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Abstract
Phase-Contrast Magnetic Resonance Imaging (PC-MRI) measures volumetric and time-varying blood flow data, unsurpassed
in quality and completeness. Such blood-flow data have been shown to have the potential to improve both diagnosis and risk
assessment of cardiovascular diseases (CVDs) uniquely.
Typically PC-MRI data is visualized using stream- or pathlines. However, time-varying aspects of the data, e.g., vortex shed-
ding, breakdown, and formation, are not sufficiently captured by these visualization techniques. Experimental flow visualization
techniques introduce a visible medium, like smoke or dye, to visualize flow aspects including time-varying aspects. We propose a
framework that mimics such experimental techniques by using a high number of particles. The framework offers great flexibility
which allows for various visualization approaches. These include common traditional flow visualizations, but also streak visual-
izations to show the temporal aspects, and uncertainty visualizations. Moreover, these patient-specific measurements suffer from
noise artifacts and a coarse resolution, causing uncertainty. Traditional flow visualizations neglect uncertainty and, therefore,
may give a false sense of certainty, which can mislead the user yielding incorrect decisions. Previously, the domain experts had
no means to visualize the effect of the uncertainty in the data. Our framework has been adopted by domain experts to visualize
the vortices present in the sinuses of the aorta root showing the potential of the framework. Furthermore, an evaluation among
domain experts indicated that having the option to visualize the uncertainty contributed to their confidence on the analysis.

CCS Concepts
•Human-centered computing → Scientific visualization; • Computing methodologies → Scientific visualization; • Applied
computing → Life and medical sciences;

1. Introduction

Blood flow plays a decisive role in the occurrence and progression
of many cardiovascular diseases (CVD’s) [HBB∗10, MFK∗12].
This group of conditions is responsible for the highest mortality
and morbidity rates in the world [MBG∗15]. The blood flow can be
acquired using phase-contrast enhanced magnetic-resonance imag-
ing (PC-MRI). PC-MRI provides blood-flow information that facil-
itates the understanding and diagnosis of CVD’s. These measure-
ments consist of volumetric vector fields that vary in time, captur-
ing quantitative blood-flow information.

The observed patterns in a patient’s blood-flow determine the
probability of a disease, and, ultimately, can establish a final di-
agnosis. For example, for certain CVDs, vortex-flow patterns are
considered to be an essential factor in the development of these
diseases [CCB∗05, HH08, KGP∗13, AKT∗16]. Therefore, visual-
ization of the flow is important, such that it is possible to locate and
qualitatively analyze the flow features of interest [CCB∗05, HH08,
vdGG16]. For the flow visualization often streamlines or pathlines

are [vPBB∗10]. However, these visualizations do not capture any
of time-varying aspects of the data, such as, how and when vor-
tices form and breakdown, and how they move through the flow
(shedding), i.e., information on the evolution of a vortex over time.
Which is, for example, important when analyzing the flow in the
heart [AKT∗16]. An example of vortex formation and breakdown
in the aorta with our framework is shown in Fig 1, notice that an-
imation is essential for this type of visualization and is provided
in the supporting material. While vortices can be visualized using
pathlines, they cannot be used to visually show how they change
over time. The pathlines show a static representation of the tempo-
ral behaviour of particles, since they only show a single trajectory
for a given seeding position, not how this trajectory can change
over time. Streaklines, on the other hand, are more adequate to
reveal time-varying flow behaviour [Lan96]. To obtain streaklines
in physical flows visible foreign material is continuously added.
For example, in the medical setting, an angiographic catheter are
used to inject contrast dye into the artery to evaluate the flow inside
it [CF76]. By continuously seeding particles from a fixed seeding
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position, the temporal relation between the particles is maintained
and flow changes over time are visually encapsulated. Hence, us-
ing streaklines one can recognize both local and global spatial and
temporal changes in the flow, that cannot be directly provided by
streamlines nor pathlines.

One of the reasons streak visualization is rarely applied for the
computer-based visualization of blood flow is that it typically has
a higher computer memory footprint, i.e., more temporal data must
be available to the visualization. To the best of our knowledge, no
system uses streak visualization for PC-MRI data.

Another aspect of PC-MRI data that is often not considered in
visualization is the presence of several sources of uncertainty, e.g.,
phase-wrap artifacts, motion artifacts, partial volume effects and
measurement noise, for example, due to inhomogeneity of the mag-
netic fields. Using traditional flow visualizations, uncertainty is ig-
nored, which can be misleading and generating a false sense of re-
liability, or it can even cause distrust and conflict. For example, it is
known that the presence of measurement noise has a significant in-
fluence on the quantification of the vorticity of the flow [vSCG∗15].
The flexibility of our framework allows for an interactive uncer-
tainty visualization based on a per-voxel probability distribution,
and therefore, presents the user with a way to assess the uncer-
tainty of the flow visualization. Uncertainty analysis is recognized
as an essential stage in any decision making process [Fre03], more-
over, the visualization of uncertainty is recognized as one of the key
challenges in flow visualization [BHJ∗14, BAOL12, PV13].

