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Figure 1: Our pipeline, from pattern design to simulation and fabrication: (a) a polygonal pattern as a geometric configuration produced via
regular recursive subdivision of the planar space, with black indicating solid material and white indicating void; (b) the corresponding fabri-
cable pattern geometry after a refinement step; (c) the bending of the pattern under a simulated loading scenario; (d) the dot corresponding
to the pattern in the browsing interface; (e) a sphere fabricated with two different patterns.

Abstract
This paper addresses the design of surfaces as assemblies of geometric patterns with predictable performance in response
to mechanical stimuli. We design a family of tileable and fabricable patterns represented as triangle meshes, which can be
assembled for creating surface tessellations. First, a regular recursive subdivision of the planar space generates different
geometric configurations for candidate patterns, having interesting and varied aesthetic properties. Then, a refinement step
addresses manufacturability by solving for non-manifold configurations and sharp angles which would produce disconnected
or fragile patterns. We simulate our patterns to evaluate their mechanical response when loaded in different scenarios targeting
out-of-plane bending. Through a simple browsing interface, we show that our patterns span a variety of different bending
behaviors. The result is a library of patterns with varied aesthetics and predefined mechanical behavior, to use for the direct
design of mechanical metamaterials. To assess the feasibility of our approach, we show a pair of fabricated 3D objects with
different curvatures.

CCS Concepts
• Computing methodologies → Computer Graphics;

1. Introduction

Computational fabrication investigates the design and production
of objects at different scales – from architecture to automotive and
furniture – with the aim of speeding up the classic design pipeline
and overcoming material, size and geometric limitations. One of
the opportunities opened up by computational fabrication is the de-
sign of mechanical metamaterials [BBO∗10, PZM∗15], a class of
man-made structures whose mechanical properties are determined
by the structure geometry. Metamaterials can be created using pat-
terns, i.e. portions of space with a unique distribution of solid ma-

terial and voids. Indeed, patterns can be assembled to create tiled
surfaces, and the tiling of patterns with different geometries en-
ables controlling the mechanical behavior of the resulting surface
in response to mechanical stimuli e.g. force, deformation, momen-
tum [MSS∗19]. An additional effect of pattern diversity is the cre-
ation of aesthetically pleasant surfaces; indeed, patterns have been
extensively used in art and architecture for their aesthetic proper-
ties, for example for the façades of MuCEM or Texoversum and the
roof of Louvre Abu Dhabi.

This paper aims at supporting the creation of metamaterials by
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Figure 2: A small subset of the family of exchangeable, tileable, and connected patterns in our family.

Figure 3: Two example surface tessellations with different patterns.

tiling polygonal patterns. We address the first step of the pipeline,
namely the design and characterization of a family of geometric
patterns that span a wide range of mechanical properties. These
patterns can be manufactured by 3D printing or laser-cutting and
assembled to create aesthetically-pleasing surface tilings.

We cast pattern design as the combinatorial problem of locating
solid material and voids over a surface. First, a regular recursive
subdivision of the planar space generates different geometric con-
figurations (Figure 1(a)); then, a refinement step guarantees that
patterns are fabricable and robust (Figure 1(b)). We simulate the
patterns to characterize their mechanical response under load (Fig-
ure 1(c)), and present a simple browsing interface for exploring the
design space, in terms of both aesthetics and behavior (Figure 1(d)).
Differently from the majority of existing works, we target out-of-
plane 3D deformations, and evaluate the bending response of pat-
terns in three different scenarios. Our simulation results show that
the patterns exhibit a range of different mechanical properties, and
greatly expand the spectrum of possible deformations when com-
pared to solid structures. The user can select a pattern based on the
desired stiffness and target deformation. Finally, different patterns
can be easily manufactured as flat pieces and then assembled to
form spatial assemblies (Figure 1(e)).

Our result is a library of patterns that can be employed to create
surface tessellations for the direct design of metamaterials. Figure 2
shows some example patterns, which span a variety of geometric
and aesthetic properties. In turn, Figure 3 shows example surfaces
produced by assembling subset of patterns in different configura-
tions: adjacent patterns blend smoothly, and the whole metamate-
rial sheet has a seamless appearance.

Our contribution is a simple yet elegant method to produce aes-
thetically pleasant patterns at a controllable scale, for the direct de-
sign of mechanical metamaterials.

2. State of the art

Metamaterials are man-made structures for which the specific in-
ternal organization of elements achieves some required behavior in
terms of deformation, stress or energy [MLC∗22,BSP19,MSS∗19,
YZL∗18]. Metamaterials are often created as tilings of patterns
[DLL∗15,MDLW15]. Patterns are sensible as target geometries are
often not reproducible in the real world due to material or manu-
facturing constraints, and need to be decomposed or simplified.

