
STAG: Smart Tools and Applications in Graphics (2023)
K. Lupinetti, F. Banterle, N. Capece, and U. Erra (Editors)

User-Assisted Sphere-Mesh Construction

Davide Paolillo, Andrea Taroni, and Marco Tarini

University of Milan (Italy)

Abstract
In this study, we investigate the semi-automated generation of sphere-meshes as high-quality approximations for given three-
dimensional shapes, originally represented as common triangular meshes. A sphere-mesh is a class of geometric proxy defined
as the volume swept by spheres with linearly interpolated centers and radii, that potentially strikes a good balance between
conciseness of representation, simplicity of spatial queries, and expressive power, and is amenable to animations. Despite these
favorable characteristics, its broader adoption in applications such as video games, physical simulation, or robotics is hindered
by the difficulty of its construction, which remains an open problem. Existing fully automatic algorithms, based on interactive
coarsening of the input mesh, fail to consistently produce satisfactory results, especially when very coarse sphere-meshes are
sought. We improve on this situation with a 3D interface specifically designed to permit users to easily and intuitively modify
the automatically generated models. The two phases (existing automatic algorithm and novel interactive tool), used in cascade,
constitute a viable semi-automatic way to produce sphere-meshes. We test our method on several inputs tri-meshes, assess their
quality, and finally experiment with a few downstream applications to exemplify the usability of our results.

1. Introduction

In general terms, a geometric proxy is an approximation of a given
solid 3D shape that can be employed in contexts such as physi-
cal simulations (especially collision detection and response), video
games, robotics, vision, and others. Several types of geometric
proxies have been proposed, striving to strike a good balance be-
tween expressive power, allowing for more faithful representations
of a wider class of 3D shapes, and simplicity, allowing for coarse
and compact representations. Simplicity implies that operations
such as intersection testing with other proxies (of the same or dif-
ferent kinds), enforcing non-compenetration, or intersection testing
with lines (e.g. for raycasting) are efficient.

A particularly appealing type of proxy is the sphere-mesh
[TGB13]. A sphere-mesh is described as a collection of spheres
S, and a collection T of segments and triangles connecting their
centers. This defines a volume as the union of all the spheres hav-
ing the center anywhere in the elements of T , and having the radius
linearly interpolated between the radii of S (see Figure 1).

This schema exhibits advantageous qualities in both its expres-
sive capacity and ease of representation, being potentially able to
represent a variety of smooth shapes (convex or concave alike) with
a small number of primitives. In addition, sphere-meshes can be
easily animated, by changing sphere centers (and radii) over time.
Sphere-meshes have been successfully employed, for example, in
the context of image-based hand tracking [AMA16] and animation
[JÉTE16]. On a sphere-mesh, overlap queries, and other similar
tasks are made simpler by the observation that only one interpo-

Figure 1: A toy-example of a sphere-mesh, which is composed of
|S|= 5 spheres, and |T |= 3 connecting elements (one triangle and
two segments). Left: the connectivity structure. Right: the repre-
sented solid shape.

lated sphere is affected at a time, reducing the problem to the iden-
tification of that sphere [TGB13].

Despite these favorable characteristics, sphere-meshes are not
currently widely used, for example, in video games. We conjec-
ture that this is because of the difficulties of their construction, with
existing automatic solutions failing to produce sufficiently good in-
stances, especially when low resolutions are sought (the resolution
of a sphere-mesh being defined as the number of its elements).

Overview and Contributions. In this work, we revisit the only
currently existing heuristic for fully automatic sphere-mesh con-
struction [TGB13], which we recap for completeness in (Section

© 2023 The Author(s)
Eurographics Proceedings © 2023 The Eurographics Association.
This is an open access article under the terms of the Creative Commons Attribution Li-
cense, which permits use, distribution and reproduction in any medium, provided the orig-
inal work is properly cited.

DOI: 10.2312/stag.20231303 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0003-2301-3173
https://doi.org/10.2312/stag.20231303

D. Paolillo, A. Taroni, M. Tarini / User-Assisted Sphere-Mesh Construction

3), and re-implement a close variation. We identify a set of intrin-
sic limitations of this heuristic that can result in the construction of
sub-optimal, and typically too complex, sphere-meshes, hindering
the potentiality of sphere-meshes as a representation.