In conclusion, we present a framework for the visualization of
PC-MRI data using a high number of mass-less semi-transparent
particles. We apply GPU-based particles that are are traced and re-
leased in parallel to be used in the context of PC-MRI data. The
flexibility of our framework allows for various visualization ap-
proaches. These include common traditional flow visualizations
and adds the possibility for streak visualizations and uncertainty
visualizations. The source code and executable of our framework is
open source and publicly available at https://gitlab.com/
NielsDeHoon/QFlowExplorer.

2. Related work

In this section, we present related work on flow and uncertainty vi-
sualization since these are the main fields our contributions extend
on.

2.1. Flow visualization

In the last years, a focus has been put on identifying and visualiz-
ing blood-flow characteristics [KBvP∗16,LGP14,VPvP∗12] to aid
identification of abnormal blood-flow patterns. Many of such flow
visualizations are in essence Lagrangian, i.e., mass-less particles
advected through the vector field. Often these particle trajectories
are shown in the form of lines [vPBB∗10] or surfaces [vPBB∗11].

In computer-based flow-visualization approaches, experimental
visualizations are often mimicked using particles. A method is us-
ing Surface Particles [vW92], i.e., particles with a normal vector
based on the surface of the particle defined by the flow. Another
method is to use semi-transparent textured billboards, where the

density of the particles is proportional to the opacity [KSW04].
More advanced techniques use smoke surfaces [vFWTS08] recon-
structed from a high number of particles advected through the flow.
To the best of our knowledge, these methods were not yet applied
for blood-flow visualization.

Domain experts often use streamlines and pathlines as these pro-
vide a static overview of the flow and are commonly used to com-
municate findings [MFK∗12, HH08, KYM∗93, vPBB∗10]. How-
ever, finding the right moment and location for the seeding of
the visualization is crucial and non-trivial and choosing the wrong
settings can lead to missing essential flow features. One com-
mon approach is to place a fixed number of random seeds over
space and time that cover the whole vessel. The disadvantages of
this approach are that the clutter becomes high, and interpreting
the trajectories started at different points in time becomes unfea-
sible. To understand the temporal behavior of the flow the user
has to have a mental map of the various moments in time that
are presented. In general, this method of seeding is considered
non-optimal [MLP∗10]. Streak visualization requires a continu-
ous seeding over time, giving the user a complete overview of the
flow along with its temporal behavior. Therefore, streak visualiza-
tion can be used minimizing the demands on the adequate seed-
point definition and facilitating interpretation given the experimen-
tal physical flow counterpart.

2.2. Uncertainty of flow data

Several uncertainty-visualization methods have been proposed in
the last decades, also specifically for vector fields [GHP∗16,
HCLS16, OGT11]. However, few have been applied to PC-MRI
data.

A first attempt to include uncertainty information in PC-MRI vi-
sualizations was presented by Friman et al. [FHH∗10]. They have
modeled the noise in measured blood-flow unsteady data as a mul-
tivariate Gaussian distribution and have presented the uncertainty
information using a flow map. They visualize and quantify the un-
certainty using conventional flow visualization techniques, such as
streamlines and particle traces which often suffers from occlusion.
The extension of their work includes pathlines and particle traces.
Given some initial conditions, it shows the probability distribu-
tion [FHH∗11] of a particle passing through a volumetric area, pro-
viding a quantitative measure for uncertainty.

Both works by Friman et al. [FHH∗10,FHH∗11] rely on sequen-
tial Monte Carlo sampling of the probability space of the 4D PC-
MRI data, which is computationally expensive, hampering inter-
action. The visualizations proposed by Friman either summarize
independent pathlines without indicating the trajectories or only
shows pathlines for one seeding position. The work Schwenke et
al. [SHFF12] represents the uncertainty by the likeliness of the tra-
jectories using a fast-marching method. However, the technique by
Schwenke et al. is non-trivial to extend to unsteady flow, and thus
can only capture streamlines. For derived flow features and their
uncertainty, the amount of research is still very limited. For the
computation of the stroke volume and regurgitation fractions, es-
sential indicators of the effectiveness of the flow, the method by
Köhler et al. [KPG∗15] takes the uncertainty of the measured data
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Figure 1: Streak visualization showing the formation, shedding and breakdown of a vortex in a patient with an aortic dissection in the aortic
arch and regurgitation is present in the ascending aorta. The corresponding video can be found in the supporting material.

into account to derive robust measures that are insensitive to the
correct angulation of the measuring plane. Our method is comple-
mentary to the approach by Köhler et al. and could be used as an
additional visualization in their context.

Despite the various methods for visualizing the uncertainty of
flow that already exist, these methods are not readily suitable for
the visualization of the uncertainty of 3D PC-MRI measurements
over time at interactive rates. Many of these methods would lead to
occlusion and often the relation of the visualization to its seeding
position is lost.

In our framework, the measured data is sampled and distorted
based on the statistical noise model of Friman et al. [FHH∗10,
FHH∗11]. The modeling itself of the uncertainty is considered out
of the scope of this paper, which focuses on the visualization as-
pects. Our work is based on the assumption that a statistical model
of the uncertainty per volumetric position exists. Notice that this
excludes the uncertainty in the seeding position, despite its impor-
tance [MET∗15].

Figure 2: Respectively, one of the three velocity components (in-
ferior to superior) (a), the magnitude (b) and the corresponding
signal to noise ratio (c), computed using the method by Friman et
al. [FHH∗10]. All at peak systole of a healthy volunteer.

