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Figure 1: Segmentation Pipeline. (a) Input high-resolution 3D point cloud (thanks to[ZJ16]). (b) Binary space partitioning into chunks that
can be processed. (c) RANSAC segmentation in simple geometric primitives. (d) Parameter estimation through the Hough transform and
aggregation of segments belonging to the same primitives. (e) Semantic segmentation.

Abstract
Point clouds are becoming an increasingly common digital representation of real-world objects, and they are particularly
efficient when dealing with large-scale objects and/or when extremely high-resolution is required. The focus of our work is on
the analysis, 3D feature extraction and semantic annotation of point clouds representing urban scenes, coming from various
acquisition technologies, e.g., terrestrial (fixed or mobile) or aerial laser scanning or photogrammetry; the task is challenging,
due to data dimensionality and noise.
In particular, we present a pipeline to segment high-resolution point clouds representing urban environments into geometric
primitives; we focus on planes, cylinders and spheres, which are the main features of buildings (walls, roofs, arches, ...) and
ground surfaces (streets, pavements, platforms), and identify the unique parameters of each instance. This paper focuses on the
semantic segmentation of buildings, but the approach is currently being generalised to manage extended urban areas. Given a
dense point cloud representing a specific building, we firstly apply a binary space partitioning method to obtain small enough
sub-clouds that can be processed. Then, a combination of the well-known RANSAC algorithm and a recognition method based
on the Hough transform (HT) is applied to each sub-cloud to obtain a semantic segmentation into salient elements, like façades,
walls and roofs. The parameters of primitive instances are saved as metadata to document the structural element of buildings
for further thematic analyses, e.g., energy efficiency.
We present a case study on the city of Catania, Italy, where two buildings of historical and artistic value have been digitized
at very high resolution. Our approach is able to semantically segment these huge point clouds and it proves robust to uneven
sampling density, input noise and outliers.

CCS Concepts
• Computing methodologies → Point-based models; Shape analysis; • Applied computing → Architecture (buildings);

1. Introduction

The continuous growth of urban areas urgently requires to address
fundamental issues, such as healthy life and well-being, sustain-
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ability, resilience to climate change, as reported in the NextGenera-
tionEU recovery plan [Nex]. Exploiting the new enabling technolo-
gies (i.e., modelling and simulations, sensing, Internet of Things,
Artificial Intelligence) for the correct representation, understand-
ing, and integration of urban phenomena, led to the development
of urban Digital Twins (DTs) for the monitoring, prediction and
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simulation of the state of the city in specific scenarios [CCD*19]
[CCC*22]. This paradigm is becoming a widespread approach for
the day-by-day administration and for the definition of long-term
policies for the future of sustainable cities [DWL*20; Hel; SH20;
Ber; Sin]. The DT of the city comprehends several components,
which can be briefly summarised as follows: a 3D geometric model
of the urban space, representing the morphology of the built and
natural environment; a set of informative layers (e.g., road network,
street types, position of traffic lights, weather forecast), represent-
ing the knowledge of the city involved in the processes that the DT
should investigate (e.g., traffic conditions), and of course the algo-
rithmic modules that, integrating information from different layers,
monitor actual conditions, predict future states, simulate scenarios
and visualise results.

3D models are typically used to communicate visual aspects, for
example enabling remote viewing of places of interest. If this is the
case, the main requirement is to have good-looking models whose
geometric resolution represents a good trade-off between level of
detail and rendering/interaction speed. In the context of urban DTs,
the 3D model can provide direct access to information related to
specific entities present in a scene. Indeed, many informative layers
refer to precise spatial locations, so that portions of the 3D model
(points, lines, areas, objects) can be identified as specific urban fea-
tures (e.g., streets, parks, buildings) and be associated with thematic
knowledge (park opening hour, building height, pavement mate-
rial, and so on). In this view, the 3D model can integrate knowl-
edge from the diverse thematic layers as far as such knowledge is
location-based [SCMS22]. Linking information to geometric enti-
ties is called part-based annotation, and builds on a former seg-
mentation step, where the whole geometric model is firstly decom-
posed into salient elements either manually or automatically. The
identification of specific homogeneous parts is also known as fea-
ture recognition. The set of features of interest obviously depends
on the context and objectives of the project.