Then, to address this issue, we propose an intuitive interactive
tool that allows users to manually adjust a pre-existing sphere-mesh
(Section 4), intended to be used on automatically generated results.
This tool embeds a GUI to allow users to trigger additional coars-
ening operations (which include a fitting phase, just as in the auto-
matic approach), tweak individual positions and radii, and so on. It
also uses a real-time preview renderer able to deal with frequently
changing sphere-meshes (Section 4.1)

This tool has two distinct motivations: first, there is a practical
value in the ability to produce better and coarser sphere-meshes,
ready for downstream applications (we exemplify and test a few
such applications within the conclusions, in Section 7). Secondly,
this tool is intended to help determine the potentiality of sphere-
meshes as a shape representation, independently of any present or
future automatic construction method.

We evaluate the semi-automated system by converting multiple
real-world geometric structures into high-quality sphere-meshes
(Section 6). To assess the results, we use and report the quality of
a sphere-mesh approximation, which was computed as illustrated
in Section 5. Finally, we field-test our result in a few demonstrative
downstream applications (Section 7).

2. State of The Art

We provide a brief overview of the current state of geometric prox-
ies, with a focus on the most relevant approaches.

Geometric Proxies and their construction. An analysis of liter-
ature concerning strictures similar to sphere-meshes as geometric
proxies is beyond the scope of this paper, and we refer to the sur-
vey contained in [TGB13]. Here, we only refer to the most relevant
parts.

Their closest relative of sphere-meshes is the Medial Axis Trans-
form (MAT), a deeply studied subject [H67; NSR01; TW04; FA05;
AMD07; BJM10; TGB13]. Unlike MAT, which aims to capture the
symmetric skeleton of an object using its interior points, a sphere-
mesh approach focuses on approximating the object’s volume or
boundary using a collection of spheres. While MAT serves as a
tool for understanding the geometric and topological properties of
a shape, sphere-meshes are geared toward various tasks, like colli-
sion detection, and animations.

Polygonal mesh simplification. A popular and simple kind of ge-
ometric proxy is, clearly, a coarse polygonal mesh. The construc-
tion of such coarse polygonal mesh falls in the domain of surface
simplification (see [Lue01] for a survey), which is relevant to our
work because the construction algorithm we employ stems from
a modification of a polygonal simplification tool. Even the most
aggressively coarsened polygonal meshes, however, have a prim-
itive count that is much higher than what would be desirable for
a proxy mesh (although advancements are being made in this area
[CPW*23]). As we will discuss, sphere-mesh construction partially

inherits this limitation, motivating us to resort to an interactive tool
to improve sphere-meshes.

Manual editing of geometric proxies. Many suites for video
games, such as Unity, offer tools to edit or tweak collision prox-
ies of certain kinds (such as a collection of spheres or capsules);
they, however, fail to include sphere-meshes. A much wider class of
approaches and industrial products of approach, intended for pro-
fessional modelers, targets authoring and detailed editing of com-
plex 3D shapes represented as traditional boundary representations,
which are not easily adaptable to sphere-mesh editing. Sketch-
based approaches (see the survey in [ST14]) are more relevant, in
that a higher-level interaction is leveraged.

In particular, a sphere-mesh can be considered a special case of
an implicit surface; recently, interactive tools for manual editing
implicit surfaces have been proposed [ATW*17], but focus primar-
ily on customizing the blend of primitives which, in the case of
sphere-meshes, is defined as the simple union. Another similarity
is with [BMUS15], which offers an interactive tool to model curve
skeletons (a data structure that can be seen to resemble sphere-
meshes, but with curved segments and no triangle).

In short, no tools exist, to our knowledge, that allows direct in-
teractive manipulation of a sphere-mesh.