3. Data characteristics

For prevention and early diagnosis of symptoms for aortic dissec-
tions and other cardiovascular diseases, it is essential to have a good
understanding of the flow [HBB∗10,MFK∗12]. While 4D PC-MRI
is not yet used in a clinical setting, research indicates that it pro-
vides interesting insights in the blood flow and helps to determine
the importance of various flow features [KYM∗93, VFdH∗18].

For this paper, we use reconstructed PC-MRI data coming di-
rectly from the scanner, i.e., without processing it. The vector vol-
umes were cropped around the aorta with a voxel size of 2.0×2.0×
2.5mm. The acquisitions cover a full heart beat in 20 to 25 phases
with a temporal resolution of approximately 40ms. A velocity en-
coding of a speed of 2m/s was used, with a repetition time (TR) of
4.7ms, echo time (TE) of 2.7ms, and a flip angle of 5◦. Fig. 2 shows
one of the three velocity components of the phase at peak systole.
The vessel segmentation was generated using marching cubes on
the temporal maximum intensity projection (TMIP) which is less
sensitive to temporally changing noise [KBvP∗16]. The resulting
mesh was then manually smoothed using mesh-editing software.
More details on the acquisition of PC-MRI data are given by Markl
et al. [MFK∗12] and Gasteiger et al. [Gas14].

4. Mimicking Experimental flow

Our framework is inspired by experimental flow visualization,
which often works by injecting a foreign material as a visual
medium into the flow, for example, dye or smoke, to create a vi-
sual representation of the transport of the material by the flow. The
foreign material typically consists of fluid with properties similar
to the fluid that is to be inspected.

In computer visualization, we can use a high number of virtual
particles to mimic such experimental flow visualizations. By using
the GPU, a high amount of particles can be advected in parallel
and shown in real time. An efficient implementation of particle ad-
vection helps to achieve interactive frame rates [KKKW05]. While
such particle systems already exist, some components have to be
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adapted to accommodate for use with PC-MRI data. In this section,
more details on the particle system are given.

4.1. Integration

In our system, the particles are advected in parallel through the ve-
locity field using a fourth-order Runge-Kutta ODE solver on the
GPU. By using the GPU, every particle can be advected in paral-
lel, resulting in interactive frame rates, even for a high number of
particles [KKKW05, ELPH18]. The time step is bounded by the
Courant-Friedrichs-Lewy (CFL) condition that ensures that a parti-
cle moves at most one voxel per time step, t, to reduce the numerical
error, i.e.,

∆t =
voxelSize

venc
.

Here ∆t is the maximum safe time step in seconds, voxelSize is the
smallest dimension of the voxels in meters, 0.002 meters (2mm) in
our data sets, and venc is an acquisition parameter (in m/s), repre-
senting the largest speed that can be measured unambiguously.

Figure 3: From left to right three line integration options are
shown, i.e., stream, path and streak integration. All three methods
show different aspects of the flow. The color brightness indicates
the age of the particles.

By allowing integration over time and varying the seeding time
of the particles, our framework can generate stream- path- and
streaklines, as shown in Fig 3, with, from left to right, these three
integration options. The stream visualization fails to capture the
vortex present in the aortic arch of a patient with an aortic dissec-
tion. The path visualization fails to show the regurgitation. How-
ever, it clearly indicates the vortex in the arch. The streak visual-
ization does show both the regurgitation in the ascending aorta and
the vortex in the aortic arch in a single image.

4.2. Seeding strategies

In both experimental flow visualization and computer-based flow
visualization, the seeding positions are a crucial step, which is com-
monly user-defined. Flow patterns can be missed due to too many
seed positions, or insufficiently represented due to too few seed po-
sitions or seeding at the wrong position. Notice that in unsteady
flow the seeding position includes location and time.

We allow the user to interactively set regions for seeding the

visualization and the number of particles that are seeded per re-
gion. The particles are randomly seeded in this area to avoid struc-
tured artifacts [vPBB∗10]. We also propose to take advantage of the
structural artifacts, e.g., by seeding repetitively from a fixed posi-
tion, it is possible to generate line-like visualizations, thanks to the
high number of the particles [KKKW05,ELPH18]. If a single point
is used for injecting dye of a given color, the dye will show the flow
originating from this point using a line, i.e., a streakline [CF76] By
allowing control on the discontinuity of seeding both on the spatial
and temporal seeding location, we can obtain images that are simi-
lar to experimental flow visualizations. Some examples of different
seeding strategies are shown in Fig 4.

Figure 4: By providing different seeding strategies various flow
visualizations can be achieved. In this case a stream visualization.
From left to right, an uncertainty visualization with discontinuity
on the spatial seeding location, a visualization with discontinuity
in both spatial and temporal seeding location, and a volumetric
seeding region where particles are seeded from each voxel center.

5. Visual representation

In this section, we describe several visualization strategies that are
present in our framework and illustrate the frameworks flexibility.
Rendering a large number of particles despite providing flexibility
also tends to cause visual clutter. Therefore, we also provide several
options to reduce visual clutter.

