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Figure 1: Comparison of deterministic binary ray-tracing (b) with our Monte-Carlo method (c) for ultrasound (US) simulation of pregnancy
with a surface-based embryo model of 255K triangles (a). Note that the in-vivo embryo (d) is at slightly different age and position. Our
method (c) runs at 1.4 FPS vs. 2.8 FPS for (b) for the given frame, although ours is casting 40× the number of rays per scanline.

Abstract
Ray-based simulations have been shown to generate impressively realistic ultrasound images in interactive frame rates. Recent
efforts used GPU-based surface ray-tracing to simulate complex ultrasound interactions such as multiple reflections and re-
fractions. These methods are restricted to perfectly specular reflections (i.e., following only a single reflective/refractive ray),
whereas real tissue exhibits roughness of varying degree at tissue interfaces, causing partly diffuse reflections and refractions.
Such surface interactions are significantly more complex and can in general not be handled by such deterministic ray-tracing
approaches. However, they can be efficiently computed by Monte-Carlo sampling techniques, where many ray paths are gener-
ated with respect to a probability distribution. In this paper we introduce Monte-Carlo ray-tracing for ultrasound. This enables
the realistic simulation of ultrasound interactions such as soft shadows and fuzzy reflections. We discuss how to properly weight
the contribution of each ray path in order to simulate the behavior of a beamformed ultrasound signal. Tracing many individual
rays per transducer element is easily parallelizable on modern GPUs, as opposed to previous approaches based on recursive
binary ray-tracing.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Line and
curve generation

1. Introduction

Ultrasound is a radiation-free, low-cost, and real-time medical
imaging modality, and hence it is commonly used in clinical exam-
ination. However, its low signal-to-noise ratio and the existence of
various ultrasound-specific artifacts necessitate extensive training
of sonographers for performing a particular ultrasound examina-
tion technique and/or the imaging of a specific organ. Current stan-
dard education is in the form of imaging plastic phantoms and man-

nequins, as well as supervised examination of real pathology from
patients during clinical practice. This approach requires significant
time investment of qualified personnel and can be performed only
when a supervisor and a patient are both available. A challenge then
becomes the training on rare pathologies, e.g., Reis et al. [RLK∗08]
reports that during one year of standard education the medical stu-
dents have a chance to learn only 80% of the important pathologies.
For example, assuming an approximate 100 pregnancies to be at-
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tended by an obstetrics and gynecology (Ob/Gyn) expert a year,
heart-failure (a relatively common condition) will be observed on
average once a year, whereas skeletal malformation (a rare 1/5000
condition) will take 50 years on average to encounter – longer than
the typical career of an Ob/Gyn. These rare pathologies are still of
utmost importance to identify, arguably even more so than common
cases. More common decisions that are judged from US imaging,
such as the assessment of the gestational age of an embryo in the
face of a possible abortion, can still be crucial as they lead to life or
death. These motivate the need for the computer-based training of
ultrasound examination, where arbitrary scenes, pathologies, and
embryo instances of different age/complexion can be simulated in
a virtual-reality environment, given realistic, real-time, and flexible
ultrasound simulation techniques.

An ultrasound transducer consists of several (e.g., 128 or 512)
piezoelectric elements that can both transmit and receive ultra-
sound, through conversion between electricity and vibration. The
transmitted pressure wave (ultrasound) then interacts with anatom-
ical structures with different acoustic impedances, where any re-
flected signal is again digitized by the same elements to be used
for generating an image of the underneath tissue. US interaction
with tissue happens in two different ways: (i) On the one hand,
structures much smaller than the US wavelength (≈ 300υm) ab-
sorb US energy and re-emit (scatter) it omni-directionally as point
sources, such as cell nuclei, large proteins, etc. This interference
pattern is indeed the source of the typical noisy texture of ultra-
sound, called the speckle. (ii) On the other hand, any macroscopic
interface of impedance difference causes the US wave to be both
reflected and refracted given its incidence angle. Accordingly, US
may present both wave-like and ray-like properties, in a way simi-
larly to light. Although the wave properties can be simulated in the
entire domain, e.g. using finite difference methods, since the main
ultrasound energy is focused in a certain direction, its wave-front
can also be modeled as ray propagation in tissue.

