptor at the bottom
of Bunny model. The restriction of higher resolution descriptors to 64 columns is visible in image (d).

The full transformation W Tl is given by

W Tl =

[W Rl −W Rl · p
01×3 1

]
(9)

Finally, a rotation matrix parameterized by some row shift k is ob-
tained as follows:

R(k) =


cos(ρθ · k) sin(ρθ · k) 0 0
−sin(ρθ · k) cos(ρθ · k) 0 0

0 0 1 0
0 0 0 1

 (10)

Our contribution to GPU-accelerated descriptor construction en-
ables us to extend the hierarchy with much higher-resolution de-
scriptors.

3.5. Stopping Criterion

Ferrero et al. [TGA*12] suggest a sanity check to decide whether
the current best match corresponds to a good alignment. To this
end, three non-collinear points from the final source and target de-
scriptors are chosen that each form a triangle around the respec-
tive Circon descriptor center. Such points can be easily obtained
by selecting the same three equidistantly spaced cells from the first
column of each descriptor and retrieving their respective surface
points. These triangles form a fictitious correspondence pair and the
centroid of each triangle defines a local reference frame with ficti-
tious transformation T f ict between them. T f ict is compared with
Talign in terms of a delta transformation:

∆T = Talign ·T−1
f ict (11)

The rotational and translation component are separated from (∆T )
to obtain rotational angle (∆r) and translation distance (∆ts):

∆r =

√
1
3
(ω2 +θ2 +ϕ2)< εr (12)

∆ts = ∥∆Ts∥2 < εt (13)

ω,θ,ϕ are the ZY X Euler angles extracted from the rotational com-
ponent and ∆Ts refers to translation part of ∆T respectively. The
threshold εr, εt in our evaluations are 0.045rad and 0.055r̄, where
r̄ is the extent of the model. If the rotational difference ∆r and trans-
lation distance ∆ts extracted from ∆T are smaller than their respec-
tive thresholds, the algorithm terminates and Talign is returned as
the final alignment transformation.

4. Evaluation

4.1. Dataset

The evaluation is conducted using the extensive benchmark dataset
provided by Petrelli et al. [PD15], denoted as the LRF dataset. This
dataset comprises a variety of objects captured by sensors with dif-
fering quality levels, spanning from consumer-grade depth cameras
to high-end laser scanners, leading to point clouds of varying point
densities. Furthermore, this benchmark includes challenging sce-
narios with registration pairs exhibiting low overlap.

4.2. Methods

To demonstrate the efficacy of our proposed method, we per-
form a comparative analysis with ORI-HER [TGA*12] and
HER [DRG22], the original precursor methods that employ hierar-
chical Circon descriptors with a similarity measure for coarse point
cloud registration. Note that for our method, we quadrupled the res-
olution of the finest hierarchy level from 2562 cells (ORI-HER and
HER) to 5122, expecting that the saved computation time can be
spent to achieve higher accuracy.

Additionally, we compared to the state-of-the-art global regis-
tration method FGR [ZPK16]. This method has been shown to rival
the accuracy of local methods and therefore ideal for comparison
with our proposed approach. We were unable to reproduce the per-
formance reported for state-of-the-art deep learning methods like
the one by Huang et al. [HGU*21] on the LRF dataset, so we did
not include such methods in the comparison.

To ensure fairness, values for each method’s parameters were

© 2023 The Author(s)
Eurographics Proceedings © 2023 The Eurographics Association.

64



S. Dutta & B. Russig & S.Gumhold / GPU-accelerating hierarchical Descriptors for Point Set Registration

No.Pairs Fine Coarse Fail
ORI-HER 4169 139 821 3209
FGR 4169 653 1237 2279
HER 4169 742 1319 2108
GPU-HER 4169 918 1463 1788

Table 1: Categorization of registration view pairs from LRF
datasets based on threshold as discussed in section 5.1

chosen according to the defaults suggested by the respective au-
thors wherever applicable (see Appendix A).

5. Results

The section presents the results of our experiments, which aim to
validate that the proposed approach yields more accurate regis-
tration results compared to the state-of-the-art method. Addition-
ally, we will delve into various characteristics of our algorithm. We
ran all experiments on an AMD Ryzen 7 5800H clocked at 3.20
GHz with an Nvidia RTX 3060 6GB GPU. The rasterization part
of the descriptor construction process is implemented against the
OpenGL 3.3 API (Core profile) directly, without using any render-
ing middleware.