5.1. Transparency and Depth

Transparency helps to mimic smoke and dye providing some in-
tuitive reference in the analysis. To define the transparency falloff
from the particle’s center, different kernels could be used. Using
a Gaussian kernel yields an ink-like visualization that is applied
through this paper. Note that points represent the particles, and, as
such, depth sorting can be done for correct transparency by sort-
ing the points based on their distance to the viewer. The sorting
and rendering are done on the CPU to enforce a correct render-
ing order, which would not be guaranteed when the GPU would be
used. While the rendering cannot be done in parallel, the system
still achieves interactive frame rates.

The transparency can linearly increase depending on the age
of the particle: the older the particle, the more transparent it is
rendered. Thus, it seems that particles dissolve over time. Hav-
ing semi-transparent particles is helpful providing a rather global
overview of the flow, while an opaque rendering would occlude the
structure of the internal flow.
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It is essential to be able to correctly identify the shape and spatial
position of flow patterns shown by the particle visualization. There-
fore, depth encoding is incorporated in our visualizations. Depth
darkening by Luft et al. [LCD06] enhances the edges of visualized
objects. Based on the relative distance between two points to the
viewer, darkening is applied for the farther point. Depth darken-
ing enhances the edges and thus provides a depth cue that has less
impact on the underlying color. However, global depth informa-
tion can be unclear. This method uses the depth buffer, making it
non-trivial to apply on transparent renderings, where multiple lay-
ers with different depth maps are visible. Therefore, we propose
that as we render a particle, we read out the current underlying
depth buffer and use the gradient of the depth buffer to decide on
the darkness of the particle’s halo. This makes it possible to apply
depth darkening for transparent particles, which is used for the im-
ages in this work. Depth darkening does not interfere with the color
of the particles nearest to the viewer and enhances local differences
in depth.

5.2. Color traces

Physicians are commonly interested in understanding how the
blood flow distributes. Therefore, the user should be able to iden-
tify the origin of the particle, to derive the direction and behavior of
the flow and patterns in the flow. In physically experimental flow
visualization this is done through dye traces. To achieve this ef-
fect, we encode the seeding position of each particle using a color,
mapped to the seeding positions. All particles emerging from the
same location will have the same color and form color traces. We
encode the seeding position as a categorical attribute, using color
maps with distinctive hues.

We propose to use isoluminant color maps, which makes it
possible to use luminance for the visualization of other proper-
ties [Bre99]. While the perception of transparency does not rely
on the luminance [DCH01], the use of both luminance and trans-
parency are visual channels that interfere with each other. However,
for our purpose, the use of transparency is required to regulate the
visual clutter and to visualize the complex flow patterns.

For most images in this paper, unless indicated otherwise, an
isoluminant color scheme is used. The color schemes were de-
rived from the Hue-Chroma-Lightness (HCL) color space [Iha03],
a cylindrical transformation of the CIE L*a*b* color space, such
that each equal step through the HCL space results in approxi-
mately equal perceptual changes in color.

5.3. Glyph-like visualization

Due to the limited number of available visual channels, it can be
helpful to encode certain aspects, for example the speed and di-
rection of the flow, without the use of color. This allows the use
of the color channel for encoding different features of the flow.
Our framework allows the generation of glyph-like visualizations
through applying the shape mapping functions introduced by Ev-
ers et al. [EBRI15]. By varying the size of the particle and seeding
through time by defining a cyclic pattern we can vary the particle
size based on the particle age to obtain a glyph-like representation,
as shown in Fig. 5. These glyphs-like visualization can be used

to provide additional information regarding, for example, velocity
and direction, which does not interfere with both color and opacity
encoding [FW89, EBRI15].

Figure 5: By varying the size of the particles that form a cyclical
pattern through time, a glyph-like representation can be achieved,
indicating the direction and speed of the flow. The particles are
seeded one a line.

6. Uncertainty

The flexibility of our framework allows for the visualization of un-
certainty of the flow data. In this paper, uncertainty is seen as the
level of robustness of the information provided, such that the user
is aware of the randomness present in the data.

This paper does not focus on the derivation of the models that
describe these uncertain factors accurately, as this is considered out
of scope. Instead, we focus on the visualization of the uncertainty
caused by measurement noise, as most previous work. It is impor-
tant to note that most uncertainty visualizations will not provide
extra information to the expert beyond than a level of confidence
on the visualization shown. Hence, quantitative assessment is not
the goal of such visualization. To convey uncertainty, so-called
fuzzy visualization is a common approach [PWL97, KUS∗05].
Such fuzzy visualizations make it harder for the user to distinguish
for example specific trajectories if the uncertainty is higher, and
hence gives and indication of the underlying uncertainty. There is
very limited work on showing the effect of the uncertainty in the
data. Hence, our goal is to provide this uncertainty information.
We focus on measurement noise that is usually modelled through
probability distributions. The flow data resulting from PC-MRI
measurements is not necessarily divergence-free. As a result, any
particle trace in the data is potentially showing non-physical flow.
Hence, the idea is that a trace based on the probabilistic distribu-
tion of the noise is as valid as a trace based on the acquired PC-
MRI data. These probabilistic distributions expresses the random-
ness that is present in the scan. It can be seen as that our goal is to
visualize the traces that would emerge from multiple scans of the
same person and area. Therefore showing the randomness due to
acquisition noise.