2. Related Work

A typical model for simulating US interaction with sub-wavelength
particles is to assume that tissue is populated with many (but count-
able number of) scatterers [OTV85]. These can then have vary-
ing scattering amplitudes, and act as spherical sources of scat-
tering for incident ultrasound signal. Simulation frameworks like
FieldII [Jen04] can accurately model ultrasonic wave propagations
from given scatterer distributions, generating high-quality ultra-
sound B-mode images. Performance-optimized [VT05, Var06] and
GPU-accelerated [KWN10] wave simulations for ultrasound exist,
but are not fast enought to handle the complexity of clinical ul-
trasound in real-time. The computational complexity of such wave
simulations restricts their use to offline simulation, e.g., for trans-
ducer design and image processing algorithm development and val-
idation. In the context of training simulators, generation of US im-
ages at interactive rates is essential and hence of high interest. A
viable approximation of the full wave model is the convolution
model for ultrasound speckle [BD80, MBM87, MB95], where the
received intensity of the ultrasound is obtained by convolving scat-
terers with the point spread function (PSF) of the incident ultra-
sound energy at that location. Assuming a PSF separable in 3 axes

and a discrete grid approximation, fast separable convolution of
scatters was shown to simulate speckles interactively on modern
GPUs [GCC∗09].

However, scatterer-based methods do not inherently take into ac-
count reflection and distortion of the ultrasound beam at the inter-
faces between large-scale structures, the source of artifacts such
as acoustic shadowing, ghosting, and multiple-reflections. These
are indeed important cues for differential diagnosis of pathol-
ogy, and thus should be part of a realistic simulation. In ultra-
sound beamforming, incoherent (out-of-phase) ultrasound waves
cancel out contributions of each other, creating a focused beam
of ultrasound. The interaction of beamformed ultrasound with
macroscopic structures like bones or organ surfaces can hence
be well captured by ray-tracing techniques known from computer
graphics. State-of-the art methods thus combine separable con-
volution for wave-like interference with fast surface-based ray-
tracing [RPAS09, WBK∗08], and in particular make use of ded-
icated GPU-based rendering frameworks of mesh representations
such as NVidia Optix [BBRH13].

Current surface-based ray-tracing methods [BBRH13, SAP∗15]
utilize a recursive ray-tracing scheme: Whenever a ray terminates at
a surface, a new refraction ray and a new reflection ray are cast ac-
cording to Snell’s law in a binary tree structure, until the contribu-
tion of a ray is smaller than a threshold. Such deterministic schemes
make the assumption that large-scale structures behave like perfect
mirrors with infinitely sharp reflections and refractions. This may
be true for numerical phantoms and artificial tissue-mimicking ma-
terial; however, in actual anatomy perfect reflections and refrac-
tions are never the case, hence these methods often produce arti-
ficial, toy-like images not comparable to actual patient ultrasound;
as demonstrated in Figure 1. For instance, the state-of-the-art meth-
ods [BBRH13, SAP∗15] evaluate a diffuse reflection term only lo-
cally (similar to Phong shading in computer graphics) but do not
take non-specular indirect contributions into account, hence suffer-
ing from “hard” shadows, sharp reflections, and too crisp structure
borders – atypical in real US imaging. Salehi et al. [SAP∗15] aim to
address these issues with a post-processing step to make images vi-
sually closer to expected; this, nevertheless, does not deal with the
main problem of the wrong initial assumptions, which are treated in
our work in a suitable and effective way within the ray-tracing ar-
chitecture. Nonetheless, this method could in addition be integrated
into our rendering pipeline to further improve realism.

For reflections from rough (imperfect) surfaces, contributions
from many directions have to be considered. In a framework of de-
terministic ray-tracing, it is then conceivable to cast multiple rays
at each intersection point of the parent ray in order to integrate over
their individual contributions. Note that deeper recursion levels re-
quire summing over an exponentially-growing number of rays, al-
though these contribute less and less to the final image. There-
fore, this algorithm quickly becomes inefficient. Furthermore, such
method exhibits poor parallelism, since multiple rays on subse-
quent levels are dependent on the single parent rays. The problem
of computing (diffuse) multiple-reflections corresponds to numer-
ically solving high-dimensional integrals, which are known to be
approximated efficiently using Monte-Carlo methods. The idea is
to generate many random ray paths that are perturbed according to
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a probability distribution, until they converge to the correct solu-
tion. With this, utilizing the parallelism of the GPU is then straight-
forward, since each single ray path can be processed by each thread
separately. Accordingly, many more rays can be processed in par-
allel on the GPU, maximizing throughput and yielding better qual-
ity of the resulting ultrasound simulation. The current state-of-the
art in ultrasound simulation is analogous to so-called Whitted ray-
tracing [App68, Whi80] for global illumination. Introduced in the
late seventies, this method has long been shown to be inferior to
stochastic techniques for natural scenes [VG97, Laf95].

