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Abstract

Blood flow simulations play an important role for the understanding of vascular diseases, such as aneurysms. However, anal-
ysis of the resulting flow patterns, especially comparisons across patient groups, are challenging. Typically, the hemodynamic
analysis relies on trial and error inspection of the flow data based on pathline visualizations and surface renderings. Visualizing
too many pathlines at once may obstruct interesting features, e.g., embedded vortices, whereas with too little pathlines, par-
ticularities such as flow characteristics in aneurysm blebs might be missed. While filtering and clustering techniques support
this task, they require the pre-computation of pathlines densely sampled in the space-time domain. Not only does this become
prohibitively expensive for large patient groups, but the results often suffer from undersampling artifacts.
In this work, we propose the usage of evolutionary algorithms to reduce the overhead of computing pathlines that do not
contribute to the analysis, while simultaneously reducing the undersampling artifacts. Integrated in an interactive framework, it
efficiently supports the evaluation of hemodynamics for clinical research and treatment planning in case of cerebral aneurysms.
The specification of general optimization criteria for entire patient groups allows the blood flow data to be batch-processed.
We present clinical cases to demonstrate the benefits of our approach especially in presence of aneurysm blebs. Furthermore,
we conducted an evaluation with four expert neuroradiologists. As a result, we report advantages of our method for treatment
planning to underpin its clinical potential.

CCS Concepts
• Human-centered computing → Scientific visualization;

1. Introduction

The evaluation of blood flow data is increasingly used in medical
research to improve the understanding of vascular diseases as well
as for treatment planning. An example is the placement of vascular
implants to treat aneurysms, which strongly depends on the patient-
specific anatomy and hemodynamics. Therefore, flow data is ac-
quired by direct measurement, e.g., using ultrasound or MRI, or
generated through simulations using computational fluid dynamics
(CFD). In cerebral arteries, blood flow data is mostly obtained by
simulations on a subsection of the vessel. Questions relate to the
interactions between hemodynamic flow patterns, morphological
changes and vascular biology [OJMN∗19]. Commonly, blood flow
analysis is supported by visualizations based on stream- or path-
lines enriched with surface visualizations of the vessel tree. Finding
a suitable set of pathlines representing the most important flow pat-
terns while avoiding visual clutter is challenging. A typical solution
is to pre-compute sets of lines, commonly generated by dense seed-
ing on a regular 2D grid in the inflow area of the respective vessel

subsection, and then applying filtering. However, the seed points
for interesting pathlines are often sparsely distributed in the seed-
ing domain and can therefore easily be missed, even when seeding
a high amount of pathlines. Thus, high computational costs are re-
quired for pathlines that will never be shown, while still having no
guarantee to find the features of interest.

Recently, Engelke et al. introduced evolutionary streamlines for
the analysis of steady flows [EH18]. They demonstrate the poten-
tial of this method to improve seeding quality and reduce sampling
artifacts at significantly reduced computational costs. Additionally,
this method does not require a filtering step, since it directly evolves
a given set of lines to fulfill specified criteria. In this paper, we pro-
pose to extend this method to evolutionary pathlines for unsteady
flow analysis in complex vascular domains including pathologies.
The generation of feature-sensitive sets of pathlines is integrated
in an exploration framework for individual patients as well as the
comparison amongst patients. A set of predefined fitness functions
supports an automatic extraction of flow patterns of patient groups
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with high anatomical variations and aneurysm shapes, including
aneurysm blebs or strongly lobulated shapes. 3D visualization of
the pathlines gives the anatomical context required for improved
treatment planning. Mapping properties of the evolutionary algo-
rithm, such as fitness, onto the pathlines support the comprehensi-
bility of our approach. An easy specification of general optimiza-
tion criteria for entire patient groups is possible, thus allowing sim-
ulated cerebral blood flow data to be batch-processed.

Our method has been technically evaluated with respect to con-
vergence behavior, stability of the results and computational effi-
ciency. A case study shows the usefulness for the analysis of hemo-
dynamic flow in cerebral aneurysms for treatment planning. The
feedback of the domain experts suggests that the approach is supe-
rior to previous seeding and analysis strategies. The main contribu-
tions of our work can be summarized as:

• A new approach for analysis of medical blood flow data based
on evolutionary pathlines.