In this paper, we present a segmentation and recognition pipeline
for the urban context, aiming in particular to the semantic segmen-
tation and documentation of buildings to support further analysis.
For solar radiation and heat dispersion considerations, for instance,
it is crucial to identify morphological attributes of buildings, such
as exposed surface area and inclination and orientation of roofs.
Therefore, we target the recognition of primitive shapes that best
fit parts of buildings: planes in the first place, but also cylinders
(e.g., arches, columns) and spheres (e.g., domes). Our method is
able to identify geometry portions corresponding to instances of
the primitives, providing the parametric form of each feature. Even
if this contribution focus on single buildings, our research is wider
and tackles extended urban areas; the method described here is cur-
rently being generalised to manage the level of a city district.

The challenges posed by the urban context are twofold: firstly,
acquisition at geographic scale produces a large amount of data,
which typically requires out-of-core segmentation and recognition
algorithms. Secondly, different acquisition technologies might be
deployed, resulting in varying resolution, precision and accuracy
of data; thirdly, each acquisition methodology has drawbacks (e.g.,
occlusions, outliers and noise) and the acquisition of urban scenes
necessarily happens in an uncontrolled environment, with occlud-

ing elements such as parked or passing vehicles and pedestrians.
Therefore, the method must be robust to missing data, noise and
outliers.

We apply our pipeline to scenes represented as point clouds. On
the one hand, both laser scanning and photogrammetry provide this
data type; furthermore, it is suited to limit the memory allocation,
which, for large scale models, might be critical. We firstly apply
a binary space partitioning method to obtain small enough sub-
clouds that can be efficiently processed. Then, a combination of the
well-known RANSAC algorithm and a recognition method based
on the Hough transform is applied to each segment to obtain a se-
mantic segmentation into its main elements.

We present a case study on the city of Catania, Italy, where a
large urban area has been surveyed in different modalities for the
creation of the city DT, in the framework of a national project un-
der development [UIS]. As far as this paper is concerned, we re-
port on experiments on two historic buildings of the city centre,
the “Palazzo degli Elefanti” and the “Palazzo dei Chierici”, given
as point clouds of 541 and 757 millions points, respectively. Our
approach is able to segment huge point clouds and, thanks to the
properties of the Hough transform, it prevents over-segmentation
and is robust to input noise and outliers.

The rest of the paper is organised as follows. Section 2 overviews
previous work in point cloud segmentation and fitting geometric
primitives, with specific focus on the application to the analysis
of urban scenarios, while Section 3 summarizes some notions to
facilitate the comprehension of the approach. Section 4 describes
our method for the building-wise semantic segmentation of high-
resolution point clouds, performed by fitting primitives and com-
puting their parameters. An ongoing generalisation of the method
to manage wider urban areas rather than single buildings is pre-
sented in Section 5. Section 6 provides experimental results of our
case study and demonstrates the effectiveness of our strategy. Final
remarks (Section 7) and next steps conclude the paper.

2. Previous Works

3D point cloud segmentation aims at splitting points into distinct
homogeneous regions, so that points in the same region share the
same properties. Fitting primitives methods segment point clouds
based on the homogeneous property of belonging to a certain primi-
tive type having the same parameters. The challenges of point cloud
segmentation are related to the input data quality, which often suffer
of high redundancy, non-uniform sampling density, missing data,
noise and outliers, plus the lack of an explicit structure in the data.

Over the past few decades, there has been a significant prolif-
eration of algorithms developed for the purpose of breaking down
digitalized point clouds or meshes into regions that can be approx-
imated by primitive shapes from predefined sets [XCW*20]. Ac-
cording to a study by Kaiser in 2019 [KYB19], these approaches
can be categorized into four main groups: stochastic methods,
parameter space techniques, clustering approaches, and learning-
based methods. The first group encompasses techniques like the
RANSAC method [SWK07] and its various optimizations. The sec-
ond family includes methods that rely on Hough-like voting and
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parameter space clustering, as demonstrated in works such as Lim-
berger et al.’s research [LO15]. The third category encompasses
a wide range of clustering techniques. It can be further subdi-
vided into three primary types: primitive-driven region growing,
as seen in the work by Attene et al. [AP10]; automatic clustering
and algorithms based on Lloyd’s method, as demonstrated in Yan et
al.’s work [YWLY12]; and primitive-oblivious segmentation, as ex-
plored by Le et al [LD17]. More recently, with the increasing popu-
larity of deep learning techniques, many supervised fitting methods
have been proposed for detecting multi-class primitives [LSD*19]
[SLM*20], [YYM*21] [BPAT20] [LH19] [BBN*20] [MJB21].