Surprisingly, however, such techniques have not been investi-
gated in the literature for the purpose of ultrasound image sim-
ulation. Recently, Monte-Carlo techniques have been utilized for
other uses of medical ultrasound, such as focused ultrasound ther-
apy [KVdG∗14], due to their excellent performance and inherent
parallelism. However, the purpose of these techniques is not to
emulate the image formation process of ultrasound machines, and
since therapy ultrasound frequencies cannot be used for image gen-
eration, these methods cannot be used to simulate radio-frequency
or B-mode images. As such, their goal is different than ours in this
paper, which aims to present how to leverage stochastic techniques
for the purpose of realistic ultrasound image simulation.

3. Contributions

In this paper, we propose a framework for using Monte-Carlo sam-
pling for the purpose of ultrasound simulation. We extend the sur-
face properties of ultrasound tissue by a measure of surface rough-
ness (resulting in a random variation of reflected/refracted ray di-
rection) and a measure of surface thickness (resulting in a random
variation in the ray termination depth). We introduce a stochastic
ray-tracing strategy for efficiently evaluating the surface integrals
and propose a weighting scheme for a sample contribution that
takes into account the beamforming process of US transducers.

For convolution-based US texture generation, we follow the
approach of parametric models to instantiate scatterer distribu-
tions [BBRH13, MG15]. However, when adopting this approach,
we have realized that these current parametric scatterer models are
not sufficiently general to model the visual richness and variations
in actual patient data. As can be seen in Fig. 1, actual tissue of-
ten exhibits a range of small- to large-scale variations of speckle
appearance. We thus propose a 2-level parametric model using a
multi-texturing approach to represent both the high-frequency lo-
cal speckle variations and low-frequency large-scale speckle vari-
ations. In order to keep track of current tissue characteristics and
to choose correct parametrization for tissue that a ray is inside, we
propose a novel stack-based approach, based on three simple rules.

Our method is able to achieve vastly improved realism for in-
teractive ultrasound simulation in complex and realistic scenarios,
e.g. for simulating an embryo. In the teaser scene, in comparison
to the state-of-the-art, our method is seen to successfully simu-
late soft shadows, fuzzy reflections, and realistic anatomical bound-
aries; with appearances more similar to the actual US image. Our
method is also seen to exhibit more realistic ultrasound speckle
(texture), which is less regular and richer in details, as well as to
be more successful in simulating complex geometric shapes such
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Figure 2: Deterministic binary ray-tracing vs. Monte-Carlo ray-
tracing for a single scanline intersecting 3 tissue layers.

as the complex embryo model. The only structure that cannot be
replicated by (either) simulation is the bright reflection on top left,
due to a complex out-of-plane 3D effect. The input to our method is
a mesh-based representation of a scene, therefore the scene is easily
customizable (e.g., for simulating embryos of any stage of develop-
ment and with arbitrary ultrasound parameters) and can potentially
be animated.

4. Methods

In this section, we first describe our improved stochastic surface
ray-tracing model for simulating a beamformed US signal, out-
putting ray segments between tissue boundaries. Thereafter, we in-
troduce a novel tissue model to characterize the tissue properties
along individual ray segments. Finally, we put it all together and
describe the actual US image generation process.

4.1. A Novel Ray-Tracing Model for Ultrasound

The so-called radio-frequency (RF) signal is created by recording
US echo at several elements and then combining (beamforming)
those into a single reading of US signal intensity I as a function
of time t. Thus I represents the tissue content along a beamformed
RF line, often aligned in front of a transducer element. Following
Snell’s law, the ultrasound signals undergo distortions (e.g., reflec-
tions or refractions) proportional to their impedance ratios at the
interfaces between two tissues, which coincides with a ray-surface
intersection in a ray-tracing context. In our model, such distortions
are not deterministic but subject to random perturbations. If echos
following different paths arrive at the transducers at the same time
t, their partial contributions create an interference, adding up to the
intensity received at that RF-line. Similarly, if the US signal dis-
perses in several directions after a ray-surface intersection, their
partial contribution from each adds up to the echo reading from
that direction. In particular, when the US signal amplitude I(t,O)
received at the RF-line origin O after a surface intersection at point
PT for time t > T is to be computed, we integrate the partial contri-
butions from all directions ω of the surface hemisphere Ω centered
at the surface normal:

It>T (t,O) =
∫

Ω

I(t,PT ,ω)cos(ω)dΩ . (1)
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I(t,PT ,ω) denotes the echo contribution from direction ω originat-
ing from PT . At a further intersection point PT ′ , each ray path may
split up again, i.e.,