3. Automatic Construction Phase

Given as input a triangle mesh (V,F) (with V is a set of vertices,
F of triangular faces, each defined as a triplet of indices to V), we
want to automatically convert it into a sphere-mesh (S,T). To do so
we leverage the technique presented in [TGB13], which we briefly
summarize here for completeness only. For further detail, the reader
is referred to the original article.

In our work, the triangle mesh is assumed to be very coarse, for
triangular mesh standards (typically, in order of hundreds or thou-
sands of elements), as the approximation introduced by the proxy
representation can be expected to be substantially greater than the
one introduced by the loss of polygonal resolution.

3.1. Existing algorithm

The basic idea of [TGB13] is to consider the initial mesh as a start-
ing sphere-mesh, with one sphere in S for each vertex in V , and one
triangular element in T for each triangle in F . Then, in an itera-
tive local coarsening approach, similar to what is done in a well-
studied class of polygonal-mesh simplification, pairs of connected
spheres are collapsed into one, until a sufficiently coarse structure
is reached.

The main difference with the traditional case of polygonal
meshes is that collapses are allowed, and expected, to break the 2-
manifoldness of the structure, potentially producing segments and
fusing surfaces facing opposite directions into a single sphere-mesh
element (for example, the side surface of a cylinder can be col-
lapsed into a single segment, and the surface a pizza-box shaped
mesh can be collapsed into a single pair of triangles).

This is done by disregarding the traditional conditions guarantee-
ing the preservation of the manifoldness of the meshing [DEGN99],

© 2023 The Author(s)
Eurographics Proceedings © 2023 The Eurographics Association.

146

D. Paolillo, A. Taroni, M. Tarini / User-Assisted Sphere-Mesh Construction

and even by allowing the collapses of pairs of spheres that are not
initially connected by a segment or a triangle in T .

After [TGB13], only spheres with centers at a distance closer
than a maximal distance value d are considered for collapse. The
value d is defined as a parameter ε times the axis-aligned bounding-
box diagonal of the input mesh (see Table 1 for the values used for
ε).

The effect in T of the collapse of spheres si and s j in S to sim-
ply remove (if it exists) the segment in T that connected these two
spheres, and reducing any triangle in T that connected these two
spheres into a segment; followed by the removal of this segment
if it is already a side of any triangle in T , and the removal of any
duplicate elements in T .

Just like in the case of triangular meshes, the order of the col-
lapses is crucial, and so is the determination of the sphere (both
center and radius) that results from the fusion of two spheres. Both
matters are addressed by resorting to quadrics, after the successful
idea by [MP97] for triangular mesh simplification. To summarize:
each element si in S is associated with an error quadric qi that com-
putes, for each possible choice of center and radius, the sum of
the squared distances from all the original planes that should be
represented in the sphere-mesh by si. When two spheres are col-
lapsed, their quadrics are summed to form the quadric qi of the
merged sphere si. That sphere is assigned to a center and a radius
that are the minimizers of qi. Potential collapses are associated the
the quadric they would produce if executed, and prioritized in the
inverse order of the minimal values of these quadrics. Concerning
the familiar polygonal case of [MP97], the difference is that the
quadric is a degree-2 function not only of the position but also of
the radius of the sphere.

As an implementation note, in our code, the identification of
the best potential operation is realized with a priority queue that
contains all potential operations. To make this efficient, we use a
Fibonacci-Queue [BenAR], which is based on the Fibonacci Heap
[HELC09].

3.2. Analysis of the limitations

Despite its relative success, an analysis of the heuristic sketched
above (and described more in-depth in [TGB13]) reveals that it suf-
fers from a few intrinsic shortcomings.

First, it considers the original oriented points of the mesh to be
approximated by only the spheres, disregarding the fact that much
of the surface of the sphere-mesh is not that of any sphere in S, but
rather of their interpolation (as defined by the connectivity T). This
is disregarded by the construction heuristics, which just strives to
make all of the initial surface approximated by the spheres.

Another problem is that the connectivity T is not explicitly opti-
mized, and is simply the result of the initial mesh connectivity after
the collapses. This means that only a small subset of the potential
connectivities are explored. There is no guarantee that this space of
solutions contains the best solution or even a good one.