5.1. Accuracy

The accuracy assessment is based on datasets introduced in section
4.1 with multiple registration problems and root mean square error
(RMSE) computation on the registration output after convergence.
The RMSE measures the mean error over all source cloud point
locations for some computed transformation Top with respect to
ground truth transformation Tgt :

RMSE(Top) =
1
d

√
1
n

n

∑
i=1

∥Top pi −Tgt pi∥2 (14)

The normalization factor d signifies the sampling distance, deter-
mined as the average mesh edge length for the LRF dataset which
employs polygon mesh representations for scans. We categorize the
root mean square error (RMSE) outcomes into fine (< 20d), coarse
(
[
20d,50d

]
), and failed segments, and evaluate the number of view

pairs under each category in comparison to the total registration
problems (Table 1). Focusing on the fine category, we analyze ac-
curacy results in Figure 6 for the LRF datasets. The findings affirm
our method’s superior accuracy compared to FGR, ORI-HER, and
HER. This conclusion is further supported by the statistical mea-
sures in Table 2 that depict our method’s consistently lower values
considering fine RMSE category. The capability to construct high-
resolution descriptors from continuous surface representation, en-
abled by GPU acceleration, contributes to our method’s accuracy
enhancements. Visual comparisons of registration results in Fig-
ure 4 and Figure 5 validate our approach’s ability to achieve finer
alignment, as opposed to failure or inaccurate alignment exhibited
by other methods.

Min Max Avg Std.dev
ORI-HER 1.11 29.49 5.43 3.97
FGR 0.33 24.51 3.25 2.53
HER 0.21 22.01 2.38 2.15
GPU-HER 0.11 18.76 1.95 1.67

Table 2: Statistical comparison of RMSE based on Fine threshold
as discussed in section 5.1

32×32 64×64 128×128 256×256 512×512

HER 0.023s 0.028s 0.09s 0.15s 0.29s

GPU-HER 0.002s 0.004s 0.005s 0.008s 0.017s

Table 3: Average Descriptor Computation at each resolution for
HER and GPU-HER

5.2. Runtime

The initial portion of our runtime analysis centers around the aver-
age time taken for a single descriptor computation across various
resolutions for the LRF dataset. Presented in Table 3, this compar-
ative data, when juxtaposed with HER, underscores the significant
speed-up in descriptor computation offered by our method. This
enhancement is notably augmented by GPU acceleration, all the
while maintaining accuracy without compromise.

Moving to the second part of the analysis, we delve into the
computational time of ORI-HER, FGR, HER, and our approach,
taking into account preprocessing steps and the core algorithm ap-
plied to models from the LRF dataset. This examination dissects
the key components and provides insights into their individual run-
time contributions. For instance, in HER and our method, this analy-
sis encompasses surface fitting, coarse resolution computation with
sorting, and the iterative core algorithm. As depicted in Figure 7,
the initial computation and sorting of coarse resolution pairs incur
negligible runtime in contrast to other pivotal stages. The keypoint
computation time in ORI-HER is explicitly included in the com-
parison as it relies on a customized set of steps for their selection
as earlier described in section 3.1. The FGR algorithm relies on fea-
ture descriptors from a pre-processing step, which tends to be ex-
pensive to compute. The time spent computing the alignment in the
case of FGR is primarily dedicated to feature matching, which can
vary significantly depending on the specific point clouds. Despite
this variability, FGR stands out as the fastest method on average.
Conversely, ORI-HER exhibits the highest runtime, attributed to its
extensive processing of keypoint pairs and descriptor hierarchies in
the quest for optimal transformations. The iterative core algorithm
of HER has higher computational time as descriptors are compar-
atively expensive to compute, further restricting their resolution to
256×256 in the analysis. In the case of our proposed method, we
observe a significant acceleration in descriptor hierarchy construc-
tion and a concurrent reduction in the time required for the iterative
core algorithm. This effect stems from our method’s capacity to
construct high-resolution descriptors across the hierarchy swiftly,
enabling convergence within the first few keypoint pairs. This re-
duces the overall time as illustrated in Figure 7, showcasing the
time efficiency of our approach in comparison to its contempo-
raries.
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(a) ORI-HER (b) FGR (c) HER (d) GPU-HER

Figure 4: Registration of a view-pair From LRF Armadillo dataset

(a) ORI-HER (b) FGR (c) HER (d) GPU-HER

Figure 5: Registration of a view-pair From LRF OilPump dataset
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Figure 6: Accuracy comparison of pairwise registration methods
for the LRF datasets. The box height represents the 25th and 75th
percentile. The whiskers represent the 5th and 95th percentiles. The
middle line represents the median. Better registration results are
characterized by lower RMSE.