It>T ′(t,PT ,ω) =
∫

Ω

I(t,PT ′ ,ω′)cos(ω′)dΩ . (2)

Computing the echo interference at origin O at time t > T ′ requires
the solution to a high-dimensional recursion of integrals of the form

It>T ′(t,O) =
∫

Ω

∫
Ω′

I(t,PT ′ ,ω′)cos(ω′)dΩ
′ cos(ω)dΩ , (3)

the dimensionality of the integral being directly proportional to the
number of surface intersections encountered. In practice, Eq. 1 can
be discretized as

It>T (t,O) =
1
n ∑

i=1..n
I(r(PT ,ωi))cos(ωi), (4)

where each individual contribution I(R(PT ,ωi)) is calculated by
tracing ray R from PT in direction ωi, which is drawn from a dis-
tribution over all possible hemispherical directions. Note that de-
terministic algorithms are not suited well for solving such high-
dimensional integrals, while also incurring exponential running
time wrt. the number of recursions, as illustrated in 2(a) for 3 sur-
face layers. Instead, these are often tackled using stochastic (e.g.,
Monte-Carlo) methods to reduce the multi-dimensional integral to
a tractable sampling problem (Fig.2 (b)).

Improved surface model. Assuming a cosine-parametrized sur-
face model (see Fig. 3(c)), where the normal is perturbed around
the geometric surface normal, we utilize importance sampling for
calculating the surface integral at an intersection point: rays are dis-
tributed according to a cosn distribution; where n=0 corresponds
to a completely diffuse surface, while n=∞ to a perfectly specular
surface. We decide randomly with a probability of 50% whether a
reflective or refractive ray is to be generated at an intersection point.

Stochastic ray tracing allows for varying surface thicknesses to
be simulated with our method, through varying the simulated hit
point of the surface and the starting point of the reflected/refracted
ray path according to a Gaussian distribution along the surface
thickness, cf. Fig. 3(b). It is important to correctly attenuate a pene-
trating ray according to the attenuation and the penetrated distance
in the new tissue. The attenuated ultrasound intensity in tissue is
calculated as Ie−xα using the Beer-Lambert law, for a distance x
traveled in the tissue, the absorption coefficient α being a known
characteristic tissue-specific value. For example, bone has a very
high attenuation α, hence ultrasound can only penetrate a little
amount before a sharp drop in intensity, causing the typical appear-
ance of bone reflections in Fig. 1.

Path weighting. The cancellation of out-of-phase ultrasound re-
flections due to beamforming is an important ultrasound property,
which has the effect that incoherent ultrasound beams lead to de-
structive interference diminishing the echo intensity. To simulate
this effect, we use a weighting scheme for the contribution of each
ray path in Eq. 4, as shown in Fig. 3(d). We use a linear factor
based on distance from a hypothetical ray path representing the
main beam direction, i.e., the direction l given by Snell’s law (note
that this ray path is not actually generated). This distance is com-
puted as d = |P−P′− ((P−P′) · l)l|, where P is the origin of the
ray, and P′ is any point along the ray path.

cos∞distribution

N

(a) Deterministic ray-tracing model.
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Figure 3: (a) Previous work uses infinitely thin, specular surfaces.
(b) Our proposed surface model assumes intersection points to be
distributed within the thickness of interacted surface, and (c) mi-
croscopic surface normals to be cosine-distributed around a main
surface normal. (d) Weighting wrt. distance to the main beam is
used to simulate the loss of beam coherence.

Incident US energy. At each tissue intersection P, the US echo Ir
reflected back to the transducer is computed as

Ir = max(cosn(6 (~Vr,~D)),0)+max(cosn(6 (~Vi,~D)),O), (5)

where ~Vr is the reflected and ~Vi is the refracted ray directions, and
~D = P−O for transducer origin O, and n models the specularity
of a surface. Note that the refractive term was missing in previous
work [BBRH13]. Both terms are important, however, as usually
only one of them has non-zero contribution.

4.2. Speckle and Tissue Properties

One contribution to the received ultrasound signal, the directional
reflections at large-scale surface interfaces, has been discussed in
the previous section. In this section we discuss the other contribut-
ing factor coming from microscopic scatterers in the tissue.