Polygonal tilings have been studied for a long time in mathemat-
ics [Kap09, GS87]. Several works use ornamental patterns to ap-
proximate a desired 3D shape with discrete tiles [ZJL14, ZCT16,
CML∗17]. Patterns have been also used to realize stylized sur-
faces [BCMP18], geometries that follow the shape of a target ob-
ject at its macro-scale, while at a lower meso-scale they present
distinctive geometrical, physical, structural, and appearance prop-
erties. Stylized surfaces are gaining momentum in architecture: an
example is the FlexMap Pavilion, whose constituent elements are
spirals, and which was shown at the Venice Architecture Biennale
in 2021 [LMC∗22].

Our problem also relates to topology optimization methods,
which investigate the problem of optimally distributing solid ma-
terial within a target volume [SM13]. Topology optimization meth-
ods are able to create efficient patterns by volume subtraction and
model update, leaving the material only where needed. However,
only a specific mechanical task can be satisfied at a time, and
steady-state loading conditions are usually employed. Instead, we
target nonlinear conditions and multiple scenarios to provide a
repository for the user to browse.

Our method deals with generating flat patterns tiled on a sur-
face. Flat pieces are practical since they can be easily transported
and manufactured in different sizes with different fabrication tech-
niques. [MPI∗18] approximates an input surface using flat pa-
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(a) (b) (c) (d) (e)

Figure 4: The steps in our pipeline. We consider different configurations of solid/void subtriangles in a triangular slice, at multiple subdivi-
sion steps (a,b). The triangle slice is embedded into a polygon, an hexagon in this example (c). A polygonal pattern is generated by replicating
the triangle slice via rotational symmetry (d). To get the final fabricable patterns, we add solid material around predefined vertices using
quadratic rational Bézier curves and a connectivity-preserving logic (e).

rameterized spiraling patterns to produce both small-scale and
architectural-scale objects [LMC∗22, LMP∗21]. However, the pat-
tern geometry is constrained to a four-arm spiral pattern, and the
reduced representation proposed in [MPI∗18] is only applicable to
that specific type of pattern. In contrast, our goal is to produce a
wide family of patterns, providing great variability both in aesthet-
ics and in mechanical properties.

Tozoni et al. [TDJ∗20] created a set of parametric rhom-
bic microstructures with a continuous mapping between geomet-
ric parameters and mechanical properties. Similarly, Martinez et
al. [MSS∗19] generate 2D tiled geometries from Voronoi diagrams
of regular lattices under star-shaped distance functions. Their mi-
crostructures can be interpolated to smoothly vary their mechanical
properties. To assess the mechanical behavior of pattern arrange-
ments, the authors relied on homogenization [KMOD09]. However,
these approaches applies only to in-plane scenarios, where the pat-
terns have few deformation modes and it is easier to map them to
a simpler mechanical model. In contrast, in this work we target
out-of-plane deformation of flat patterns, and we run a posteriori
simulations so that the user can explore the space of all possible
behaviors and select the most suitable pattern on the basis of its
response. Indeed, homogenizing a generic 3D mechanical behavior
is still an open research question [SMGT18], which is beyond the
scope of this paper.

3. Methods

Our aim is to design patterns that can perform as building blocks
in composing larger macrostructures. We assume a polygonal and
as regular as possible tessellation for the target surface, in which as
many tiles as possible have the same shape, for example hexagons
[PTP∗15].

The patterns should be tileable, i.e. connect properly to adjacent
patterns when placed in a tile, and exchangeable, i.e. fit into any re-
gion of the tessellation so that they can switch place, to expand the
design space of mechanical structures achievable. We start from the
idea that every regular convex polygon can be decomposed into a
fan of isosceles triangles emanating from its centroid; for example,
a regular hexagon can be decomposed into a fan of six equilateral
triangles. Therefore, we can create a polygon pattern by generat-
ing a sub-pattern of a triangular slice, and then replicating it by
rotational symmetry to fill any convex n-sided polygon. To gen-

erate different triangular slice patterns, we perform a combinato-
rial exploration of possible designs through recursive triangle sub-
divisions, by considering all possible configurations of solid/void
subtriangles at each subdivision step. Figure 4(a,b) shows exam-
ple configurations for two subdvision steps. Once a triangular slice
pattern has been designed, we generate the corresponding polyg-
onal pattern by replicating the slice (Figure 4(c,d)). The resulting
rotational symmetric pattern embeds into the original polygon, can
be easily adapted to polygons with a different number of edges by
linearly mapping the base slice into every fan triangle, and is ex-
changeable by definition. Moreover, due to rotational symmetry,
the positioning of a pattern is independent of possible rotations:
this is convenient, as the mechanical properties of a structure com-
posed by non-symmetric patterns would depend on the direction of
each metamaterial units inside the structure.