• An efficient pathline seeding strategy to achieve high line cover-
age, detecting even sparse and highly localized features without
relying on a complete field analysis.

• A technical evaluation of the algorithmic properties with respect
to convergence, reproducibility, performance and line coverage,
as well as an evaluation of the usefulness of the approach with
domain experts.

2. Background

Within this section, we provide background information about the
application scenario, i.e., cerebral aneurysms, as well as a general
introduction to evolutionary algorithms.

2.1. Medical Background

Arteriosclerosis and its accompanying diseases are the leading
cause of death in industrialized countries [OJ13]. They may cause
cerebral aneurysms — pathologic dilations of the cerebral arterial
wall. In case of aneurysm rupture, an ischemic stroke with often
fatal consequences for the patient may occur. Especially with re-
spect to increased imaging in the clinical routine, more and more
asymptomatical cerebral aneurysms are detected [EBD∗13]. Cere-
bral aneurysms often comprise a daughter aneurysm, also called a
bleb, which is a prominent bulging on the aneurysm. These blebs
are of particular interest, since they have been identified as a fac-
tor for increased rupture risk [TMS∗05, BRe∗03]. Since aneurysm
treatment, e.g., endovascular stenting and coiling or neurosurgi-
cal clipping, is accompanied with risks for the patient, clinical re-
search aims to avoid unnecessary treatment of incidentally found
aneurysms and to identify the best possible treatment with respect
to patient-specific anatomy and blood flow behavior.

For rupture risk assessment, clinical risk factors have been iden-
tified, e.g., the patient’s age, hypertension, aneurysm size and lo-
cation [GWBJ∗14]. State-of-the-art rupture risk models combine
morphological parameters characterizing the aneurysm’s shape
as well as hemodynamical parameters extracted from simulated
blood flow to provide further information about the patient-specific
risk [DCM∗18]. The simulated blood flow not only allows for the

(a) (b) (c)

Figure 1: Illustration of line coverage using different seeding meth-
ods. Traditional Seeding (a) is under-sampling the aneurysm bleb.
Backward Integration (b) leads to incorrect vortices due to large
temporal differences. In contrast, our method (c) generates path-
lines with identical start times and reveals complex vortices when
searching for pathlines passing a specific area on the vessel sur-
face.

extraction of flow patterns, but for the extraction of parameters
related to pressure and stress as well, e.g., the wall shear stress
(WSS), describing the friction of the blood flow on the aneurysm
surface, or the oscillatory shear index (OSI), characterizing the
variation of the WSS vector over the course of the heart cycle.

For endovascular treatment support, clinical researchers are
strongly interested in predicting flow characteristics before and af-
ter treatment. Hence, the flow patterns and parameters provide valu-
able information about the intra-aneurysmal flow [MTXS14]. Im-
plant placement typically aims at aneurysm occlusion, a redirection
of the blood flow causing the aneurysm as well as a stabilization
of the blood supply of the vessel harboring the aneurysm and its
outlets. Virtual implant placement can support the clinician by pre-
dicting the resulting blood flow [XDL∗15, BSJ∗18].

For the blood flow analysis, commercial software, e.g., Star-
CCM+ V13.04 (Siemens Product Lifecycle Management Soft-
ware Inc., Plano, TX, USA 75024), or research tools, e.g., Para-
View [AGL05], provide pathline visualizations extracted from the
CFD vector field. However, for pathline visualization, even a dense
seeding at the parent vessel’s inlet or the ostium cannot ensure
to entirely represent the intraaneurysmal flow, whereas further in-
creasing the amount of pathlines yields visual clutter. A charac-
terization of blood flow patterns [CCB∗05] as well as an aggre-
gation into meaningful clusters [OJCJP16] prevent visual clutter,
but depend on pre-integrated lines and cannot account for strongly
lobulated aneurysm shapes with blebs. Seeding directly in the re-
gion of interest and then performing both forward- and backward-
integration generates pathlines in the desired region. However,
these pathlines arrive at the inflow plane at different points in time
(Fig. 1), which does not accurately represent the blood flow in the
vessel and does not meet the requirements of the clinicians. In
fact, it could prevent the extraction of complex structures like an
embedded vortex. A similar problem arises when using two-pass
integration, where potentially interesting seed points for forward-
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integration are determined by using backward-integration, as seed-
ing at a different time point (t0) will produce a different pathline.