A final problem is that the algorithm is driven solely by the ef-
fort to keep each original vertex of the mesh on the surface of a

sphere. In reality, being on the surface of a sphere does not nec-
essarily imply being on the surface of the sphere-mesh: that is the
case only if no other sphere (including interpolated ones) engulfs
that point in its interior. To counter this problem, [TGB13] proposes
to identify, as a pre-process, a maximal radius for each part of the
surface, computed so that a locally tangent sphere with that radius
will not exceed the boundary of the mesh; during collapses, this
value limits the radii of any sphere originated by that vertex. This
ameliorates the problem, but, as they observe, it fails to provide any
guarantee. First, because the sphere potentially engulfing other sur-
face samples will not be centered at the location where this limit
is imposed. Second, because interpolated spheres (which can also
cause the problem) are, again, disregarded.

These problems are intrinsic to this approach (which, to the best
of our knowledge, is the only existing one for the automatic cre-
ation of sphere-meshes), and it is not clear how they can be ad-
dressed. This obstacle motivates the present proposal for a semi-
automatic approach. The observation is that, despite these limita-
tions, the automatic heuristic provides an excellent starting point
for manual sphere-mesh tweaking.

4. Manual Tweaking Tool

Our sphere-mesh tweaking tool displays a sphere-mesh on screen
(controlling the view with a trackball), and lets a user manipulate
directly its shape and connectivity with several kinds of operations.
Each operation is issued by first selecting one or multiple target
spheres in S (by pointing and clicking) and then activating it either
with the press of a button or with a mouse stroke.

The operations available to the user include (refer to Figure 2):

• translate the selected sphere or change its radius;
• collapse two selected spheres into one, thus the elimination

edges in T or the reducing triangles T into a segment;
• duplicate the selected sphere into a new one, connected to the

old one by a new segment;
• create a new sphere connected with a new triangle to a pair of

selected spheres;
• delete a sphere and all the adjacent elements in T .

Collapse operations trigger the fusion of two spheres into one,
performed as in the automatic approach [TGB13]. In particular, the
operation includes the initialization of the sphere center and radius
computed by minimizing the associated quadric, and the removal
of elements in T , as described in Section 3.1.

Translation operations are performed on a plane parallel to the
screen and are controlled with a fine-grained mouse stroke (option-
ally, it is possible to translate the sphere orthogonally to that plane
instead, using a key combination). Duplication operations trigger a
translation of the newly created sphere.

Duplicate and creation operations trigger automatically a trans-
late operation of the created sphere, which is initialized (center,
radius, and associated quadric) as the selected sphere or as the in-
terpolation of the two selected spheres.

© 2023 The Author(s)
Eurographics Proceedings © 2023 The Eurographics Association.

147

D. Paolillo, A. Taroni, M. Tarini / User-Assisted Sphere-Mesh Construction

Figure 2: An illustration of the main operations to edit a sphere-mesh. Above, from left: translation of one sphere (after its selection), scaling
of a sphere (after its selection, with a horizontal drag), and generation of a new segment starting from an existing selected one. Below, from
left: selection and collapse of two spheres of the sphere-mesh (by the press of a button); generation of a new triangle starting from a pair of
selected spheres.

4.1. Real-Time sphere-mesh rendering

During the entire interaction (including during mouse strokes), the
sphere-mesh is displayed in conjunction with the semitransparent
target mesh M, and their accurate intersection serves as a way to
visualize their similarity (Figure 3, right).

A natural way to render a sphere-mesh would be to polygonize
and rasterize its surface, which is known to always consist of the
union of subsets of spheres, planes, and cone surfaces (including
cylinders as special cases). We sidestep the need to explicitly iden-
tify and polygonize this surface with a more direct approach, where
we simply render a collection of overlapping balls, including all S
and a dense sampling of all the interpolated spheres, following di-
rectly the definition of the sphere-mesh. We rely on depth tests to
produce the boundary of the union of the rendered balls.

