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Abstract
International standards require close monitoring of distress of animals undergoing laboratory experiments in order to minimize
the stress level and allow choosing minimally stressful procedures for the experiments. Currently, one of the the best established
severity assessment procedures is the mouse grimace scale (MGS), a protocol in which images of the animals are taken and
scored by assessing five key visual features that have been shown to be highly correlated with distress and pain. While proven
to be highly reliable, MGS assessment is currently a time-consuming task requiring manual video processing for key frame
extraction and subsequent expert grading. Additionally, due to the the high per-picture expert time required, MGS scoring is
performed on a small number of selected frames from a video. To address these shortcomings, we introduce a method for fully
automated real-time MGS scoring of orbital eye tightening, one of the five sub-scores. We define and evaluate the method which
is centered around a set of convolutional neural networks (CNNs) and allows live continuous MGS assessment of a mouse
in real time. We additionally describe a multithreaded client-server architecture with a graphical user interface that allows
convenient use of the developed method for simultaneous real-time MGS scoring of several animals.

1. Introduction and Previous Work

The 3R principle (replace, reduce, refine) first stated in [RB59] is
a cornerstone of current laboratory animal experiment design and
has found its way into international guidelines and standards for
laboratory experiments with animals. It requires replacing live an-
imal experiments where possible, reducing the number of animals
required for obtaining the results and refining the experiment proto-
col for minimization of distress experienced by the animals under-
going the experiments. As a direct consequence, following the 3R
principle requires methods for quantitative and objective scoring of
animal pain and stress. Therefore, several methods for distress mea-
surement have been developed. A large number of these methods
focuses on manual or fully-/semi-automatic assessment of changes
in animal behavior that correlate with distress; recent overviews
can be found in [TTK14] and [DDV17]. Next to methods based on
facial expression analysis these protocols also include analysis of
other changes in animal behavior such as the approaches presented
in [Jir14].

In recent years, distress recognition research has focused on ob-
serving facial areas such as eyes in order to develop reliable stress
detection protocols. The work has been inspired by research carried
out on humans, for which psychologists were able to show that a
universal face of pain exists [Prk09]. Further research has shown
that this facial expression is controlled by mechanisms that make it
cross-cultural and even remain detectable in patients with demen-

tia [KSH∗07], indicating its fundamental nature. Inspired by this
work, morphological changes in the facial appearance of different
animals have been analyzed, resulting in a substantial number of
findings. As a result, a number of grimace scales for different ani-
mals has been proposed, starting with the mouse grim scale (MGS)
for laboratory mice [LBC∗10] that has been proven to be highly
reliable in practical use [ML15] and followed by similar research
published for pain assessment in rats [WH14] [SSZ∗11], rabbits
[KTFL12] and ferrets [RSP∗17], but also in larger animals such as
horses [DCML∗14], sheep [MRC∗16] and pigs [DGBS∗16].

As can be seen from these papers, scores based on facial expres-
sions are gaining attention in the scientific community. They offer
several advantages over other quantitative pain assessment meth-
ods: They do not require dedicated equipment such as the device
required for gait analysis, and time requirements for the experiment
itself are lower than for other behavioral experiments. Additionally,
no extensive training is required to allow observers to learn how
to perform grimace coding. As a downside, acquisition, selection
and scoring of images is currently a time-consuming task. First ap-
proaches for automating this task have been proposed in [SSZ∗11],
where a face detection algorithm has been applied to detect rat faces
in images. Automated facial expression analysis of sheep has been
introduced in [LMR17] by applying a HOG-SVM based classifi-
cation for automated facial feature analysis. A recent application
of machine learning methods for automated pain classification in
rodent images has been published in [TMJ∗18]. In the aforemen-
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tioned paper, a convolutional neural network for binary classifica-
tion is trained on a set of pain and non-pain images of white labo-
ratory rats and it is shown that a general prediction of distress and
non-distress states is possible when using neural networks for im-
age classification.

In our work, we also focus on automated distress assessment
in rodents using convolutional neural networks, however we ex-
tend the currently used approaches both regarding methodology
and scope of applications. In more detail, the novelties of our con-
tribution are:

• Use of current state-of-the art convolutional neural networks
for semantic segmentation and region proposal, allowing precise
subsequent classification of relevant image regions.