Focusing on recent methods for analysing and classifying point
clouds representing urban scenes, [PGE21] proposes a learning-
based method that addresses the problem of segmenting and la-
beling point clouds in scenes with densely populated of Mechan-
ical/Electrical/Plumbing (MEP) building systems. In order to deal
with the increasing availability of acquired data, [PMSK22] intro-
duces a region-growing-based system for the segmentation of large
point clouds in planar regions. The method proposed in [WXW*23]
reconstructs semantic building models by improving façades-level
semantic 3D segmentation, exploiting both point cloud and images.

In our context, we deal with high-resolution point clouds repre-
senting building of different types subjected to different types of
noise given by errors due to acquisition instruments. In addition,
we are interested in providing semantic information about parts
that compose a building. With this final goal in mind, we propose
a strategy focused on a combination of the RANSAC approach and
an HT-based recognition method. A analytic comparison of two
algorithms for automatic roof planes detection from Lidar data is
provided in [TLG07]. The RANSAC is able to provide a segmenta-
tion of the input point cloud in an efficient way, associating to each
segment the type of primitive which corresponds to it. However, it
is prone to over-segmentation. The Hough transform used for the
recognition of surfaces as shown in [RRFB22] is able to recognise
different types of primitives, associating the parameters (geomet-
ric descriptors) that uniquely identify each segment. Reasoning on
the geometric descriptors, it is possible to group different segments
that belong to the same primitive and to find semantic information
about the parts that compose a building. In conclusion, combining
the two approaches we are able to manage large scale point clouds
and to extract important information on the buildings.

Other previous studies in urban contexts have employed either
the RANSAC algorithm or the Hough transform. As a matter of
example, both [LWN16] and [CZMH14] propose new methodolo-
gies based on RANSAC, but they are different from the proposed
method. More in details, the goal of [LWN16] is to reconstruct
scenes from point clouds assuming a regularity of the distribution
of buildings, that is the Manhattan world assumption [CY00]. The
reconstruction of buildings model is proposed also in [CZMH14]
exploiting the RANSAC algorithm to segment the planar patches
that constitute rooftops. Regarding the exploitation of the Hough
transformation, [RRBF23] proposes a recognition method able to
segment the input point cloud into geometric primitives of differ-
ente types (e.g., planes, cylinders, spheres, cones and tori), but it
is focused for CAD objects. Finally, the study provided in [MI16]
aims to extract building roof planes from airborne LIDAR data ap-

plying an extended Randomized Hough Transform, without incor-
porating semantic information.

To enhance the overall feasibility of running this approach on a
standard personal computer independently of the size of the input
dataset, we also apply a binary space partitioning beforehand, to
lower the cardinality of the input point cloud.

3. Basic concepts

In this section, we provide some theoretical background on the
Hough transform, along with an exploration of the specific geo-
metric primitives chosen to facilitate our pursuit of the intended
objective.

Hough transform. The original definition of the Hough transform
(HT) is based on the point-line duality as follows: points on a
straight line, defined by the equation y=mx+n, correspond to lines
in the parameter space that intersect in a single point. This point
uniquely identifies the coefficients in the equation of the original
straight line (see Figure 2). This concept can be naturally extended
to generic family F = {Sa} of curves or surfaces that depend on
a set of parameters a = (a1, . . . ,an) (see [BR12]). The duality con-
cept is fundamental for the HT based recognition algorithm, since it
translates the recognition problem into detecting which value of the
parameters that determine the family F corresponds to the curve or
the surface best fitting a given set of points (such a value may be
non unique). The common strategy to identify the solution (or a so-
lution) is based on the so-called accumulator function; it consists
in a voting system whereby each point in a point cloud P votes a
n-uple a = (a1, . . . ,an); the most voted n-uple corresponds to the
most representative curve or surface for the profile.

Figure 2: The HT is based on the point-line duality: points A and
B lie on a straight line. These lines correspond to lines in the pa-
rameter space that intersect in a single point R. This point uniquely
identifies the coefficients in the equation of the original straight
line.