While brute-force, this simple approach is made efficient by ren-
dering each sphere as an impostor, following previous sphere-based
rendering approaches [TCM06]. In short, a single screen-oriented
quad is displayed for each sphere; fragments outside the inscribed
2D circle are discarded, and other fragments are lifted to have a
pixel depth determined by their screen position, as the height on
the front-facing half-sphere. This is fast and produces the correct
intersections, via the depth-test, provided that an orthogonal pro-
jection is employed. Lighting is based on the normals computed, in
screen space, for the half-sphere.

All figures in this paper are obtained in this way unless otherwise
specified.

This approach has the advantage of requiring no preprocessing,
making it a good fit for our scenario where the rendered sphere-
mesh is modified on the fly. Also, because it produces a consistent
depth buffer, it can be used to display the correct intersection with
any polygonized surfaces (see Figure 3, right).

Structure visualization Optionally, the structure of the sphere-
mesh can be displayed (rather than its boundary), by rendering only
the spheres in S, and their connections in T as thick lines and trian-

Figure 3: A sphere-mesh displayed as either its connectivity or its
boundary, rendered together with the intersecting, semitransparent
input mesh (light gray).

© 2023 The Author(s)
Eurographics Proceedings © 2023 The Eurographics Association.

148

D. Paolillo, A. Taroni, M. Tarini / User-Assisted Sphere-Mesh Construction

Figure 4: Smooth transition between the visualization of the
sphere-mesh boundary and the visualization of its structure. See
also Video 01 in the additional materials.

gles. This mode can be useful for selecting spheres and manipulat-
ing the structure (see Figures 1, 3, and 4, leftmost images).

We do so using the same algorithm, but simply replacing the radii
of all the interpolated spheres (but not the ones in S) to a small con-
stant c. This results in displaying segments and triangles in T as
shaded small tubes or thin triangular membranes, easing their spa-
tial interpretation (compared to simply using rasterized lines and
flat triangles).

Because this is the only difference between the two rendering
modes, we offer a continuous way to switch between the two modes
by interpolating the radii of intermediate spheres from their original
values to the c (see Figure 4 and attached Video 01).

5. Assessment of sphere-mesh accuracy

To quantify the geometric similarity between a given sphere-mesh
A= (S,T) and the target mesh M = (V,F), we use the mutual Haus-
doroff Distance between the boundary δA of A and M.

As a practical approach, we first approximate δA with a suf-
ficiently dense point-cloud δA′, by sampling the boundary of A,
and then measure the reciprocal Hausdorff Distance between δA′

and M using existing off-the-shelf tools to compare point-clouds
with polygonal-meshes. In our experiment, we used the MeshLab
[PMM*08].

Observe that δA is not trivially defined, as A is the union of sev-
eral overlapping and implicitly defined primitives. We use the fol-
lowing algorithm.

Sampling δA′ We create the point-could δA′ with a simple heuris-
tic, where we populate an initially empty point-cloud, one point at
a time, by electing a random point p on any primitive (segment or
triangle) in T , identifying the interpolated sphere centered in p, se-
lecting a random point q on that sphere, and then projecting that
point out of all other primitives in the sphere-mesh (using the al-
gorithm in [AMA16]), until that point is either on or out of any
such primitive (thus reaching a position in δA). Figure 7 shows
examples of rendering of the obtained point-clouds.

6. Experimental results

We tested our method on a small collection of target meshes. All
experiments were performed on commodity hardware (8-Core Intel
Core i9, 2.3 GHz, 16 Gb DDR4 RAM, AMD Radeon Pro 5500, 8
GB VRAM).

The input meshes have been prepared by coarsening standard
tri-meshes from various sources with a standard polygonal simpli-
fication tool; we used the open-source implementation [PMM*08]
of [MP97].

First, we fed input meshes to the automatic phase (described in
Section 3), and tweaked the resulting sphere-meshes using our pro-
posed interactive tool; (described in Section 4);then, we analyzed
each produced sphere-mesh in terms of similarity with the input
mesh (as described in Section 5).

Renderings of the inputs and results (after either phase) are
shown in Figure 6; the corresponding data is reported in Table 1,
including resolutions, computation and interaction times, and dis-
tance measurements. We provide both the input and the output files
in the additional materials.