Convolution model. In the typical convolution model of ultrasound
speckle [BD80,MBM87,MB95], the reflective intensity r(l,a,e) is
obtained by convolving the a function representing tissue g(l,a,e)
with an ultrasound PSF h(l,a,e) given additive random noise ε, i.e.

r(l,a,e) = g(l,a,e)∗h(l,a,e)+ ε (6)

where l denotes the lateral, a the axial, and e the elevational trans-
ducer axes. In recent works [GCC∗09,BBRH13,MG15], h(l,a,e) is
approximated by a Gaussian envelope modulated at an acquisition
center-frequency of fc (typically between 2− 14Mhz for clinical

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

176



O. Mattausch & O. Goksel / Monte-Carlo Ray-Tracing for Realistic Interactive Ultrasound Simulation

use). It is then of the form

h(l,a,e) = e
− l2

2σ2
l
− a2

2σ2
a
− e2

2σ2
e cos(2π fc) , (7)

which is a function, separable into lateral, axial, and elevational
components. This greatly accelerates the convolution computation,
by performing separate 1D convolutions instead of a single 3D one.

The PSF has been set manually for the purpose of this paper, but
alternatively it can either be measured experimentally by imaging
sub-wavelength synthetic features, e.g. wires, in degassed water, or
estimated automatically from a radio-frequency image [MG16].

Scatterer parametrization. For obtaining the tissue parameters
used to create g(l,a,e), we adopted and improved an efficient para-
metric scatterer model [BBRH13,MG15]. For each tissue type, this
model has 3 values to characterize a random distribution of scatter-
ers, which are responsible for a particular speckle appearance af-
ter convolution: The pair (µ,σ) describes the normal distribution of
scatterer amplitudes, while ρ is the so-called scatterer density, that
gives the probability threshold above which a scatterer will provide
an image contribution (i.e., the convolution will be performed for
that scatterer). Each tissue is characterized by these three values,
using which a scatterer value is generated from a random texture
variable at each point.

To apply this model with a low memory footprint and high
runtime performance, we follow the approach of Burger et
al. [BBRH13], where a random Gaussian variable ξ is stored in a
3D texture and used for lookup during the ray marching. For ξ > ρ,
the scatterer value c = µ+ξσ ; whereas c = 0 otherwise. To reduce
memory requirement while keeping the scatterer resolution high,
the 3D texture only covers a small part of the US volume and is
replicated for the rest, hence can be set to an easily manageable
size, e.g., of 2563. In order to avoid artifacts revealing the repeti-
tions for a transducer orientation perfectly aligned with the texture,
the 3D texture coordinates used for the texture lookup are trans-
formed by a constant global rotation by a random angle.

Multi-frequency scatterer variations. In order to represent a
smooth small-to-large scale speckle variation, we extend the ba-
sic model with a coarser component using a second low-resolution
3D noise texture Vl(x,y,z). In our experiments, this resolution was
empirically chosen as 203. Accordingly, two new values are added
to the tissue specification; the magnitude Al and the frequency fl
of low-frequency variation. These variations are implemented by
using a lower-frequency 3D noise texture, where fl acts as a scale
factor for the look-up into the noise and Al controls the influence
of random variation on the scatterer values, i.e. the new scatterer
value is computed as c′ = c(1+AlVl(x fl ,y fl ,z fl)).

Interleaved volumetric model. Anatomical scenes as in Fig. 1
consist of several tissue layers that participate in complex ray in-
teractions. An approximate segmentation of tissue layers in the US
plane is depicted in Fig. 4(a). This particular scene consists of seven
interleaved layers: uterus, placenta, gestational sac, amniotic sac,
embryo body, skeleton, brain and inner organs. Whenever the cur-
rent ray intersects a surface, one has to keep track of the correct
tissue characteristics and scatterer parametrization that is used in
the next segment, from the current intersection point until the ray
hits another surface boundary. Our model for the bookkeeping of
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(a) Pregnancy scene segmentation map.
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Figure 4: Suitable models for in-vivo ultrasound, like the pregnancy
scene (a), consist of multiple layers. For transmitting rays enter-
ing/exiting a layer (b), tissue properties are pushed on or popped
from the stack. Reflective rays just bounce within the same tissue.

current tissue properties is inspired by classical methods for ray-
tracing Constructive Solid Geometry (CSG) [Gla89]. In order to
find the tissue type within which a particular ray segment is travel-
ling (and thus the corresponding parameters for ultrasound speckle
simulation), we propose a stack-based system based on three sim-
ple rules, as illustrated in Fig. 4 (b):

Entering The current ray is a transmitting ray, and the ray is enter-
ing the current object. In this case, the surface normal is facing
into the opposite direction as the ray; e.g., normal N2 as the ray
hits the boundary from T1 to T2.