• Using actual MGS scores as reference, thereby enabling not only
pain vs. no-pain classification, but also MGS score prediction.
This allows an improved comparison to expert scores and also
an improved consistency with currently established scores.

• Our method is trained and evaluated on a strain of black labo-
ratory mice (C57BL/6), one of the globally most widely used
mouse strains. Their dark fur color drastically limits the number
of suitable methods that can be used for classification. For exam-
ple, we implemented the methods described in [LMR17] based
on HOG-SVM and [SSZ∗11], where a Viola-Jones cascade clas-
sifier has been applied for face detection. Both methods have
shown poor performance on images of C57BL/6 mice, with the
HOG-SVM failing to predict pain state with an accuracy higher
than chance level and the Viola-Jones detector being not able to
perform face detection at all.

• Our method allows convenient automated real-time classification
of images acquired live from a video stream. In this way, we ob-
tain not only single image scores for distinct time points, but a
continuous score in the time domain, allowing detailed classifi-
cation of pain state of several simultaneously filmed mice in each
video frame.

The paper is structured as follows: After this introduction and lit-
erature overview, we give a detailed overview of our method for
image segmentation and classification as well as the client-server
architecture that allows live scoring in video streams in Section 2.
The methods are evaluated in Section 3, followed by a result dis-
cussion in Section 4 and a final conclusion in Section 5.

2. Materials and Methods

In this section, we describe the image acquisition setup, the neural
networks used for segmentation and classification and the client-
server based architecture for live scoring.

2.1. Imaging Setup Overview

For image acquisition, small transparent boxes following the de-
scriptions in [LBC∗10] were designed to allow recording the ani-
mals under controlled and replicable conditions. For increased ef-
ficiency, the boxes were placed in a rack holding up to four boxes.
To ensure homogeneous ambient lighting and reduce reflections,
the rack was placed in a light tent. A red background was chosen to
allow increasing image contrast, as preliminary experiments have

Figure 1: An image acquired with the imaging setup designed for
our experiments

indicated that facial regions such as eyes can be best recognized
in the red channel of the images. The setup was filmed with a HD
camera at a resolution of 1080 x 1920 pixels at 30 frames per sec-
ond. Figure 1 shows a sample frame from one of the videos.

2.2. Segmentation and Region Detection

Segmentation of the animals (foreground/background-extraction)
was performed on subregion region-of-interest (ROI) images con-
taining single boxes. These subregions can be defined either man-
ually or using an automated method such as the box detection pro-
posed in [KEH∗18]. Using single box ROIs increases input con-
sistency and allows using the method on experiment setups that do
not use the multi-box design described above. For region segmenta-
tion, a U-Net [RFB15] fully convolutional network with shortcuts
was used, which has shown excellent segmentation performance
in terms of both run-time and segmentation accuracy in numerous
challenging segmentation tasks.

Segmentation masks were designed with four classes - back-
ground, animal, ears and eyes. The distinct ’eye’ class was chosen
to allow using the U-Net as region proposal network for subsequent
eye classification on smaller, equal-sized image patches. Ears were
segmented as well to allow analyzing ear-related MGS subscores
in the future. Figure 2 shows examples of segmentation results.

2.3. Automated MGS Scoring

For analyzing if automated MGS scoring is possible, we focused on
the orbital tightening sub-score. The original MGS scale has dis-
crete values of 0 (not present), 1 (moderate) and 2 (severe) for each
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Figure 2: Sample images and predictions acquired with the U-net.
From top to bottom: ears, eyes, whole body and multilabel U-Net

sub-score. For increased precision, we re-labeled the images with a
more fine-grained scale between 0 and 9, with 0 corresponding to
absence of the feature and 9 to maximal severity. We have decided
to use the 10-point scale as initial experiments have shown that
while introducing a larger number of classes may lead to increased
label noise, the higher granularity of the input values reduces the
impact of differently labeled images on the network training pro-
cess. As example, if two virtually identical images are both on the
edge between two values according to the rater and one of them
is labeled with a 0 and the other one with a 1 on the three point
scale during expert rating, then the label noise induced by this la-
beling mismatch is more confusing for the network than in the case
of inconsistent labeling of these two images on the ten point scale,