6. Conclusion and Outlook

In this paper, we have presented a hierarchical (coarse-to-fine)
global registration method based on GPU-accelerated descriptors.
By leveraging GPU hardware, we surmounted the bottleneck of
computing high-resolution 2D descriptors from the continuous sur-
face representation. This resulted in a dual efficacy i.e., offering
higher accuracy and speed-up. Our evaluation, conducted on the
diverse LRF dataset, demonstrates significant improvements in ac-
curacy achieved by employing higher-resolution descriptors, along
with a reduction in their computation time by an order of magni-
tude. Consequently, the overall time of the registration process is
greatly reduced.

However, there are several areas that could be improved, still
focusing primarily on speed: While we do advocate for NURBS

0 10 20 30 40 50 60 70 80 90 100

HER

FGR

ORI-HER

GPU-HER

Time(s)

surface fitting time Keypoints comput. time

Feature Descriptor comput.time Sorting time

core-algorithm

Figure 7: Runtime comparison of the proposed approach GPU-
HER with HER, ORI-HER, FGR including the preprocessing step
for each methods.

surfaces due to their versatility and availability of implementa-
tions, the fitting process is computationally expensive. In the case
of range scans, their 2.5-dimensional nature would allow for more
optimized fitting algorithms than the generic, PCL-provided one we
use. Additionally, more parts of the core algorithm could be trans-
ferred to the GPU, particularly similarity measure calculation and
the secondary descriptor comparison loop. Finally, foveated ren-
dering and adaptive tessellation, potentially also in a poi/keypoint-
dependent way (a viable option on non-embedded hardware with
tessellation units), could further reduce the computational effort of
building very high-resolution Circon descriptors.
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Appendix

A. Choice of Parameters

This supplementary material provides a broader context to
the parameters for our proposed approach (GPU-HER) along
with HER, ORI-HER and FGR. In order to evaluate their per-
formance, we adapted to the default setup proposed by the
respective authors. However, It is worth highlighting certain
parameters integral to methods and key to their optimal reg-
istration accuracy. In the following subsections, we focus in-
dividually on the parameters for each method.

A.1. ORI-HER

The essential aspect of the method is the selection of a set
of points-of-interest (poi). The author relies on a mixture of
algorithms focused primarily on range images to extract pois
considering descriptor characteristics. It comprises an edge
detection on a range image followed by Laplace operation on
the normal vector components. Point-of-interest is selected
based on random sampling from a set of all non-edge pix-
els with a value lower than the median of the Laplacian. The
primary logic behind the process is to select a candidate set
that does not lie on the edges or boundaries of the object but
rather on areas with a minimum variation of curvatures.

We replicated similar steps with minor modifications
for evaluation on the LRF dataset, which consists of only
generic point clouds with no range images. For each source
and target point cloud of a registration view-pair, we eval-
uate all points to classify them as edge or non-edge points.

It is followed by Laplacian (Lp ) computation for all points
based on their normals. Finally, pois are represented by a
set of points that adheres to the criteria of being a non-edge
point and within a specific bound defined by eqn 15 based on
their Laplacian value. The lower bound (lb) is a fraction of
the median of Laplacians (med(Lp(P))) for all points (P) in
a scan. For our experiments, we used a multiplication factor
(µ) within a range [0.20,0.5].

lb < Łp < med(Lp(P)) (15)

where

lb = µ ·med(Lp(P)) (16)

A.2. HER & GPU-HER

The pre-processing steps of HER and GPU-HER for the re-
spective source and target point clouds comprise of mainly
two steps (a) Euclidean clustering to account for highly frag-
mented scans (b) Fitting surface to clusters.

Figure 8: Source point cloud with 2 clusters on the left with fitted
NURBS surface to the right.

Figure 9: Target point cloud with 3 clusters on the left with fitted
NURBS surface to the right.