Dictionary of geometric primitives. We select a specific dictio-
nary of geometric primitives suitable for our scope. Similarly to
other methods specific for urban scenes, we select the families of
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planes, cylinders and spheres (see Figure 3), since the main struc-
tural elements in the city can be identified by such types of sur-
faces. Exploiting the technique in [RRFB22], we reduce the num-
ber of parameters involved in the HT computation. Specifically, for
the primitives considered in this work, the number of parameters
is reduced to three in case of family of planes and one in case of
cylinders and spheres. Starting from these parameters, it is possible
to extract some geometric parameters that uniquely identify each
primitive and that allow to make the primitives comparable each
other.

Figure 3: Plane, sphere and cylinder primitives respectively, along
with their attributes (geometric descriptors).

In the following, we provide the geometric descriptors that we
consider in the comparison step.

• Planes. A plane can be uniquely represented by its normal vec-
tor n and a point p lying on it; then, the geometric descriptor is
represented by the vector [n, p].

• Spheres. A sphere is uniquely identified by the coordinates of
its center c and the value of the radius r. For this reason, the
geometric descriptor for the sphere is the vector [c, r].

• Cylinders. A cylinder can be uniquely represented by its rota-
tional axis n, a point p lying on it and the value of its radius r;
then, the geometric descriptor is the vector [n, p, r].

4. Pipeline Overview

The input of our semantic segmentation pipeline is a dense high-
resolution point cloud representing the 3D morphology of a build-
ing (see Section 5 for a possible generalization of the approach to
wider areas). With no loss of generality, we assume the input point
cloud to be available either as a single or a collection of LAS files,
the standard file format designed for the interchange and archiving
of LiDAR point cloud data. However, the point cloud might come
or not (or not only) from a LiDAR campaign, and even so, we don’t
assume points to be classified.

The approach works as follows (see Figure 1). First, the input
point cloud is partitioned into smaller chunks by performing an out-
of-core binary space partitioning [CA15]. Then, a combination of
the RANSAC approach [SWK07] and the Hough transform is used
to semantically segment each chunk into planes which describe the
main elements of buildings, such as façades, walls and roofs, and
pavement.

The following section describe the two steps in details.

4.1. Binary space partitioning

Depending on the origin of the input dataset (i.e. acquisition tech-
nique), the resolution of the input point clouds can be too high to
be efficiently processed. Thus, a binary space partitioning (BSP)
method is applied to split it into smaller chunks, each of them small
enough to be processed by an ordinary machine. Our implementa-
tion is based on the out-of-core partitioning approach described in
[CA15] and guarantees the possibility to split arbitrary large clouds
into smaller chunks. The desired size of the generated chunks (in
terms of maximum number of points) is user-defined and provided
as an input parameter to the binary space partitioning algorithm,
based on the performance of the machine doing the processing.

Figure 4: Binary Space Partitioning. (a) Input point cloud. (b)
Bounding Box and downsampling of the input cloud. (c) BSP com-
puted on the downsampled set. (d) Final BSP.

Figure 4 shows how the partitioning algorithm works. To begin,
the point cloud’s bounding box, denoted as B(P), is determined by
scanning through all the point coordinates in P (Figure 4b). Con-
currently, a representative vertex down-sampling DS(P) is gen-
erated by randomly selecting one vertex every 1000 in P . Starting
from B(P), an in-core binary space partition is constructed through
an iterative process of subdividing the cell containing the largest
number of points of DS(P). Each cell is split along its longest
side. The root of the binary space partition corresponds to the entire
downsampled cloud DS(P). During each subdivision, each vertex
within the parent cell is assigned to one of the two offspring cells
based on its spatial position. If a vertex lands precisely on the divid-
ing plane, it is assigned to the cell with the lowest lexicographical
barycenter. This process continues until the number of vertices al-
located to each BSP cell is at most equal to a predefined threshold
(Figure 4c). Once the BSP structure is established as described
above, the task of assigning all points in P to their respective BSP
cells begins. Points are processed individually and assigned based
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on their spatial positioning (Figure 4d) and since the cardinality of
the input cloud is much higher, this segmentation is done out-of-
core.

The output is a set of num_ f iles files, each encoding the set of
points in a single chunk. For our convenience, each chunk Pi is
saved as a .xyz file, cell_i.xyz where i = 0, . . . ,num_ f iles− 1, en-
coding the point coordinates.

4.2. Geometric primitive fitting and parameter definition

After the BSP phase, the fitting of the selected primitive families
starts. We point out that the space partitioning enables a parallel
execution of the fitting procedure over the partitions. However, the
algorithm can proceed sequentially analysing a chunk at a time,
benefiting of the cardinality reduction nonetheless. In the follow-
ing, we describe the sequential approach.