To guarantee connectedness and tileability, we define a filter-
ing strategy to rule out slice configurations producing disconnected
patterns and patterns that do not properly connect to the bound-
aries. Finally, the last issues to address are fabricability and suit-
ability for simulations. Indeed, the presence of non-manifold con-
figurations and sharp angles in the pattern geometry would lead
to disconnected or fragile patterns, and possibly to singularities in
computation. We address the problem by locally refining the geom-
etry of patters using quadratic rational Bézier curves: we automat-
ically identify problematic areas that would generate disconnected
or fragile patterns, and add material to produce fabricable geome-
tries (Figure 4(e)).

The next Sections detail the single steps of the pipeline.

3.1. From slices to patterns

We start by generating a geometry that can fit into any isosceles
triangle (a slice). More formally, a slice is a regular triangulation of
a base triangle; every face has a label which is either 1 or 0. Label
1 indicates solid regions (i.e. regions filled with material), while
label 0 indicates void regions. Sometimes it will be useful to refer
to the subcomplex generated by the solid triangles, which we will
call solid slice.

Figure 5 illustrates the process of subdivision and slice genera-
tion. To list the set of possible triangles slices, we perform a combi-
natorial exploration of the space of possible slices through regular
recursive subdivision of a base triangle (1 to 4). We start from the
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Figure 5: From left to right: the solid triangle; two possible
solid/void configurations produced after a first subdivision step;
four possible solid/void configurations produced after a second
subdivision step; the polygonal patterns they generate.

solid triangle, which represents the full slice (Figure 5, left), and
subdivide it into four subtriangles. We then consider all possible
configurations of solids/voids, adopting a subtractive approach and
removing triangle areas. We exclude the all-void configuration, as
we require that a solid triangle produces at least one solid subtri-
angle. Each slice can be visualized by coloring in black and white
the solid and void subtriangles respectively. For each configuration,
we further subdivide each triangle into four as above. Again, fol-
lowing a subtractive approach, a solid triangle will generate all but
one (15) configurations of solids/voids, while void triangles pro-
duce only the void configuration (Figure 5, middle).

The process can be recursively applied, thus producing a tree
of configurations. At the n-th step of recursion the base triangle is
subdivided in 4n subtriangles, with at least a solid one. This cor-
responds to 24n

− 1 possible slices. In this work we consider two
steps of recursion, corresponding to 216 − 1 possible slice geome-
tries. If we define an ordering of the faces of the triangulation, we
can encode the sequence of solids/voids in a bit-string that uniquely
defines the slice.

Replicating a slice by rotational symmetry generates a triangu-
lation of a regular hexagon with labeled faces (Figure 5, right). We
refer to this new labeled triangulation as a pattern. We encode the
geometry of each pattern by V,F,c, where V is the list of vertices, F
is the list of triangular faces and c is a binary vector of size |F| ex-
pressing whether the i-th element maps by rotational symmetry to a
solid (or void) triangle of the generating slice. In analogy to above,
we call solid pattern the subcomplex induced by the solid triangles
of a pattern. Each solid pattern is identified by a couple Ṽ , F̃ , where
F̃ is the subset of F determined by faces that are labeled by 1 in c.

3.2. Exchangeability, connectedness, tileability

Exchangeability By construction, all slices generate patterns that
can be embedded into any regular polygon, hence exchangeability

Figure 6: (Top) A connected solid slice that generates a discon-
nected solid pattern; (bottom) a disconnected solid slice that gen-
erates a connected solid pattern.

is guaranteed. Unfortunately, not all patterns are suitable to pro-
duce mechanical metamaterials. Indeed, triangle slices may pro-
duce solid patterns that consist of separate components; therefore,
we need to select only slices that generate connected solid patterns.
Furthermore, we need to ensure tileability, so that patterns that are
embedded into adjacent polygons properly connect to each other.
Tileability and connectedness together ensure that, if a target sur-
face is connected, it remains connected if tessellated using any sub-
set of patterns. The next paragraphs detail our filtering strategy to
select slices that produce connected and tileable patterns.