Despite giving a limited view, measurement noise adds an im-
portant source of uncertainty, and the proposed method can be
used with other potential models of uncertainty, as long as they
are modelled as a distribution that can be sampled. In this section,
the derivation and sampling of the distribution of the measurement

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

181



N.H.L.C. de Hoon et al. / InkVis: A High-Particle-Count Approach for Visualization of Phase-Contrast Magnetic Resonance Imaging Data

noise as will be used in our visualizations is provided. For an esti-
mate of the uncertainty caused by measurement noise, we employ
the method presented by Friman et al. [FHH∗10], which provides a
voxel-wise estimate of the uncertainty.

The Rician noise in PC-MRI data can be approximated by Gaus-
sian noise [GP95] for a high signal-to-noise ratio.This is normally
the case for voxels containing blood [FHH∗10]. To compute the
SNR, we need to estimate the signal strength A and the noise vari-
ance σ

2. For every voxel i, the signal strength is given by

Ai =
1
4

(∣∣∣IO
i

∣∣∣+ ∣∣Ix
i
∣∣+ ∣∣Iy

i

∣∣+ ∣∣Iz
i
∣∣) . (1)

Here Ik
i , k ∈ {O,x,y,z}, is the reconstructed image at voxel i, the

superscript O represents Note that the SNR is based on the anatomy
and velocity. By doing so low velocity features of the flow within
the vessel, such as vortices [BDC14], can From this, we derive a
mask Ω that only contains high signal strength voxels, i.e., the non-
air voxels. For these voxels, the Rician distribution of the noise in
the measurements can be approximated by a Gaussian distribution.
The noise variance for all voxels is estimated by

σ
2 =

1
|Ω|−1 ∑

i∈Ω

(
1
3 ∑

k∈{0,x,y,z}

(
Ik
i −Ai

)2
)
, (2)

where |Ω| denotes the number of voxels in Ω. Note that we as-
sume that the noise variance is equal for all voxels in the volume,
in contrast to the signal strength A, which is derived for each voxel,
similar to Friman et al. [FHH∗10]. For our data sets, we found an
average SNR of approximately 10.

The signal strength is measured by combining the three velocity
directions and the magnitude image. From the SNR and the voxel
signal strength a covariance matrix is constructed:

Ci =
venc

2

π2 ·
σ

2

A2
i
·

2 1 1
1 2 1
1 1 2

 , (3)

where the scalar velocity encoding venc is an acquisition parame-
ter (in m/s), representing the largest speed that can be measured
unambiguously. Then for each measured velocity component in
a voxel a Gaussian distribution is defined. We refer to Friman et
al. [FHH∗10] for more details on the noise model distribution cal-
culation.

6.1. Uncertanty distribution sampling

To visualize uncertainty, we compute random particle trajectories
that are defined by sampling the orientation distribution function
defined by the uncertainty at each voxel position. These particle tra-
jectories indicate the possible movements that the particles could
have taken on a specific scan instance considering the acquisi-
tion noise. The noise is assumed to be mutually independent at
each voxel. For the computation of the probabilistic particle tra-
jectories, the uncertainty distribution has to be sampled. We apply
the same approach as commonly used for stochastic fiber track-
ing [BWJ∗03,SJW∗04]. For each integration step, we draw random
values from the normal distribution per vector component using the

Box-Muller approach. By randomizing the velocity for every sam-
ple based on the signal strength of the voxel and the covariance
matrix, the sampling is independent of the time-step size.

From this, we can also compute the difference di f f in m/s be-
tween the mean velocity vector (velm) and the random velocity
vector (velu) obtained by random sampling using the covariance
matrix

di f f = ||velm−velu||.

By accumulating this local difference for each integration step,
weighted by the step size in seconds, we obtain a cumulative de-
viation. This cumulative deviation indicates how much the parti-
cle deviates from the measured flow. Hence, if the particle passes
through an unreliable voxel the deviation is more likely to be big-
ger in comparison to when it passes through a more reliable voxel.
With an infinite number of particles and a time step that goes to zero
we would obtain the true stochastic distribution for a given seeding
position. Therefore, we need a high number of particles and a time
step that is as small as possible. The user can control both param-
eters to fine tune the balance between accuracy and performance.
Note that, by using the CFL condition for the sample time step
size, it is upper bounded and provides results that are comparable
to a much smaller time step sizes especially when the certainty is
high, as shown in Fig 6 where brighter colors represent a higher cu-
mulative deviation. The user can, however, choose to have higher
accuracy of the uncertainty distribution at the cost of performance
and thus obtain a better approximation of the stochastic trajectory
of a particle when needed, as shown in Fig 6. Note, however, that
the visual differences are minimal, suggesting that the CFL condi-
tion is a sufficient approximation.

Figure 6: The uncertainty is shown using the Viridis color map.
Brighter colors indicate a higher cumulative deviation. Left image:
the sample step size is given by the CFL condition; center and right
images: the sample step size is set to half and a quarter that by the
CFL condition, respectively.

6.2. Uncertainty visual representation

By using isoluminant color schemes, the luminance visual channel
can be used to encode the uncertainty. Moreover, the accumulation
of luminance indicates a gathering of uncertainty. Note that, if the
uncertainty is higher, the visual clutter increases. Additionally, the
seeding position becomes difficult to decipher which corresponds
unreliability of the information.