Discussion of results. The processing times of the automatic
phase are under two seconds on commodity hardware, which makes
this tool usable in most contexts (e.g. content creation during the
development of a video game).

The interactive tool is only prototypal, yet a few minutes were
sufficient in each instance to produce the intended results, suggest-
ing that a more engineered GUI would be adopted by generic users.

In each test, the automatically produced sphere-meshes proved to
be quite faithful in terms of geometric adherence to input meshes,
for example well within the thresholds of typical collision proxies.
The expectation that the number of primitives is excessive is con-
firmed by the comparison with the sphere-meshes obtained with the
subsequent manual editing. The manual phase reduces significantly
the primitive counts, without a significant effect on the geometric
precision (and occasionally an improvement).

Figure 5: Left: per point distance between the input mesh and the
final sphere-mesh, and vice versa (the numerical values maximized
over the surface are reported in the last two columns of Table 1).

© 2023 The Author(s)
Eurographics Proceedings © 2023 The Eurographics Association.

149

https://tarini.di.unimi.it/spheremesh/
https://tarini.di.unimi.it/spheremesh/

D. Paolillo, A. Taroni, M. Tarini / User-Assisted Sphere-Mesh Construction

Figure 6: Examples of sphere-meshes obtained from input tri-meshes (left) with our fully automatic method (middle), followed by manual
tweaking (right). The smaller images show the connectivity of the sphere-meshes. In the sphere-meshes renderings, the original mesh is
shown as an intersecting, lightly transparent surface. Refer to Table 1 for the associated resolutions and measures.

© 2023 The Author(s)
Eurographics Proceedings © 2023 The Eurographics Association.

150

D. Paolillo, A. Taroni, M. Tarini / User-Assisted Sphere-Mesh Construction

Table 1: Statistics on our results. Reported times are computation times for the automatic method and total interactive session times for the
tweaking method. For the tweaking method, we report the used parameter ε (see Section 3.1). “Distance” reports the Hausdoroff distances
expressed as percentages of the axis-aligned bounding-box diagonal.

Input tri-mesh (A) Construction Output sphere-mesh (B) Distance
name faces phase ε time segments triangles spheres A→B B→A

Foot 510
automatic 0.040 30 msec 130 126 64 0.87% 0.88%

tweaking - ∼ 3 min 17 17 14 0.85% 0.87%

Camel 4040
automatic 0.040 1988 msec 533 176 66 0.87% 1.11%

tweaking - ∼ 4 min 26 7 23 1.08% 1.41%

Bunny 260
automatic 0.095 28 msec 66 42 24 1.88% 1.24%

tweaking - ∼ 6 min 21 20 18 1.05% 1.80%

Hand 1600
automatic 0.035 296 msec 332 144 74 0.61% 1.20%

tweaking - ∼ 7 min 44 20 38 0.63% 1.27%

Figure 7: Two demonstrative physical simulations using the produced sphere-meshes proxies. Top: sphere-mesh as a static rigid object in a
cloth simulation. Bottom: sphere-mesh as a dynamic rigid object. See Videos 02 and 03 in the additional materials.

7. Conclusions

In conclusion, our semi-automatic methods are capable of con-
structing sphere-meshes that are, at the same, sufficiently coarse
and sufficiently accurate, to be conveniently employed in several
potential downstream applications.

Field testing of results. This substantiates these claims, we can-
not, unfortunately, experiment on existing software (such as game
engines, or physical simulators), because, to our knowledge, none
exists that natively supports this class of geometric proxy. We re-
iterate that we attribute the lack of support for sphere-meshes not
only to their recent introduction but also to the current difficulty

of construction, which we address in this paper. To test the output
sphere-meshes, we employ them in two examples of simple Real-
Time physical simulation scenarios, which we implement to this
end (see Figure 7 and attached Videos 02 and 03): in one, the pro-
duced sphere-mesh is used as a dynamic rigid body. On the other, it
is used as a static object in a simple cloth simulation. The demon-
strative simulations themselves are implemented as standard Posi-
tion Based Dynamics with Verlet integration, with positional con-
straints preventing intersections. For the rendering of the sphere-
meshes in the simulations, we reused the dense point-cloud sam-
pling the sphere-mesh surface (see Section 5), as it is more efficient
than our preview rendering when the sphere-mesh is constant.