Connectedness We observe that disconnected slices may produce
connected patterns and vice versa, as shown in Figure 6. There-
fore, studying the connectedness of a single slice is not sufficient to
check that it produces a connected pattern, and we have to analyse
the whole pattern. We associate the pattern with a graph G that en-
codes adjacency between the faces of the generated solid pattern:
we associate a node with each face of the triangulation representing
a solid pattern (face node) and with each of its three vertices (vertex
nodes); two nodes are linked by an edge if and only if one corre-
sponds to a face and the other to one of its vertices.The graph thus
defined is a connected simplicial complex of dimension 1, such that
the link of a vertex-node is the discrete set of face-nodes associated
to the triangles that contain that vertex. It holds that a slice produces
a connected solid pattern if and only if the graph G is connected. In
practice, it is sufficient to build G on three triangles out of six (half
a pattern), up to identification of two diametrically-opposed edges.

Tileability Having defined a criterion to select slices that corre-
spond to connected solid patterns, we must deal with the problem
of assembling solid patterns to produce a connected structure. Pat-
terns must connect along the boundaries of the polygon. Therefore,
we need to restrict to solid patterns that touch the boundary of the
polygon. Obviously, this is not a sufficient condition: if two adja-
cent solid patterns are connected to disjoint points on the polygon
boundary, they still fail to connect to one another (Figure 7(a)).
Additionally, we have to prevent patterns from only partially con-
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Figure 7: Sample tiling of a single pattern in a hexagonal tessellation: (a) a solid pattern that fails to connect; (b) a solid pattern that fails
to properly connect; (c) a solid pattern that properly connects.

necting along the polygon boundary (Figure 7(b)), which would
complexify mechanical interaction of adjacent solid patterns.

To ensure proper connection, we impose the condition that the
intersection between a solid pattern and a polygon edge must be
symmetric with respect to the midpoint of the polygon edge. We say
that two patterns properly connect if they induce two solid patterns
such that the edges and vertices that lie on the common polygon
boundary coincide (Figure 7(c)). A family of patterns that properly
connect to each other is tileable and is suited for mechanical sim-
ulations. To avoid complex behaviors in mechanical interactions of
adjacent solid patterns, we restrict to patterns that connect exclu-
sively on the open edge of the polygon, thus excluding the case of
three (or more) solid patterns sharing a polygon vertex. In partic-
ular, we select solid patterns that connect to the boundary of the
polygon exactly by the midpoint of its edges. To perform this se-
lection, we simply check that all faces of the slice’s boundary edge
are void except the middle triangle (e.g., Figure 4(c)).

The solid patterns are then modified to produce a metamaterial
that is fabricable, with a filleting procedure described in the next
Section.

3.3. Filleting

Thus far we have defined conditions for slices to produce solid pat-
terns which are tileable, exchangeable, and connected. However, to
generate fabricable solid patterns with a proper structure and suited
to perform mechanical simulations, we need some post-processing.
Indeed, slices with non manifold vertices produce solid patterns
which, when manufactured, would result in either a disconnected
object or a very fragile one. Similarly, the connections between pat-
terns should be robust enough. Finally, the presence of sharp angles
can lead to inaccuracies in computation during mechanical simula-
tion of pattern behavior, and also affect the aesthetics of patterns.
Figure 8(a) shows problematic vertices in a solid pattern: non-
manifold vertices (green dots), sharp angles (blue dots), and inter-
face vertices that connect two patterns (red dots). To address these
issues, we locally refine the shape of the solid pattern around prob-
lematic vertices, by adding or removing solid material, according
to the configuration of the star of vertices. In other words, we edit
patterns so that they are represented by a 2-dimensional piecewise-

linear (PL) manifold mesh with boundary, where the boundary PL-
approximates smooth curves (Figure 8(c)).

The first step is to identify problematic vertices. This can be
done by analyzing the link of each vertex in a solid pattern. Non-
manifold vertices are identified as vertices whose link is discon-
nected. Sharp angles are identified as vertices whose link is con-
nected and made of a number of edges different than three or six.
Interface vertices are identified as vertices that lie on the polygon
edge. Figure 9(a,c,e,g,i,k,m) shows the set of possible configura-
tions of solid/void triangles in the star of a non-manifold vertex, up
to rotations; Figure 10(a,c,e,g) shows the set of possible configu-
rations of solid/void triangles in the star of a vertex corresponding
to a sharp angle, up to rotations. Lastly, Figure 11(a) shows the
configuration for interface vertices, up to rotations.