Firstly, we apply a RANSAC classification [SWK07], that is an
automatic algorithm to detect basic shapes in unorganized point
clouds, to each sub-cloud Pi returned by the binary space partition-
ing (saved in the cell_i.xyz file). This method requires in input the
minimum number of points constituting a segment and the type of
primitive to look for. In our implementation, we set the first param-
eter as the 0.5% of the cardinality of Pi and we select three types of
primitives (planes, cylinders and spheres). The result is a collection
of subsets of points belonging to the same primitive, saved in a .txt
file, whose name identifies the type of primitive.

Note that, the combination of the partitioning step in Section 4.1
and the tendency of the RANSAC algorithm to oversegment the
point clouds (see, for example, [LD17]) can generate different seg-
ments of points that actually belong to the same primitive; for this
reason, we complement the RANSAC partitioning with a recog-
nition step, based on an extension of the Hough transform pre-
sented in [RRFB22]. That approach is designed to recognise ge-
ometric primitives and to associate the corresponding parameters
that uniquely identify each primitive in point clouds representing
CAD objects; it can be naturally extended to the urban context,
since the main urban elements can be identified by the same types
of surfaces. The primitive type is provided in the name of the .txt
file containing each segment, so this information is used by the
HT-based recognition method to select the family of primitives
to be used. In some cases, especially in presence of high noise,
the RANSAC algorithm fails in associating the correct primitive
type. Following the strategy described in [RRFB22], we enrich the
recognition procedure with the computation of an approximation
error, that allows us to evaluate the RANSAC classification. If the
approximation error is higher than a fixed threshold, we iteratively
test the other types of primitives and select the one with lowest ap-
proximation error, correcting the classification and exploiting the
robustness to noise typical of the HT.

The parameters obtained in this step are used to define geometric
descriptors (see Section 3) that uniquely characterize each segment.
On the basis of these descriptors, once all chunks Pi are processed
by the RANSAC, it is also possible to aggregate segments that be-
long to the same primitive or to find relationships among the recog-
nised parts (e.g., parallel planes). An example is shown in Figure 5.
To do this, we use a hierarchical clustering approach, the complete

linkage, to compare clusters and build a dendrogram in a way sim-
ilar to [RRFB22].

(a) (b)

(c)

Figure 5: Segmentation and primitive fitting. (a) The set of chunks
Pi, with i = 0, . . . , 5. (b) Result of the RANSAC segmentation ap-
plied to each Pi. (c) Result of the aggregation of segments belong-
ing to the same planes after the recognition step.

More in details, the aggregation starts assigning every single seg-
ment to a cluster, and then iteratively merging clusters that are the
closest with respect to the following map

D(Ch,C j) := max
αk∈Ch,αl∈C j

d(αk,αl),

In this map, Ch,C j is a given pair of clusters and d is a chosen
distance or dissimilarity. Table 1 shows the distances considered in
this work, for each type of primitive, using the notation introduced
in Section 3. Note that if d(α1,α2) = 0 then the primitives α1 and
α2 are equal with respect to the selected criterion.

Table 1: Distances considered in our work, following the notation
introduced in Section 3.

Primitive type d(α1,α2) Criterion

Planes
{

||n1 ×n2||2 parallel
|n1 · (p1 −p2)| incident

Cylinders


|r1 − r2| equal radii

||n1 ×n2||2 parallel rotational axes
||n1 × (p1 −p2)||2 incident rotational axes

Spheres
{

|r1 − r2| equal radius
||c1 − c2||2 equal centers

In our context, we are interested in whether two segments lie on
the same primitive, so for each type of primitive we use the sum of
all distances shown in Table 1 associated to it. As an example, we
check whether two segments lie on the same cylinder by using the
metric d(α1,α2) := |r1 − r2|+ ||a1 ×a2||2 +(p1 −p2)||2.

Finally, the geometric descriptors can be used to find semantic
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information about the processed point cloud. Specifically, in case
of planes we can distinguish them into façades, walls and roofs,
and pavement, as shown in Figure 6.

Figure 6: Semantic segmentation of a church: the points corre-
sponding to the façades in light blue, to the roofs in red and to
the pavement in green.