Exiting The current ray is a transmitting ray, and the ray is exiting
the current object. In this case, the surface normal is facing into
the same direction as the ray; e.g., normal N2 as the ray hits the
boundary from T2 to T1.

Bouncing If the current ray is a reflecting ray, it simple bounces
within a tissue, so the current tissue region and hence properties
stay unchanged.

To avoid tissue classification errors due to numerical errors, a
constant surface offset δ=1e−4 is used (as is common in conven-
tional ray-tracing applications to avoid light leaking or shadow arti-
facts). Furthermore, the interleaved surface meshes should not con-
tain holes, have a consistent normal orientation, and should not in-
tersect or touch each other. Note that the proposed layered model,
although introduced in this paper, is used in both deterministic and
Monte-Carlo simulations in all shown experiments.

4.3. Ultrasound image generation.

A typical 2D ultrasound acquisition scheme is depicted in Fig. 5
(a) and (b). The ultrasound is acquired in the so-called transducer
plane (a). A ray is started from each of the K transducer element and
continuously travels within a tissue yielding the echo signal along
that scanline (b). To account for finite transducer thickness which
leads to a non-negligible out-of-plane effect, we instantiate rays at
several acquisition layers along the elevational (out-of-plane) axis
of the transducer, as depicted in Fig. 5 (c), a strategy which was
also used in previous work [BBRH13, SAP∗15]. To initialize our
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Figure 5: US B-mode is a 2D image in the transducer plane (a)
generated by recording echo amplitudes for each transducer ele-
ment (b). Out-of-plane effects are simulated using a small number
of elevational acquisition layers (c). Stratified sampling is used to
generate origins for K ray paths per element/layer (d).

Monte-Carlo ray-tracing scheme, K ray paths are originated around
the center point of each scanline/elevation layer following a normal
distribution, as shown in Fig. 5 (d). Their intensity contributions for
the transducer element are accumulated according to Eq. 4. This
stratified sampling scheme also avoids aliasing effects due to regu-
lar sampling of an elevation layer.

To find the speckle contributions along all participating rays
and to form an ultrasound B-mode image, we use the following
steps. First, our surface ray-tracing model is used to find the ray
path segments between tissue boundaries, corresponding to the
current tissue being traveled in. Then we march stepwise along
the ray segment, averaging the scatterer contributions of our im-
proved tissue model in a small volume around each sample point.
The result is stored in a 3D grid g(l,a,e,), consisting of N lat-
eral scanlines, M axial sample points, and L elevation layers. Each
axial sample point in g(l,a,e,) corresponds to the distance trav-
eled at time ti=1..M along the ray segment. The time step is given
by the desired RF sampling frequency to simulate, which is typi-
cally around 20− 100MHz, and the distance traveled per timestep
is given by the speed of sound in the current tissue. The regular
structure of g(l,a,e) enables us to run fast separable PSF convolu-
tion with PSF h(l,a,e) in parallel, using Eq. 6. The result is r(l,a),
the simulated beamformed US radio-frequency (RF) image in the
transducer plane. Emulating typical clinical imaging systems, we
then input this RF image to a post-processing pipeline (envelope
computation, time-gain compensation, log compression, and scan-
conversion into radial coordinate, if a convex transducer is being
simulated), which yields the final grayscale B-mode image dis-
played on US machines.

Model Spherical Embryo Heart
Triangles 1.5K 255K 325K
Full depth 6.0cm 8.1cm 6.0cm
Transducer freq. 6.MHz 7.MHz 6.MHz
Transducer FOV 99◦ 75◦ 90◦

Scanlines 128 192 128
Axial res. 1024 2048 1024
Elevation layers 5 5 5
Axial Sampling .06 mm .04 mm .06 mm
Scatterer res. .03 mm .03 mm .03 mm
Animation No No Yes

Frame times
Deterministic 107ms 357ms 201ms
MC 5 rays 106ms 303ms 108ms
MC 15 rays 139ms 384ms 128ms
MC 25 rays 169ms 476ms 164ms
MC 40 rays 232ms 714ms 190ms

Throughput (rays/sec)
MC 5 rays 45K 15K 44K
MC 15 rays 104K 37K 113K
MC 25 rays 142K 50K 146K
MC 40 rays 166K 54K 202K

Table 1: Statistics and timings for the used datasets.

(a) Deterministic (b) Monte-Carlo (c) In-vivo image

Figure 6: Two additional slices of the embryo scene. Comparison
of deterministic ray-tracing (a), our Monte-Carlo method (b), and a
corresponding in-vivo image (c).