The idea is to locally refine the mesh representing the pattern
around a problematic vertex, by adding vertices in its open star. The
vertices approximate quadratic rational Bézier curves, whose con-
trol polygons are pairs of edges incident to the problematic vertex,
and shared by a solid and void face. The pairs of edges defining the
control points are chosen so as to preserve the connectedness of the
pattern. The weights for the control points are assigned by follow-
ing different strategies, depending on whether the vertex lies in the
interior of the polygon or on one of its edges. Therefore, we create
a look-up table, with all problematic vertex configurations and the
corresponding filleting strategy. If the vertex is non-manifold or it
represents a sharp angle, we assign the same weight to all the con-
trol points, thus producing a quadratic Bézier curve. The resulting
curves are shown in Figure 9(b,d,f,h,j,l,n) and Figure 10(b,d,f,h).
If instead the vertex lies on a polygon edge, the curves are defined
considering that, once the patterns are connected, the vertex pro-
duces a non-manifold configuration already considered in the pre-
vious cases (Figure 11). In this case, to produce a stiff connection
among patterns, we assign different weights to the control points. In
this paper, we consider (1,0.2,1) as the weight vector for control
points, where 0.2 is assigned to the interface vertex and 1 is as-
signed to its adjacent control points. The resulting curve is shown
in Figure 11(b). This choice of weights ensures that the patterns can
be simulated and properly fabricated, without their aesthetics being
altered.
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(a) (b) (c)

Figure 8: (a) A pattern as a simplicial 2-complex with colored faces. The sub-complex generated by black faces is the solid pattern, which
has non-manifold vertices (green dots), vertices identifying sharp angles (blue dots) and interface vertices connecting different patterns (red
dots); (b) Mesh refinement, before the filletimg procedure around problematic vertices; (c) filleted pattern, with boundaries that approximate
smooth curves.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n)

Figure 9: All possible configurations of solid/void triangles in the
star of non-manifold vertices (a,c,e,g,i,k,m) and the corresponding
filleting strategies (b,d,f,h,j,l,n).

One issue to solve is that different orderings in which to perform
the filleting of vertices could produce different results. Indeed, the
filleting would affect the star of the vertices. To this end, we per-
form a mesh subdivision step to guarantee that local modifications
around each vertex are independent of the ordering in which they
are applied. Formally, let L be the set of indices of problematic ver-
tices in the mesh M= (V,F) representing the pattern. We perform
a refinement step by further subdividing the triangles into four sub-
triangles (Figure 8 (a)). This produces a new mesh M̂= (V̂ , F̂) and

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10: All possible configurations of solid/void triangles in the
star of vertices at sharp angles (a,c,e,g) and the corresponding fil-
leting strategies (b,d,f,h).

(a) (b)

Figure 11: Filleting interface vertices that lie on the polygon edge.

a corresponding set L̂ of updated indices of vertices to process. In
the refined mesh M̂, the vertices in L̂ will necessarily belong to
different faces; in particular, their open stars will be pairwise dis-
joint. Therefore, the local modification of the open star of vertices
in L̂ yields results which are independent of the ordering of vertex
processing.

To locate the set of vertices B approximating the boundary
curves, we employ the generalized De Casteljau algorithm for ratio-
nal Bézier curves [ŠJ15]. We update the set of vertices V̂ by adding
the vertices in B; we update the set of mesh faces F̂ accordingly. It
is important to note that, thanks to the subdivision step yielding to
M̂, the rational Bézier curves are locally defined so that geometric
continuity of the tangent vector is globally ensured (Figure 8(c)).
Finally, if M̃ is the mesh representing the solid pattern induced by
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M̂, we isotropically remesh M̃, before simulating its mechanical
behaviour.

3.4. Implementation details

We implemented our pipeline in Python, using the libraries IGL
[JP∗18] and meshplot [Seb] to manipulate and visualize 3D
meshes, and numpy [HMvdW∗20] to implement the algorithm for
rational Bézier curves. We used the software [HDD∗93] to remesh
patterns before simulations, and the software Abaqus [Smi09] to
perform the simulations described in the next section.

The amount of patterns that constitute the library depends on the
number of subdivision steps performed in the combinatorial explo-
ration phase. In this paper, we considered two subdivision steps:
the combinatorial exploration phase produced 65535 geometries;
after the filtering procedure, 430 exchangeable, connected, tileable
patterns were left. Larger libraries can be obtained by performing
more subdivision steps.

4. Simulating and navigating the design space

We consider three different loading scenarios (Cantilever, Cylin-
der and Dome) to characterize the mechanical response of patterns,
and analyse the simulation results in detail for two different pat-
terns (Section 4.1). Our results show that patterns exhibit diverse
mechanical responses which differ from the behaviour of solid,
non-patterned structures, thus expanding the range of behavior of
homogeneous structures. To support the user in the navigation of
the design space, we implemented a browsing interface that allows
the exploration of the library of patterns in terms of mechanical
properties and aesthetics (Section 4.2).