By analysing the components of the normals n of each plane, we
can distinguish them into vertical, horizontal or oblique planes. In
this way, we can grouped:

• the vertical planes, annotated as façades;
• the oblique planes, labeled as roofs; the normal also indicates the

orientation and pitch of each roof;
• the horizontal planes, distinguishing them between into pave-

ment and roofs based on the height in which they are located.

5. Pipeline generalisation

In real applications, input datasets often come from acquisitions of
large urban areas, that is, input point clouds generally include more
than one building. Our method works properly in the general case,
but it is inefficient when the user wishes to segment one or just a
few buildings of interest within a much wider area.

To optimize the execution of our method in that case, we exploit
prior knowledge in the form of the 2D footprints of the desired
buildings, available in online repositories (e.g., OpenStreetMap
[Ope17]), to split the input point cloud building-wise. With no
loss of generality, we consider 2D footprints encoded as standard
ESRI Shapefiles [ESR98]. The building-wise classification is based
on the point-in-polygon test, a basic geometry operation widely
adopted in GIS applications. For a detailed discussion on the point-
in-polygon problem and different approaches, see [Hai94].

Our implementation extends the point-in-polygon method intro-
duced by W. Randolph Franklin [Fra]. It relies on the Jordan Curve
Theorem [Jor93], which asserts that a point p resides inside a poly-
gon if the number of crossings of an half line starting at p in any
arbitrary direction is odd. To determine whether a given point p
is inside a polygon S, which is represented as an ordered list of
vertices, we begin by checking if the projection p̂ of point p onto
the plane of S falls within the axis-aligned bounding box of S. If
it doesn’t, the point lies outside S. Otherwise, we employ a ray-
casting approach, where we extend a ray from point p in arbitrary
direction (e.g., horizontally to the left) and count the intersections
between this ray and the edges of the polygon. If the count is zero
or even, point p is outside the polygon; otherwise, it is inside (refer

Figure 7: Point-in-Polygon. The input includes both the point cloud
P and a polygonal representation S of the footprint of the building
of interest. Each point p in P is projected on the plane of S and the
Jordan Curve Theorem is applied to assess if the point lies within
the footprint.

to Figure 7). Our implementation accommodates both simple poly-
gons and polygons with multiple boundaries, including holes; this
is crucial for urban environments, since many buildings exhibit in-
ner courts. If the shapefile contains multiple disjoint polygons (e.g.,
for a subset of buildings), we apply the same approach concurrently
to the entire set of buildings.

In the same way, we can restrict the domain to blocks, areas or
city districts whose boundary shapefile is known, and run the se-
mantic segmentation in parallel, thus improving efficiency.

6. Case Study

The case study comes from a dataset acquired in the framework of
the UISH project [UIS], which aims at developing Digital Twins
of Catania, Italy, to improve city monitoring and governance. The
digital representation of the morphology of the urban environment
is a core component of the system and the work reported in this pa-
per represents a building block for the reconstruction of a semantic
3D model for the city.

Various dataset were acquired, using different acquisition tech-
niques; in particular, an extended area of the city centre (approxi-
matively 2.5 squared km) has been digitized by aerial photogram-
metry, giving a point cloud of nearly 100G points (average ground
sampling distance 3-5 cm per pixel); terrestrial long and mid range
laser scanning systems, reaching a resolution smaller than 12 mm
has been used to capture at high resolution buildings of high artis-
tic and historical value. These are important buildings in the main
square of Catania (Piazza del Duomo) and in particular Palazzo
degli Elefanti (Elephants’ Palace) and Palazzo dei Chierici (Ta-
ble 2). Acquiring stations have been placed in 110 locations overall,
at ground and higher floors, in the nearby alleys and on opposite
buildings; the setting did not allow a perfectly even covering and
density (see Figure 8).

Referring to the single buildings, each input point cloud has been
partitioned into sub-clouds of maximum size of 10M points each,
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Figure 8: Left: extended area showing the aerial planning for aerophotogrammetric acquisition; middle: digitisation of the buildings of
interest with fixed laser stations; right: partial scan. Image courtesy of START4.0.

Input # Points (millions)
Palazzo degli Elefanti ˜541
Palazzo dei Chierici ˜757

Table 2: Size of the input dataset, in terms of number of points.

sufficient to be processed by our ordinary PC equipped with an Intel
Core i9 processor (at 3.6 GHz) and Windows 11 64 bits operating
system.