where one may have been labeled as 3 and the other as 4. We are
currently gathering more expert data with both labeling strategies
to analyze this hypothesis in more detail.
The convolutional neural network for predicting the orbital tighten-
ing score is a lightweight CNN containing two convolutional lay-
ers and two fully connected layers at its core mixed with auxiliary
regularization layers for pooling, batch normalization and dropout
(see Tab. 1 for the exact architecture). The network accepts image
patches with a size of 50 x 50 pixels as input. The output predic-
tion is formed by a single linear neuron allowing regression of the
MGS score. While MGS scores themselves are discrete, we still
decided to use regression instead of multi-class classification due
to the continuous nature of our problem. The network design was
focused on using a low number of parameters as analyzing orbital
tightening is a task that should be addressable by a non-complex
architecture which at the same time does not tend to overfit, a prob-
lem that more complex networks are prone to when using only a
small number of training samples.

Layer Architecture
Layer Type Size Stride C/N Act
Conv2D (5, 5) (1, 1) 6 ReLU
MaxPool2D (2, 2) (2, 2) - linear
Conv2D (5, 5) (1, 1) 16 ReLU
MaxPool2D (2, 2) (2, 2) - linear
AdaptiveAvgPool2d 5×5 - - - linear
Flatten - - - -
Dense - - 120 linear
BatchNorm1D - - - ReLU
Dropout 0.25 - - - -
Dense - - 84 linear
BatchNorm1D - - - ReLU
Dense - - 1 linear

Table 1: Regression net architecture. C/N - Channels (for conv lay-
ers) or neurons (for fully connected/dense layers), Act - activation
function

2.4. Client-Server Architecture

We have integrated the algorithms for mouse segmentation and
classification into a convenient graphical user interface. As current
workstations in medical labs usually lack specialized GPUs that
significantly speed up the execution time of neural networks, we
decided to implement a client-server architecture that performs all
computationally expensive tasks in a separate process that can be
run either on the same computer or on a remote machine with more
processing power. The communication link between both processes
is established using ZeroMQ [Akg13], a cross-plattform middle-
ware allowing inter-process communication between hosts imple-
mented in several programming languages and potentially oper-
ating on different operating systems. ZeroMQ’s support for both
Windows and Linux allowed implementing the front-end on Win-
dows - being a commonly used OS for computers in animal labs -
and the classification back-end in Linux, which on the other side
is commonly used for cluster machines with multiple GPUs. Using
Linux also allowed using the powerful PyTorch library [PGC∗17]
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Figure 3: The distributed architecture of our proposed system.

Figure 4: Screenshot of the frontend’s GUI

for implementing the deep learning networks as PyTorch was not
available for Windows at the time of implementation.

A schematic overview of our architecture is shown in Fig. 3.
First, the user opens a video file and can select up to four ROIs
contaninig mice for segmentation and classification. The ROIS are
fed to the server in real-time at 30 frames per second. The CNNs
perform segmentation and classification and return the center of
the segmentation mask and the predicted MGS score to the client,
where the data is used to display the analyzed ROIs seperately and
optionally a marker located at the center of each detected eye. Ad-
ditionally, the MGS scores are plotted continuously over time at
the bottom of the user interface window. A screenshot of the GUI
applied to two mice is shown in Fig. 4.

3. Experiments and Results

Here we present and evaluate our results for the previously de-
scribed methods.

3.1. MGS Scoring

For actual MGS prediction based on eye patches, we trained our re-
gression CNN with 314 manually labeled images. Evaluation was
performed in a 30-fold cross validation. Due to the small number
of labeled examples, we designed an augmentation strategy based
on random subsampling: First, the training images are rotated by a