4.1. Structural simulations

We tested the entire dataset of patterns against three standard sce-
narios that cover a sufficient range of deformations. These sce-
narios mobilise the main ways of loading 2D plates in the out-
of-plane direction, which induce 3D bending. While characteriz-
ing a mechanical metamaterial for in-plane deformation or load-
ing is a widespread topic, exploring its bending behavior in 3D is
a novel subject. We used the commercial Finite Element software
Abaqus [Smi09] to deliver these simulations. Before solving the
models, we remeshed the examples with an isotropic triangulation
to have a good approximation of the continuum behavior. We adopt
a material used for 3D printing, PLA with a density of 1.24 g/cm3

and stiffness of E = 1 GPa. We used patterns installed in a regu-
lar hexagon of 3.6 cm edge, and a constant thickness of 0.2 cm.
All the loading and constraints on degrees-of-freedom are applied
on the pattern interface nodes only. We use shell finite elements to
solve geometrically nonlinear analyses, aiming at accurately cap-
turing their large deformation capacity. We adopted constant-load
simulations, so as a result we achieve different displacements and
energies because the patterns have variable stiffness. In theory,
stiffer patterns result in lower strain energy, while less stiff patterns
can achieve larger displacements, so they accumulate more energy.
However, the geometry of the structural material play a relevant
role and there are several local structural features that a pattern may
exhibit.

We showcase two patterns having different geometric features
and void/solid distribution to describe the three scenarios and to
prove the high variability of their structural response. The first pat-
tern has rotational symmetry and has small area located peripher-
ally. The second pattern has XY symmetry and has dense, centered
area.

In our first scenario the pattern is cantilevering from one inter-
face extreme and is submitted to an out-of-plane force of Fz = 1.5 N
on the opposite extremity. The fixed extreme has fully fixed nodes.
We aim at simulating the elastica shape of the patterns. The re-
sults in Figure 12(a) show the deformed shape of the patterns in the
Cantilever scenario with a superimposed color map of the strain en-
ergy per finite element. The patterns initially lay on the XY plane.
As expected, even for this simple scenario the structures show a
diverse and complex behavior. The first pattern (Figure 12(a,top))
has a non-symmetric deformation field and uneven distribution of
stress, as demonstrated by the non-symmetric colors in the map.
For a same load, it attains higher deformation than the second (Fig-
ure 12(a,bottom)). The load path from the application point to the
support is long in the first case, so the stress flows along the entire
pattern. Besides its larger area, the second pattern is also more effi-
cient providing a more direct load path. Moreover, its stress and de-
formation is XY symmetric. A solid hexagon would behave similar
to the bottom pattern, but with a stiffer response. Instead, it would
be impossible to compare the top pattern with a solid hexagon, i.e.
with the idea to perform homogenization.

In our second scenario (Figure 12(b)) the patterns are deformed
to assume a cylindrical shape. In this setup we use pin joints on
the one extreme to fix X, Y, Z translations and roller joints on the
other one to fix Z translations only. Then, we applied a bending
moment Mx =−50 Nmm on both the extremes to shrink the Y dis-
tance between them (the rollers slide towards the pins) while inflat-
ing the shape. The results show a different stiffness of the patterns
as demonstrated by the displacement field and the strain energies.
While the largest utilization of the structural material is at the sup-
ports as expected, the less dense pattern (Figure 12(b,top)) is char-
acterized also by localized high-energy areas when the width of pat-
terns is reduced. Instead, when the width is larger, parts of the pat-
terns are unused and dangling, so they remain almost flat. The color
map has rotational symmetry. The pattern in Figure 12(b,bottom)
has a very low XY-symmetric deformation and can be compared
with a solid hexagon tile.

Our third scenario simulates double curvature (Figure 12(c).
Here, one extreme has pin joint (X, Y, Z fixed translations), while
all the others have roller supports, so they are constrained to be on
the XY plane but they can slide on it. We applied bending moments
M = 100 Nmm, whose axes are aligned with edge of each extreme,
to have a blow-up effect that makes the shape similar to a Dome.
In this scenario, bending forces applied with different axes induce
a complex state of internal forces acting in the pattern. Therefore,
the strain energy is affected by the straight bending along the sup-
ports and by in-plane bending elsewhere. In particular, the pattern
in Figure 12(c,top) suffers from stress concentrations in the areas
of small width due to in-plane bending. The patterns has a large
deformation and attains high strain energy consequently. Instead,
the pattern in Figure 12(c,bottom), is much more efficient because
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(a) (b) (c)

Figure 12: Mechanical analysis results: ‘Cantilever’ (a), ‘Cylinder’ (b) and ‘Dome’ (c) simulation cases shown for two patterns (top and
bottom). The strain energy is color-mapped on the deformed pattern.

it has larger and centered structural material to face the equilibrium
of all the radial forces coming from the extremes. Moreover, its
‘star points’ are affected by straight bending only.