A.2.1. Euclidean Clustering

We accomplish (a) by performing Euclidean clustering as
implemented in the open-source Point Cloud Library (PCL).
The Euclidean in the name signifies the use of Euclidean
distance (L2) metrics. Let Ci = {pi ∈ P} be a distinct cluster
from C j = {p j ∈ P} if:

min∥pi − p j∥2 > dthres (17)

Equation 17 implies that if the minimum distance is larger
than the threshold dthres, then the set of points pi and p j be-
longs to two distinct clusters Ci and C j respectively. In order
to employ the notion of the minimal distance between two
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sets of points, the clustering approach adapts Kd-tree-based
approximate nearest neighbor search. The distance threshold
dthres defines a radius parameter within which the approxi-
mate set of neighbors is determined. The parameter dthres is
provided as an input to the method and largely depends on
the dataset. Lower values result in a large number of clus-
ters whereas too high values result in a single large cluster.
Furthermore, to avoid small clusters, a parameter defining a
minimum number of points representing a cluster could be
provided that completely eliminates tiny clusters.

It is worth mentioning that in order to be useful for our
purpose, there is no need for the clustering result to make se-
mantic sense (although it often does), the clusters just need
to be compact enough to enable sensible fitting with a single
surface and boundary curve.

Figure 8 and 9 represent a pair of scans along with their re-
spective clusters and fitted surfaces. These fitted clusters (as
a union of surfaces) are input shapes for the core registra-
tion process. Our algorithm is specifically designed to tackle
these complex shapes and can efficiently align pairs of scans
even under challenging conditions.

Values
interior_smoothness 0.2
interior_weight 1.0
boundary_smoothness 0.2
boundary_weight 0.0
degree 2
refinement 6
iterations 6

Table 4: NURBS surface fitting parameters

A.2.2. NURBS

The surface fitting step (b) is based on NURBS surface
representation and their implementation as part of PCL.
It comprises surface fitting to respective scans followed
by trimming the boundaries of the object based on the
B-spline curve. The robustness of the entire process de-
pends on the underlying data and parameters are adapted
to model the characteristics of the data. The surface fit-
ting relies on a set of parameters illustrated in Table 4.
The fitting parameters (interior_smoothness, in-
terior_weight, boundary_smoothness) are used
in their default settings as suggested by the PCL imple-
mentation. Importantly, the parameters largely preserved the
overall surface smoothness without comprising intricate de-
tails. interior_smoothness defines the smoothness
of the surface interior, interior_weight is the opti-
mization weight awarded to points classified as interior.
boundary_smoothness is the smoothness of the sur-
face boundary and boundary_weight is the optimiza-
tion weight awarded to points classified as being part of the
boundary. Note that "boundary" in this case does not yet im-
ply any trimming of the surface, although more or less the
same set of points will determine the parameter-space trim-
ming curve (see below).

The polynomial degree of the NURBS surface is de-
fined by degree. The number of refinement iterations
(refinement) defines the maximum iterations for which
control-points are inserted, in a way that is approximately
doubled for every iteration in each parametric direction of
the surface. In most of our experiments, we obtained 642

of control points per surface. iterations refers to the
number of iterations that are performed after refinement is
completed. The refinement and iterations have the
largest influence on the smoothness of the surface and are
the only parameters we tuned for our approach, but we kept
them constant across the dataset.

In order to trim the fitted surface, a NURBS curve is fitted
to the boundary points in the parameter space of the surface.
Again, we retained most of the default settings proposed by
PCL (Table 5). The major influencing parameters are Con-
trolPoints_iterations and curve_accuracy.
ControlPoints_iterations defines the inner itera-
tions of the curve fitting without insertion of control points.
curve_accuracy refers to the average fitting accuracy.

Values
ControlPoints_accuracy 5e-2
ControlPoints_iterations 6
ControlPoints_maximum 200
curve_accuracy 3.5e-3
curve_iterations 100
degree 2

Table 5: Curve fitting parameter

A.3. FGR

The Fast Global registration (FGR) adapted is based on
the authors’ implementation and has been inducted into our
evaluation pipeline without major modifications. The param-
eters prescribed by the authors are maintained throughout
the experiments and only the input point cloud-dependent
scale multiplier required for FGR’s feature descriptors was
tuned to 30d for the LRF dataset, where d is the average dis-
tance between neighboring points as defined in our paper.
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