For the investigation of the uncertainty it is also possible to map
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the transparency of the particle to the accumulated deviation: the
more the particle deviates, the more transparent it will be rendered.
This allows a reduction of the visibility of the particles that are
either older or uncertain.

The cumulative deviation is mapped to the zero-to-one range by
dividing it by venc, i.e., the highest measurable speed. Note that the
cumulative deviation is unbounded, so this is a parameter that needs
to be tuned. However, this mapping has shown to be robust in our
experiments. We use venc as the upper bound for the cumulative de-
viation, higher amounts of deviation are shown equal to a deviation
of venc.

Fig 7 shows a streak visualization of systolic flow in a patient
with aortic dissection, a vortex can be seen in the aortic arch at
phases 10 to 14. The top row shows the measured flow without tak-
ing uncertainty into account, while the bottom row shows flow with
our uncertainty visualization applied. Here, the cumulative devia-
tion is encoded by an increase of the luminance while the color
hue represents the seeding position on the seeding line. The cor-
responding animation can be found in the supporting information.
The animation shows the full heart cycle and shows that the uncer-
tainty is highest during diastole.

7. Flow exploration

The main goal of our framework is to provide tools for gaining
insight into the measured PC-MRI flow, for example, its temporal
behavior and the influence of uncertainty on the visualization. The
massive generation of particles can produce clutter and occlusion
especially when uncertainty is considered, and as such interaction
is essential.

We provide a filtering mechanism to alleviate the clutter and oc-
clusion generated by the massive amount of particles visualized,
which we call particle transfer function. The main idea is to use
the concept of transfer functions commonly used in volume ren-
dering. We present a 2D histogram that maps the particle age to
the cumulative deviation of the particles. The density in this his-
togram relates to the number of particles that fall within a range.
Using this 2D particle-distribution histogram the distribution of the
uncertainty parameters indicates the impact of the uncertainty on
the presented visualization of the flow. The uncertainty is increas-
ing monotonically over time, however, the exact form is unknown
given that some phases or regions are less reliable than others. The
histogram shows the form of this progression and can identify, for
example, sudden increases in uncertainty, see Fig 8. The histogram
allows, for example, selecting particles that can be considered more
reliable due to long age and few deviation, or remove particles that
do not contribute to the understanding of the flow.

In Fig 8 and in the supplementary information, an example is
shown of the filtering. The particle-distribution histograms depict
the amount of the cumulative deviation against the particle age,
which can be used to select particles of interest, based on their reli-
ability. Similarly to a transfer function, the user can select particles
in the histogram to define its opacity and filter out all other parti-
cles, i.e., only the particles that fall into the green box of the graph
are shown fully opaque, see Fig 8. In the future, this could be ex-
tended with more complex transfer function definitions, i.e., optical

properties such as the color and opacity could be defined based on
the selection function. From this, an informed decision on the max-
imum line length given a seeding area that is reliable can be made,
e.g., basing the line length on a maximum cumulative deviation.

The particle-distribution histogram can also be used to filter par-
ticles based on their speed, or other properties in relation to the
particle age as shown by Fig 9. Some flow properties might work
better than others depending on the goal, for example, a general
assumption that is often used is that a low-velocity signal means
that the data is less reliable. However, some regions, such as the
branches of the aorta, have a relatively low-velocity signal, while
the magnitude data has a relatively high signal yielding a relatively
high SNR. Therefore, in this scenario, filtering based on the cumu-
lative deviation instead of the velocity is most likely to provide a
better option as shown by Fig 8 and Fig 9.

Having knowledge of the uncertainty also allows for selectively
visualizing only the most certain lines. This is done by ranking each
seeding position based on the average deviation of the particles that
are emerging from each seeding position. When a high number of
random seeding positions is used this filtering can be used to show
only the most reliable flow lines, see Figure 10. Moreover, by re-
moving uncertain seeding positions, the amount of clutter caused
by the uncertainty visualization can be reduced. The user can inter-
actively change the percentage of lines shown, and thus, they can
select a suiting percentage based on their interactive visual analy-
sis.

8. Computational costs

Our method provides an interactive exploration of PC-MRI data.
Our GPU implementation allows for advecting more than 2 million
particles and rendering them at interactive rates on a system with an
Intel Core i7-4770 3.4GHz CPU with 16 gigabytes of memory and
an NVidia 760GTX GPU, independent of the size of measurement
data and use of uncertainty information. The advection of 2 million
particles for a relatively-big time step of one phase (40ms) takes
less than two seconds. However, fewer particles are required for
an ink-like visualization: typically less than 500.000 particles suf-
fice, for which the system runs at a high frame rate. The rendering
performance is linear with the number of particles, e.g., rendering
400.000 or 1 million particles takes respectively 20 and 12 frames
per second. The source code and executable of our framework will
be made public and open source.

9. Results

Several results obtained with our framework have been presented
throughout the paper. In this section, we want to extend this results
by introducing a use case for which our framework was adopted and
an initial user evaluation to measure the potential of the uncertainty
visualization aspects of our framework.

9.1. Analysis of aorta root vortices

After being introduced to the framework, the cardiovascular PC-
MRI researchers we were collaborating with adopted the frame-
work for the visualization of vortices in the sinuses in the aorta
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Figure 7: Streak visualization of systolic flow in a patient with an aortic dissection. The bottom row uses our uncertainty visualization. The
numbers indicate the current phase of the visualization. Particles leaving the mesh were removed.