random amount between +30 and -30 degrees. Subsequently, a 60
x 60 pixel sub-image centered at the eye center is extracted from
the image. Finally, to account for the fact that the eye may possi-
bly be not localized precisely by the segmentation and eye detec-
tion stage, we extract a 50 x 50 pixel patch from the sub-image,
thereby simulating a shift by up to 5 pixels in any direction - a
sufficiently high distance to cover realistic localization outcomes
as indicated by the results of the segmentation described above. All
these augmentation steps were performed during training on-the-fly
using random parameters, i.e. the augmentation was random at each
training run. Additionally, an analysis of the class distribution had
shown that classes at the extreme ends of the score were strongly
under-represented in the data set. This had been expected since
the experiments performed on the mice were expected to produce
’moderately severe’ results, therefore with only few mice showing
no effects and at the same time only a few individuals displaying
severe effects. To account for the uneven distribution, we added
a sampling routine that adjusted the probability of a picture from
a certain class to be fed into the network for training to be anti-
proportional to the class probability of the image’s label. Training
was performed using random batches with a batch size of 32 for
35 epochs, using SGD optimization at a learning rate of 0.001,
MSE loss and a momentum of 0.9. To additionally increase clas-
sifier performance and leverage for the small training set, we made
use of pre-training for transfer learning. To this end, the net was
pre-trained using the CIFAR-10 dataset [Kri09]. To allow multi-
class classification instead of regression, we replaced the last layer
with ten output neurons for the ten CIFAR-10 classes and trained
the net using categorical cross-entropy. After finishing pre-training,
the weights of the convolutional layers were transferred to the orig-
inal regression network and training continued on the mouse eye
data.

Figure 5 shows a Bland-Altmann plot [BA86] of the regression
results compared with the manually given ground truth. This plot-
ting method conveniently compares the mean and the difference of
results returned by two methods (in our case the true and the pre-
dicted label) and therefore allows a graphical comparison of the
method’s properties. We predict a continuous value for discretely
given ground truth values; this results in the linear clusters visible
in the figure that allow a quick comparison of real and predicted
values. The method’s mean absolute error (MAE) is 0.871; the plot
shows that the network has a slight tendency to underestimae very
high and to overestimate very low labels. This may be partly due
to the fact that the regression is bound to be within the margins of
[0, 9]. The mean difference is -0.18, indicating a marginal under-
estimation of MGS values by our network.

3.2. Architecture Benchmark

We benchmarked our system on a client with the GUI front-end
running on workstation hardware (Intel i5-4460, 4 cores at 3.2
GHz, 32 GB RAM) and connected it to a GPU server running us-
ing hardware for complex computations (Intel Xeon E5-2697, 18
cores at 2.3 GHz, 256 GB RAM, 8x nVidia GeForce GTX 1080
Ti) where segmentation and regression were performed. All video
data was loaded by the client and the ROIs were forwarded to the
server using ZeroMQ. The system performs live MGS scoring at
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Figure 5: Bland-Altmann plot of the classification results. The lin-
ear clusters are result of the discrete expert annotations that only
used whole numbers as MGS values while the network outputs a
continuous value.

30 fps for up to three ROIs, with the frame rate dropping to 20 fps
when scoring four animals. We assume that a multi-GPU approach
that allows distributing the computations on several graphic cards
would allow live scoring of four or more ROIs at full frame rate.

4. Discussion

The MAE of <1 being achieved by the classification network indi-
cates that the method is a viable approach for mouse pain quantifi-
cation using image data. We assume that the inter-rater variability
between two human observers is within the same range; additional
labeling experiments with multiple experts that will allow testing
this assumption are currently on-going. The high frame rate of
our implementation including all steps necessary for video prepro-
cessing and region detection allows novel approaches towards pain
quantification. Up to now, pain was measured by using selected
frames from videos that may not capture the full range of expres-
sions shown or introduce a bias depending on the frame selection
strategy. With pain information being available continuously for ev-
ery frame, novel experiment settings and evaluation strategies can
be considered to take advantage of high-frequency real-time pain
scoring.

5. Conclusion and Future Work

We presented a multi-stage method based on convolutional neural
networks for live scoring of facial expressions in black laboratory
mice. The approach is implemented using a server-client model
and allows real-time MGS scoring on videos. It is extendable to
videos of multiple animals and offers a graphical user interface for
convenient use by non-technical staff. Evaluation of the segmenta-
tion stage shows that the implemented architecture allows precise
mouse segmentation and eye detection for further processing. The
classification using a fast CNN architecture shows a high consis-
tency with manual annotations. We believe that after some refine-

ment steps the software can be used for reproducible and quanti-
tative automated pain estimation in laboratory mice under routine
experimental settings. Next to usability and stability improvements,
adding and evaluating algorithms for the automated assessment of
the remaining MGS sub-scores can be considered. Moving from
pain scores measures based on analysis of single images and aver-
aging the results for a whole video to an individual score for every
time point of the video will enable novel experiment setups, how-
ever methods for analyzing of the now continuous MGS data need
to be developed as well.
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