5. Results

Our method was developed in C++, using NVidia Optix as frame-
work for the mesh-based ray-tracing, and NVidia Cuda v7.0 for
the ultrasound post-processing (image formation) pipeline. An
NVIDIA GTX 780Ti GPU with 3GB was used for all experiments.
Detailed statistics of the presented scenes and timing comparisons
are shown in Tab. 1. The scales of individual ultrasound images are
marked in centimeters on the left of the images, together with a
green arrow indicating the chosen transmit beamforming focus.

The embryo scene was shown in Fig. 1. The embryo was de-
signed as an anatomically correct 3D surface model, whereas the
gestational sac, uterus, and nearby bones were annotated from the
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(a) Hypoechoic spherical object. (b) Simple heart model.

Figure 7: Additional datasets used for experiment and their in-plane
segmentation layout.

(a) 5 rays. (b) 15 rays.

(c) 25 rays. (d) 40 rays.

Figure 8: Monte-Carlo ray-tracing using a varying number of rays
per transducer element/elevation level.

scanned 3D image volume and exported as surface meshes. The
image shown in Fig. 1 (d) is a single slice of this fan-shaped scan
volume, with a total of 215 slices spanning 120 degrees in out-of-
plane direction. Other sample slices, at 95 and 110, can be seen in
Fig. 6. The embryo model has detailed anatomy such as the brain,
stomach, eyes, and a skeleton. This turns out to be necessary to
simulate the visually rich content of the actual embryo, which is, as
expected, at the focus of attention for a trainee during examination.
Note that the hand-crafted embryo model in Fig. 1 (a) is at a slightly
earlier gestational age than the embryo shown in the in-vivo image
of Fig. 1 (d), therefore a 100% visual match is not possible.

The additional models used in our experiments are shown in
Fig. 7. The first scene is an approximately spherical shape filled
with a hypoechoic fluid. It represents a class of structures often
found in in-vivo ultrasound images, like for example fluid-filled
cysts or a full bladder. The heart model is a composition of inter-
leaved spherical objects representing the heart shape and the 4 heart
chambers, and was animated to simulate a periodic motion resem-
bling a heart beat. Starting from perfect spheres, the objects were
deformed individually to reduce regularity

The timings in Tab. 1 were recorded for a maximum of 12 recur-
sion levels for both deterministic ray-tracing and Monte-Carlo ray-

Level Det MC5 MC15 MC25 MC40
7 233 ms 300 ms 392 ms 472 ms 705 ms
10 299 ms 298 ms 384 ms 471 ms 709 ms
12 357 ms 303 ms 384 ms 476 ms 714 ms

Table 2: Comparison of rendering times for the embryo image using
different recursion levels.

(a) No surface thickness. (b) Surface thickness 3mm.

(c) Surface thickness 6mm. (d) Surface thickness 9mm.

Figure 9: The effect of finite surface thickness on the realism of the
bone.

tracing (MC). The number of rays per transducer element/elevation
levels for Monte-Carlo ray-tracing varies from 5 to 40. For 5 el-
evation levels per elements, this means 25-200 rays cast per ele-
ment, resulting in a total of 480-38400 ray paths for 192 scanlines
per frame. Note that the throughput of rays/second increases for a
higher number of generated rays, exhibiting an increased level of
parallelism. The slower render times of the embryo model com-
pared to the heart model, despite the former having less triangles,
can be attributed to the particularly complex in-plane and out-of-
plane ultrasound interactions.

Tab. 2 describes the relation between the number of recursion
levels and the render times. Binary ray-tracing is greatly affected
by this factor, which is unsurprising due to the exponential depen-
dence of the algorithm complexity on the number of recursions.
On the other hand, Monte-Carlo ray-tracing remains almost unaf-
fected. The importance of the number of rays for the image quality
can be observed in Figure 8 for 5−40 rays. The sampling quality is
high for≥ 25 rays and in areas of less complex ray interactions, but
decreases slightly for a lower number of rays in areas of complex
ray interactions. For example, entire interactions are missed in the
simulation of the embryo.

Fig. 9 and Fig. 10 demonstrate the effect of our surface model
with roughness and finite thickness. In Fig. 9, ignoring the thick-
ness parameter results in a flat and unrealistic bone appearance (a).
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(a) Deterministic. (b) cosinf distribution.

(c) cos100 distribution (d) cos10 distribution

Figure 10: The effect of the surface roughness on a spherical objects
and on the brightness of the hyperechoic posterior region.

(a) No perturbation. (b) With perturbation.