Figure 9 shows the result of the pipeline run on the “Palazzo
degli Elefanti” dataset. The binary space partitioning returned 103
sub-clouds, that are then processed by the RANSAC obtaining 306
segments (see Figure 9(a)). The last step, that is the aggregation
of segments belonging to the same primitives (see Figure 9(b)).
Finally, Figure 9(c) shows the resulting semantic segmentation of
the palace, distinguishing the planes among façades (in light blue),
roofs (in red) and pavement (in green). As you can see in Figure 11,
this dataset also presents cylinders and spheres within the building,
on the arcades of the cloister.

Figure 10 presents the result of our method on the “Palazzo dei
Chierici” dataset, a more complex structure than the previous one.
The result of the binary space partitioning step is a set of 162 sub-
clouds. This point clouds are processed by the RANSAC producing
435 segments (see Figure 10(a)) that are then aggregated (see Fig-
ure 10(b)). Finally, in Figure 10(c) the resulting semantic segmen-
tation of the building is shown, highlighting in light blue the planes
belonging to façades, in red the planes belonging to roofs and in
green the planes belonging to the pavement.

As Figures 9 and 10 show, our pipeline returned a semantic seg-
mentation of both buildings with success. Just in a few cases, the
classification given by RANSAC failed, but, thanks to the following
HT-based recognition method, the misclassifications is automati-
cally corrected. An example of a planar segment missclassified as
cylinder is shown in Figure 12 from two different perspectives. The
first one (Figure 12(a)) highlights that the segment presents some
missing parts, while the second one shows the presence of noise.

In our experimental configuration, we set a constant value for
the input parameter in the RANSAC method, which corresponds to
0.5% of the size of every sub-cloud produced through binary space
partitioning. Such a value has been empirically chosen and works

properly for our case study. However, it is important to note that this
constraint does have limitations in recognizing certain areas within
the input point clouds, especially in cases where the cloud’s resolu-
tion is lower due to the use of multiple acquisition techniques. An
instance of such a limitation is depicted in Figure 13, where only
a partial detection of the roof occurs, due to the fact that roof and
facades were acquired using photogrammetry and terrestrial laser
scanning respectively, resulting in different resolutions.

7. Discussion and conclusions

In this paper we have proposed a new method for segmenting high-
resolution point clouds representing urban 3D scenarios into ge-
ometric primitives to detect some main features of the buildings,
such as façades, roofs and arcades. Our approach is able to seg-
ment huge point clouds thanks to the application of an out-of-core
partitioning, avoids over-segmentation and is robust to input noise
and outliers. We showed results on the semantic segmentation of
buildings of high artistic and historical value, acquired at very high
resolution, and our methods was able to handle such large data
sets. The method is not limited to point clouds representing a sin-
gle building: the approach is general, and could in principle handle
larger point clouds, like the extended area of Catania, and be ex-
tended to recognise features out of buildings (streets, pavements,
ramps, streetlamps, and so on). We are currently tackling this de-
velopment, deploying a subdivision of the city into blocks or dis-
tricts to apply a parallel computation to decrease computation time,
which is, however, far to be real time.

At the current status, the proposed pipeline focuses on planes,
cylinders and spheres; it enables the possibility to detect building
features fitting such primitives. Future work will be addressed to
extend the number of geometric primitives to be fitted, in order to
enable the possibility to detect some additional features, such as
cones that would be useful to detect and label some specific types
of roofs.
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(a) (b) (c)

Figure 9: Palazzo degli Elefanti: in (a) the resulting preliminary segmentation, where different colors correspond to different segments; in
(b) the segments that belong to the same plane are grouped; in (c) the planes classified as façade, roof and floor are grouped.

(a) (b) (c)

Figure 10: Palazzo dei Chierici: in (a) the resulting preliminary segmentation, where different colors correspond to different segments; in
(b) the segments that belong to the same plane are grouped; in (c) the planes classified as façade, roof and floor are grouped.
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Figure 11: Focus on an arcade in the cloister of Palazzo degli
Elefanti dataset, in which parts of cylinders and spheres are de-
tected. In (a) four segments classified as cylinders (in purple and
light blue) and spheres (in yellow and magenta); in (b) the aggre-
gation of segments belonging to the same cylinder (in light blue)
and sphere (in yellow).
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Figure 12: Example of planar segment missclassified as cylinder
by RANSAC, due to missing data and noise, view from two different
perspectives: (a) front and (b) top
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