© 2023 The Author(s)
Eurographics Proceedings © 2023 The Eurographics Association.

151

https://tarini.di.unimi.it/spheremesh/

D. Paolillo, A. Taroni, M. Tarini / User-Assisted Sphere-Mesh Construction

We think that, in addition to the potential direct practical usabil-
ity, our semi-automatic tool has value in establishing the potential
expressiveness of sphere-meshes as a representation for geometric
proxies, fostering future fully automatic construction algorithms.

Future work. We recognize that our work is far from conclusive.
Both the automatic parts and the manual editor can be subject
to substantial ameliorations, both algorithmic and engineering
(including the GUI). Proper user studies are necessary to assess
the usability of the interactive editor, with our current experiments
(with ourselves as users) serving only as a first indication of their
usability.

Additional materials and a reference implementation are avail-
able at the Project Page: https://tarini.di.unimi.it/spheremesh/.

References
[AMA16] ANASTASIA, TKACH, MARK, PAULY, and ANDREA,

TAGLIASACCHI. “Sphere-Meshes for Real-Time Hand Modeling
and Tracking”. ACM Trans. Graph. 35.6 (Dec. 2016). ISSN: 0730-
0301. DOI: 10 . 1145 / 2980179 . 2980226. URL: https :
//doi.org/10.1145/2980179.2980226 1, 5.

[AMD07] A., SUD, M., FOSKEY, and D., MANOCHA. “Homotopy-
preserving medial axis simplification”. International Journal of Com-
putational Geometry & Applications 17.05 (2007), 423–451 2.

[ATW*17] ANGLES, BAPTISTE, TARINI, MARCO, WYVILL, BRIAN, et
al. “Sketch-Based Implicit Blending”. ACM Trans. Graph. 36.6 (Nov.
2017). ISSN: 0730-0301. DOI: 10.1145/3130800.3130825. URL:
https://doi.org/10.1145/3130800.3130825 2.

[BenAR] BENAZERA, EMMANUEL. Fibonacci Heap Implementation in
Python. https : / / github . com / beniz / fiboheap. GitHub
repository. YEAR 3.

[BJM10] B., MIKLOS, J., GIESEN, and M., PAULY. “Discrete scale
axis representations for 3D geometry”. ACM Transactions on Graphics
(TOG) 29.4 (2010), 101 2.

[BMUS15] BARBIERI, SIMONE, MELONI, PIETRO, USAI, FRANCESCO,
and SCATENI, RICCARDO. “Skeleton Lab: an Interactive Tool to Create,
Edit, and Repair Curve-Skeletons”. Smart Tools and Apps for Graphics
- Eurographics Italian Chapter Conference. Ed. by GIACHETTI, AN-
DREA, BIASOTTI, SILVIA, and TARINI, MARCO. The Eurographics As-
sociation, 2015. ISBN: 978-3-905674-97-2. DOI: 10.2312/stag.
20151299 2.

[CPW*23] CHEN, ZHEN, PAN, ZHERONG, WU, KUI, et al. “Robust Low-
Poly Meshing for General 3D Models”. ACM Trans. Graph. 42.4 (July
2023). ISSN: 0730-0301. DOI: 10.1145/3592396. URL: https:
//doi.org/10.1145/3592396 2.

[DEGN99] DEY, TAMAL, EDELSBRUNNER, HERBERT, GUHA,
SUMANTA, and NEKHAYEV, DMITRY. “Topology preserving edge
contraction”. Publications de l’Institut Mathématique 66 (1999) 2.

[FA05] F., CHAZAL and A., LIEUTIER. “The λ-medial axis”. Graphical
Models 67.4 (2005), 304–331 2.

[H67] H., BLUM. “A Transformation for Extracting New Descriptors of
Shape”. Models for the Perception of Speech and Visual Form. Ed. by
WATHEN-DUNN, W. Cambridge: MIT Press, 1967, 362–380 2.