Figure 11: The effect of perturbing the ray origin in this simple
scene with a spherical object.

Increasing the finite thickness parameter influences the appearance
of the bone, which becomes more plastic and organic for larger
thickness values (b-d). The realistic attenuation of the thick bone
segment is achieved because our model takes into account the cor-
rect attenuation with respect to the penetration distance that a ray
travel inside of the bone.

In Fig. 10, (a) and (b) correspond to perfectly specular surfaces,
with the difference that (a) corresponds to deterministic ray-tracing
where perfectly specular surfaces are the default, while (b) still uses
the other extensions of the proposed method like finite thickness.
For images (c) and (d), the surface of the scanned object is set to
become increasingly rougher. This results in softer refraction shad-
ows and fuzzier object boundaries. For simulating a particular tis-
sue, the proper value of surface roughness has to be set according
to experiment or empirically by manual trial-and-error.

Fig. 11 depicts the importance of the stratified sampling scheme
for the ray origins. In Fig. 11 (a), 5 elevation layers of ray ori-

(a) Without speckle variation. (b) With speckle variation.

Figure 12: The influence of large-scale speckle variation on realism
in a frame of the pregnancy scene.

Figure 13: Toy model of an animated heart (top) and simulation
(bottom) for 3 contraction phases of a heartbeat. Changing surface
boundaries requires animation of both geometry and speckles.

gins have been used to approximate finite transducer thickness, as
proposed by previous work [BBRH13]. The discrete layers can be
clearly seen in the data, while these aliasing effects are not visible
in Fig. 11(b) using our stochastic scheme.

In Fig. 12 we demonstrate the influence of our improved
parametrization model. The large-scale variation gives the illusion
of complexity in parts of the image where actual geometric detail
is missing. The increased visual complexity can best be observed
in the upper right part of the image, in the absence of any real ge-
ometry. Furthermore, it gives a more detailed appearance to parts
of the image where geometry exists but is not sufficiently detailed.
This can be seen, for example, when comparing the appearances of
the uterus (the bright band in the center of the image) in both im-
ages. While speckle variations cannot fully replace the complexity
of actual geometry, it nevertheless greatly simplifies the task of a
modeler in the face of the overwhelming complexity of an actual
patient’s interior.

Fig. 13 shows an example of 3 frames of an animation of the
heart model which is contracted according to a sine motion. The
contraction of the heart also causes the surrounding tissue to move.
Hence, to correctly account for a changing ultrasound volume, it is
necessary to also animate the speckle appearance, using the same
transformation for the coordinates of the 3D noise texture lookups.
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6. Discussions and Limitations

Our method is able to generate plausible ultrasound images from a
good surface model and suitable tissue parametrization. However,
creating sufficiently complex surface models and finding these tis-
sue parameters are still tedious manual tasks that takes considerable
time and substantial fine-tuning. This is a potential bottleneck in
a wider application of the proposed method. Possible future work
in this direction can leverage image-based techniques for automati-
cally parametrizing individual tissues [MG15], or for automatically
improving similarity to a target image in a post-process [SAP∗15].

A pending problem in ultrasound image simulation is an objec-
tive evaluation of our method, in terms of an objective metric that
can distinguish realistic from insufficient ultrasound simulations.
We focused on visual comparisons of the images, and left an objec-
tive evaluation for future work. Nevertheless, we asked an expert
sonographer to rate the images in Fig 1 from 1 to 7 in terms of real-
ism (7 is very realistic), and in terms of perceived similarity to the
in-vivo image (ignoring the different age of the embryo). The ex-
pert rated deterministic ray-tracing as 2 on both accounts, and rated
the image generated with our method as 6.5 on both accounts; con-
firming the high realism and clinical feasibility of our presented
image simulation approach. The expert stated that both pregnancy
and surroundings are not very realistic for Fig. 1 (b), while in Fig. 1
(c) the pregnancy is very realistic and the surroundings close to re-
alism. This indicates that our method can reproduce the physics of
ultrasound imaging better than related work, but an an improved
speckle model and/or more detailed geometry are still needed for a
truly realistic training simulation.

7. Conclusions

We have presented a novel ultrasound Monte-Carlo ray-tracing
method, which significantly improves realism in ultrasound sim-
ulation. The method enables the simulation of realistic tissue as
present in in-vivo phantoms and as such is essential for plausi-
ble ultrasound simulation for training medical students with in-
teractive virtual-reality scenes. In future work, we plan to study
more sophisticated Monte-Carlo techniques such as Metropolis
sampling [VG97] or bi-directional path tracing.
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