4.2. Exploring the design space

From the user perspective, finding patterns that exhibit a certain
aesthetics and simultaneously a target mechanical behavior is not
easy, being the relation between geometry and mechanical perfor-
mance often not intuitive. Therefore, we designed a simple brows-
ing interface that enables the exploration of the design space, in
terms of both aesthetics and behavior, using scatterplots. Dots in
the scatterplots are patterns, while x and y coordinates indicate ge-
ometric and mechanical parameters (area, perimeter, and their nor-
malized ratio, polar moment, total strain energy).

The geometric complexity of the patterns makes the mechanical
characterization a hard task, since each pattern can be strongly af-
fected by local phenomena, i.e. excessive deformation, stress con-
centration or even failure. Nevertheless, in the early design phase,
it is convenient to describe a pattern mechanical behavior by means
of a high-level single parameter, so that the user can select a subset
of patterns to employ in a tiled configuration. Internal forces among
patterns spread out on the basis of their stiffness, and to have equi-
librium all patterns shall have a similar energy level. Therefore, we
show examples of navigating the design space of our patterns while
using the total strain energy of a pattern in each scenario.

Figures 13 and 14 report examples of plots that can be explored
in our design interface. To describe the geometric features of the
patterns we use perimeter (mm) and area (mm2). As a consequence,
clusters in the scatter plot perimeter-area highlight patters that are
uniform from an aesthetic perspective. Identifying cluster is quite
simple due to the discrete nature of the generation process of re-
moving one triangle at a time. We use the polar moment of area as

an additional parameter to plot the values. The polar moment has
a geometric meaning and characterizes the distribution of the area
with respect to the center of the hexagon. For the same area, pat-
terns with peripheral distribution have higher polar moment. Ad-
ditionally, polar moment has a mechanical meaning, in that is de-
scribes the attitude of a body to resist torsion. Moreover, polar mo-
ment is the sum of the two moments of area, namely the description
of the resistance to bending. In general, the higher the polar mo-
ment, the stiffer the pattern. Finally, this parameter is quite simple
to compute and can be obtained from geometry only.

In Figure 13 we select patterns from a geometric cluster. In the
plots (b), (c), (d) these patterns reveal a very different mechani-
cal behavior as shown by the colored dots in the scatter plot. The
importance of the strain energy can be observed by looking at the
patterns highlighted in blue and magenta: even if they have simi-
lar area, perimeter and polar moment, the second one is more ef-
ficient and do not suffer of underused parts (dangling components
discussed in the previous Section).

In Figure 14 we select a different cluster of patterns having
higher area and lower perimeter. Therefore they are compact and
more stiff on average than the patterns in the previous cluster. The
same discussion on the dispersion of energy data also holds in the
present case. However, it is important to observe that the mechani-
cal performance is also scenario-dependent. Indeed, the first pattern
of the present cluster has total strain energy similar to the last pat-
tern in the previous cluster in the case of Cantilever and Dome,
while this value is different in the Cylinder scenario.

The features described above open up various possibilities to
combine patterns based on the visual effect a designer may want
to achieve. But they also remark the centrality of the intended use
of a tessellated plane since only certain combinations of patterns
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Figure 13: Scatter plots representing the family of patterns and the relation between geometric and mechanical characteristics. Each dot
represents a pattern. (a) A first cluster of patterns having similar geometric features, highlighted in color; scatter plot according to perimeter
and area. (b,c,d) Scatter plots for the three different simulation scenarios, according to polar moment and total strain energy.
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Figure 14: Scatter plots representing the family of patterns and the relation between geometric and mechanical characteristics. Each dot
represents a pattern. (a) A second cluster of patterns having similar geometric features, highlighted in color; scatter plot according to
perimeter and area. (b,c,d) Scatter plots for the three different simulation scenarios, according to polar moment and total strain energy.

are effective for a given curvature or target shape, as shown by the
fabricated examples in the next Section.

5. Fabrication results

Our patterns can be assembled to create diverse surface tessella-
tions. In a direct design fashion, the patterns can be selected from
the design interface based on their aesthetics and stiffness. The pat-
tern stiffness is related to its strain energy: since our simulations
use a constant force for all patterns in a scenario, patterns with a
smaller resulting strain energy are stiffer than patterns with a higher
one. The latter have larger deformation.