Figure 8: Stream visualization during peak systole. The color
shows the cumulative deviation. The cumulative deviation and age
of all the particles are shown in the graph on respectively the x and
y-axis. Note the sudden increase in deviation in the second half of
the histogram. Only the particles that fall in the green box area are
rendered.

root [VFdH∗18]. It is thought that these vortices help the leaflets
open and close efficiently [BDC14]. Moreover, a correlation be-
tween the vortices and calcific aortic valve disease (CAVD)
has been found, as is for example demonstrated by Hatoum et
al. [HD19] who use two-dimensional in vitro particle image ve-
locimetry (PIV) to generate streak plots. Overall, these vortices
play a very important role in the aorta root hemodynamics and the
efficiency of the aortic valve.

The cardiovascular PC-MRI researchers are particularly inter-
ested in patients that have undergone valve-replacement surgery.
They wanted to analyze and compare the flow of 10 healthy
volunteers to the flow of 19 patients that had undergone valve-
replacement surgery. The goal is to see whether the vortices in the

Figure 9: Stream visualization during peak systole. The color
shows the cumulative deviation. The speed and age of all the parti-
cles are shown in the graph on respectively the x and y-axis. There
is a sudden differences in particle speed that is related to a sudden
increase in uncertainty. Only the particles that fall in the green box
area are rendered.

aorta root are still present after the surgery and whether they differ
from healthy volunteers. To do so, the vortices had to be rated based
on a semi-quantitative score. Since the vortices form over time they
were hard to detect with existing techniques basically due to the dif-
ficulty to find the right seeding moment. Streak visualization helps
to determine at which phase the vortices are most clearly present,
or whether they were present at all.

Using our framework the seeding positions were determined
based on the anatomical context and by placing a seeding disk or
cylinder through the aorta root while running the streak visualiza-
tion for the whole heart cycle. An example of such a streak visu-
alization showing the vortices are shown in a video in the supple-
mentary material. Once the phase where the vortices were clearly
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Figure 10: Flow within phantom data of an aneurysm. Each path-
line visualization shows a different amount of lines based on the
certainty of the lines. The percentage indicates how many seeding
positions are used by the visualization after filtering. As such the
user can visualize the most reliable flow patterns. Note that the
coloring is used to encode the local speed where brighter colors
represent higher speeds.

Figure 11: Three vortices in the aorta root were visualized with
our framework. These vortices help close the three leaflets of the
aortic valve.

visible, if visible at all, is determined, a seeding for streamline vi-
sualization is used to produce a still image of each vortex as shown
by Fig 11. By filtering based on the viewing direction and the cen-
ter of the seeding region the amount of clutter could be reduced and
the vortex core was seen. For more clarity the vortices were color
encoded per sinus based on the seeding position of the particles,
while the luminance was mapped to the particle age.

9.2. User evaluation

Full evaluation of the variety of aspects of the presented framework
is a complex task that cannot be covered within this paper. There-
fore, we have chosen to evaluate the potential of two main aspects
of our framework: the importance of using streak visualization to

identify and characterize vortices, and the potential of using the
framework for uncertainty visualization.

To evaluate whether streak visualization indeed provided better
inside on time-varying aspects of flow we conducted a user study.
The study was developed among 24 participants, of which two
where cardiovascular PC-MRI researchers. The users were asked
to count the number of vortices that formed and broke down over
time in an analytic vector field based on an animations showing ei-
ther pathlines or streaklines. This task is commonly used by clinical
researchers to characterize the blood flow, e.g., in the heart or close
to the valves [BDC14, AKT∗16]. By using an analytic vector field
the number of vortices is fixed, thus the performance of the users
can be determined by the difference between their count and the
actual number of vortices. Overall, the users performed better on
this time-varying feature analysis task when a streak visualization
was shown, and they also felt more certain on their findings. More
information regarding this user study can be found in the additional
materials.

We also developed a preliminary user study to evaluate the po-
tential of the uncertainty visualization and exploration provided in
our framework. We presented our framework to four cardiovascular
PC-MRI researchers who work with this and similar PC-MRI data
on a daily basis and are very familiar with flow visualizations. We
presented the clinical researchers with a questionnaire that can be
found in the supplementary material. The questionnaire was pre-
ceded by a demonstration of our visualization using synthetic data
with various SNR levels. The user study was conducted in two
phases. The first two domain experts were involved in determining
the initial requirements for the framework. After they completed
the questionnaire changes were made to improve the user study
by adding additional questions. The remaining two experts were
not involved in the project in any way before filling in the updated
questionnaire. Both open questions and questions with respect to
users’ agreement to a given statement were asked. To determine
the agreement a Likert scale was used where the user could indi-
cate their agreement within a range of 1 (negative) to 7 (positive).
The questions of the user study are bellow, note that the additional
questions from the second round are indicated by a black triangle
instead of an open triangle.

1 B Do you think visualization, in general, helps the analysis of
blood flow?

2 B Do you think uncertainty visualization is helpful for the anal-
ysis of blood flow?

3 I Do you understand what the uncertainty visualization repre-
sents?

4 B Given the knowledge of noise in PC-MRI data, does the
uncertainty visualization contribute to your confidence in your
analysis?