[HELC09] H., CORMEN THOMAS, E., LEISERSON CHARLES, L.,
RIVEST RONALD, and CLIFFORD, STEIN. “Fibonacci Heaps”. Introduc-
tion to Algorithms. 3rd. Cambridge: MIT Press, 2009, 505–530 3.

[JÉTE16] JEAN-MARC, THIERY, ÉMILIE, GUY, TAMY, BOUBEKEUR,
and ELMAR, EISEMANN. “Animated Mesh Approximation With Sphere-
Meshes”. ACM Trans. Graph. 35.3 (May 2016). ISSN: 0730-0301. DOI:
10.1145/2898350. URL: https://doi.org/10.1145/
2898350 1.

[Lue01] LUEBKE, DAVID P. “A developer’s survey of polygonal simpli-
fication algorithms”. IEEE Computer Graphics and Applications 21.3
(2001), 24–35 2.

[MP97] M., GARLAND and P., HECKBERT. “Surface simplification us-
ing quadric error metrics”. Proceedings of the 24th annual conference
on Computer graphics and interactive techniques. ACM Press/Addison-
Wesley Publishing Co., 1997, 209–216 3, 5.

[NSR01] N., AMENTA, S., CHOI, and R., KOLLURI. “The power crust”.
Proceedings of the sixth ACM symposium on Solid modeling and appli-
cations. ACM, 2001, 249–266 2.

[PMM*08] PAOLO, CIGNONI, MARCO, CALLIERI, MASSIMIL-
IANO, CORSINI, et al. “MeshLab: an Open-Source Mesh Pro-
cessing Tool.” Vol. 1. Jan. 2008, 129–136. DOI: 10 . 2312 /
LocalChapterEvents/ItalChap/ItalianChapConf2008/
129-136 5.

[ST14] SCHNEIDER, ROSÁLIA G and TUYTELAARS, TINNE. “Sketch
classification and classification-driven analysis using fisher vectors”.
ACM Transactions on graphics (TOG) 33.6 (2014), 1–9 2.

[TCM06] TARINI, MARCO, CIGNONI, PAOLO, and MONTANI, CLAUDIO.
“Ambient Occlusion and Edge Cueing for Enhancing Real Time Molec-
ular Visualization”. IEEE Transactions on Visualization and Computer
Graphics 12.5 (Sept. 2006), 1237–1244. ISSN: 1077-2626. DOI: 10.
1109/TVCG.2006.115. URL: https://doi.org/10.1109/
TVCG.2006.115 4.

[TGB13] THIERY, JEAN-MARC, GUY, ÉMILIE, and BOUBEKEUR,
TAMY. “Sphere-Meshes: Shape Approximation using Spherical Quadric
Error Metrics”. ACM Transactions on Graphics 32.178 (Nov. 2013), 1–
12. DOI: 10.1145/2508363.2508384 1–3.

[TW04] T., DEY and W., ZHAO. “Approximate medial axis as a voronoi
subcomplex”. Computer-Aided Design 36.2 (2004), 195–202 2.

© 2023 The Author(s)
Eurographics Proceedings © 2023 The Eurographics Association.

152

https://tarini.di.unimi.it/spheremesh/
https://doi.org/10.1145/2980179.2980226
https://doi.org/10.1145/2980179.2980226
https://doi.org/10.1145/2980179.2980226
https://doi.org/10.1145/3130800.3130825
https://doi.org/10.1145/3130800.3130825
https://github.com/beniz/fiboheap
https://doi.org/10.2312/stag.20151299
https://doi.org/10.2312/stag.20151299
https://doi.org/10.1145/3592396
https://doi.org/10.1145/3592396
https://doi.org/10.1145/3592396
https://doi.org/10.1145/2898350
https://doi.org/10.1145/2898350
https://doi.org/10.1145/2898350
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.1109/TVCG.2006.115
https://doi.org/10.1109/TVCG.2006.115
https://doi.org/10.1109/TVCG.2006.115
https://doi.org/10.1109/TVCG.2006.115
https://doi.org/10.1145/2508363.2508384