Recently built examples [MPI∗18, LMC∗22] demonstrate that,
when joining patterns with uniform stiffness, both the tributary in-
ternal energy and deformation are similar; instead, when joining
patterns with different stiffness, only the tributary internal energy
is similar. To showcase this effect, we cherry-picked 5 patterns from
the scatter plot of the cylinder scenario having well distanced strain
energies. In our specimen in Figure 15 (left) we tile groups of six
regular hexagons to form a patterned strip and we provide pin re-
straints at the extreme to observe a cylinder-like deformation. As
expected, the internal strain energy is constant for equilibrium rea-
sons, and consequently stiffer patterns (on the right) are almost un-
deformed. The bending attitude grows moving to the left as the

groups of patterns are ordered from the stiffer to the softer. The
result is a surface which bends asymmetrically. The 3D printed
flat PLA patterns are regular hexagons of 3.6 cm edge and 0.2 cm
thickness, i.e. having same properties adopted for the simulations.
All patterns interfaces are connected through a 3D printed sleeve
providing full restraint, so that the resulting deformation of the as-
sembled specimen is uniquely provided by the patterns’ bending
capacity.

Another fabricated specimen is shown in Figure 15 (right). We
adopted a truncated icosahedron geometry made of 20 regular
hexagons and 12 regular pentagons to form a spherical surface. The
purpose is demonstrating the validity of our approach in the genera-
tion of patterns for different polygons and their tileability property.
In general, if the polygon is as regular as possible, the structural
simulations are valid in relative terms even if the number of poly-
gon edges changes. Therefore, the use of different polygons as sin-
gularities has a negligible effect on the overall shape. In the present
case, we selected two patterns from the dome scenario with simi-
lar strain energy producing indeed, when jointed, a spherical shape
without distortions. It is worth mentioning that the adopted geom-
etry and the number of connections favorably introduce a strong
geometric constrain. The patterns have a negligible in-plane strain
and all the deformation is necessarily achieved by bending.

The seamless transition between the different patterns in the
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Figure 15: Two fabricated examples to demonstrate the applicability of our method. (Left) a “graded” strip composed of four increasingly
stiffer patterns (from left to right): when compressed horizontally the strip bends asymmetrically, accordingly with the employed pattern
distribution. (Right) a spherical assembly obtained by tessellating a truncated icosahedron using two patterns.

sphere is a major strength, as it demonstrates that the present work
can be extended to a complete pipeline for inverse design, in which
the user provides a generic shape, and the most appropriate patterns
are automatically designed/selected so that, once bent and assem-
bled, they match the input shape.

6. Conclusions

This work focused on the creation of a family of flat, tileable me-
chanical metamaterials. Assuming a target surface approximated as
a polygon mesh with (almost) regular faces, we defined a regular
recursive subdivision of polygons to produce exchangeable patterns
to tile the surface. We defined a strategy to filter the disconnected
ones, and conditions to ensure tileability. To produce geometries
that are both fabricable and suited for simulations, we introduced a
proper filleting strategy around non-manifold vertices, along with
vertices that produce sharp angles, which could cause singularities
in computation during mechanical simulations, and vertices that lie
on the polygon boundary. We performed mechanical simulations of
each patterns under three loading scenarios, and produce a brows-
ing interface that supports the exploration of the library in terms
of aesthetics and mechanical behavior. Overall a great variability
in aesthetics and mechanical behaviour is produced. Finally, we
demonstrated that our patterns can be fabricated and assembled to
create surface tessellations with different out-of-plane bending be-
havior. Our results demonstrated the feasibility of our method as
the first step in the direct design pipeline.

Besides addressing the direct design pipeline, future work could
also include the inverse design problem, where an appropriate sub-
set of patterns is designed for a given target shape. A major issue
is that metamaterial structures present a complex geometry at the
meso-scale, considerably increasing simulation costs. This is the
reason that pushed other researchers to work on simplified mod-
els, e.g. homogenization, thus severely limiting the design space.
A possible research direction for finding equivalent metamaterial
properties could be based on artificial intelligence techniques, with

learned responses replacing computationally-intensive, physically-
based simulations of the generic patterned surfaces.

Finally, a limitation of our approach is that it relies on an a-
posteriori filtering procedure of the generated patterns. For the fu-
ture, we plan to study space-pruning strategies based on topologi-
cal constraints which allow filtering at each step of recursion. This
would orient the combinatorial exploration of the space of patterns
towards a family of geometries that meet the constraints from the
earlier steps.
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