5 I How does the uncertainty visualization influence your confi-
dence?

6 B Can you perceive the various amounts of measurement noise
present in the data using the shown visualizations?

7 B Would you use this uncertainty visualization?
8 B For what type of analysis, if any, would you use the uncer-

tainty visualization?

In a follow up questionnaire the use of filtering based on the un-
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certainty included. The users where shown examples of selectively
visualizing only the most certain flow patterns before the following
questionnaire:

9 I Do you think this type of filtering can be helpful?
10 I Would this type of selection influence your trust in the visu-

alization?
11 I Do you believe this type of filtering will improve your overall

analyses?
12 I How do you think the filtering could influence your analy-

ses/conclusions?

The answers of the experts agreement to the statements are shown
in Figure 12. Overall, the domain experts gave positive feedback
towards the use of uncertainty visualization and saw a benefit in
the visualization of uncertainty. Moreover, they were able to per-
ceive the influence of the noise on the visualization and were more
confident with regards to their analysis. Despite the limitations of
this study, it indicates the usefulness of visualizing the uncertainty
in PC-MRI data. Based on the open question one of the users com-

Figure 12: The agreement scores for the user evaluation questions
as given by the domain experts using a Likert scale with a range of
1 (negative) to 7 (positive).

mented that the presented visualization would be specifically inter-
esting for the analysis of flow in an aneurysm or the aorta. Another
participant found that the visualization was useful for the assess-
ment of vortices (location, type, size and intensity) and wall pres-
sure (location and force). Overall all participants were more confi-
dent in their analysis and trusted the visualization more. One par-
ticipant mentioned that it assists in judging the visualization, in the
sense of how much one can "trust" the direction and speed shown.
Experts liked the filtering based on certainty, one mentioned that
it helps them focus on the most essential areas and noted that the
filtering could be used to explore major flow patterns that can be
classified w.r.t. to their influence on disease progression.

10. Conclusions and Future Work

We have presented a flexible framework inspired by experimen-
tal physical flow visualization that allows the visualization of vari-
ous aspects of blood-flow PC-MRI data. Specifically temporal be-
haviour and uncertainty are features that can be explored in our
proposed framework and that are not commonly available in the
currently used methods in PC-MRI visualization.

To mimic experimental flow visualizations, a high number of
particles are traced over time through the 3D velocity fields using

existing GPU implementation that has been adapted for PC-MRI
data. This allows for traditional stream and path visualizations but
also streak visualizations, that can reveal time-varying flow features
present in the data. Such features include vortex formation, shed-
ding and breakdown, which are considered important factors in the
development of various cardiovascular diseases.

Furthermore, our framework allows for an interactive uncer-
tainty visualization of the flow information and enable the user to
explore the uncertainty that is present in the data visually. To mit-
igate clutter and occlusion, that is often present in 3D flow visu-
alization, we implemented various strategies in our framework, for
example, a glyph-like visualization. We also provided interaction
techniques such as the particle transfer functions to facilitate fil-
tering and generation of robust visualizations. An initial evaluation
among domain experts revealed that our framework is a positive
addition to their analysis of the flow. They have also adopted our
framework to visualize the vortices that are present in the sinuses
of the aorta root.

Although we believe our method improves the understanding of
flow patterns and the exploration of blood-flow data, There are sev-
eral open points which are subject to future work.

To assess the effectiveness of the visualization, a more in-depth
user evaluation, including more users would be beneficial. Further-
more, the evaluation of the effectiveness of the glyph-like repre-
sentation and depth encoding were not considered in our initial
evaluation. These techniques were evaluated in a different setting
by Evers et al. [EBRI15] and Luft et al. [LCD06] respectively. It
would be interesting to evaluate their effectiveness within our con-
text. Another valuable addition would be to include feature-based
seeding, for example, based on the Lambda2 vortex criterion or the
Q-Criterion. We believe this could be especially helpful in combi-
nation with filtering the seeding positions such that only the most
certain positions are shown to the user.

Since the uncertainty information has not been available to the
domain experts before, more evaluation is needed to determine the
added value of uncertainty visualization. Furthermore, we focused
on the uncertainty due to noise in the measured flow data, while
other sources of uncertainty are known to influence the data, such
as motion artifacts that occur in the vicinity of the moving car-
diac and vessel walls. Another source of uncertainty that could be
of interest is the uncertainty resulting from the numerical integra-
tion [LPSW96, FBW16, HCLS16]. Another application that would
benefit from using uncertainty is the clustering of blood flow pat-
terns that currently do not account for the uncertainty [MVPL18,
MOB∗19]. By including the uncertainty, the clustering could possi-
bly apply probabilistic similarity measures. Furthermore, it would
be interesting to study the modeling of the uncertainty after pre-
processing of the measured data using divergence-free filters, and
how to ensure and preserve the divergence-free property within
our uncertainty visualization framework. Complete modeling of
sources of uncertainty is still a complex, open problem. However,
all experts participating in the user study indicated that they were
more confident in their analysis when the uncertainty was shown
and would use the uncertainty visualization.

Finally, it would be interesting to apply our method to differ-
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ent flow data sets, such as heart data which develops complex flow
patterns in the form of vorticity.
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