2.2. Evolutionary Algorithms

Evolutionary algorithms as meta heuristic for a guided search
are based on the principle of natural selection by Charles Dar-
win [Dar59]. They iteratively improve initial random candidates by
using evolution-motivated mechanisms such as selection, crossover
and mutation. Thus, a problem of the form:

H = {x ∈Ω|∀x′ ∈Ω : f (x)� f (x′)}

can be optimized, where the goal is to find an element x in the
search space Ω which optimizes a function f : Ω→ R in Ω. This
function is referred to as the fitness function and defines a quality
measure for the candidate solutions and a comparison operator� in
Ω. Furthermore, the specific implementation of the fitness function,
selection, and especially the genetic operators (i.e., crossover and
mutation) are highly problem-specific. Additional parameters for
steering the algorithm are population size, crossover probability,
mutation probability, and mutation strength.

NOTATION: Throughout this paper, we will use the following
notation. We refer to a single solution candidate as individual I.
The fitness of a specific individual Ii is referred to as f (Ii). Fur-
thermore, a population P consists of np individuals. Parameters for
steering the evolutionary algorithms are percentages for Elite Se-
lection pe, Mutation pm, Crossover pc, and Insertion pi. A single
iteration of the evolutionary algorithm is referred to as a generation.

INITIALIZATION: In this step, the population P of size np is
created, with each individual I ∈ P representing one solution. The
initial population contains only individuals with random genomes.

EVALUATION: During the evaluation, each individual’s fitness is
calculated. With this, we obtain a value f (Ii) with i ∈ [0 . . .np−1].

FITNESS-BASED SORTING: After evaluation, the list of in-
dividuals is sorted according to their fitness. Subsequent steps,
such as elite selection, mutation, crossover, and the calculation
of convergence measures, rely on an ordered list of individuals.

ELITE SELECTION: This step ensures that good solution can-
didates are kept between generations. Transferring ne unmod-
ified individuals to the next generation P′ is referred to as
elite selection. These individuals are selected from the ordered
list according to Ii with i ∈ [0 . . .ne − 1] and ne = pe · np.

CROSSOVER: The first genetic operator combines the genome of
n individuals to create n offsprings. In its simplest form, with n= 2,
each offspring inherits half of each parents’ genetic information.

MUTATION: The second genetic operator slightly alters each
individual’s genome, whereas the probability, type and strength
of mutation are configurable. This step can be understood as
exploration of the local surrounding of a solution candidate
in the search space Ω. A mutation is only imposed in sub-
sequent generations if it is beneficial for the individual’s fit-
ness. Individuals are selected from an ordered list according
to Ii with i ∈ [nc . . .ne − 1] and nc = pc · np, ne = pe · np

INSERTION: This step replaces a part of the population. For this,
the pi · np individuals in P with the lowest fitness are replaced by
new individuals when inserted in P′. Similar to the initialization,
the new individual’s genome is randomly generated. This step adds

to the genetic diversity and thus ensures further random exploration
of the whole search space.

3. Related Work

Geometry-based techniques extracting explicit geometry, e.g., in-
tegral or vortex-core lines, are the most frequently used methods
for flow analysis [MLP∗10]. The biggest challenge of these meth-
ods is to avoid clutter and occlusion without missing important
features in the data. Typically, these issues are targeted by direct
feature extraction, e.g., vortices [KRH∗16, KZHH12] or filtering
large sets of pre-computed lines. Filtering methods can be divided
into two groups. Explicit filtering removes lines not satisfying a se-
lected criterion, e.g., defined by line predicates [SGSM08], or using
view-dependent criteria based on entropy [LMSC11]. Implicit fil-
tering facilitates rendering techniques to emphasize lines of interest
while keeping all lines. One example is the work by Günther et al.
[GRT14], where line transparency is optimized with respect to an
importance criterion. Both approaches discard or hide a high per-
centage of the calculated lines, which is unfavorable in cases where
the line integration is expensive. A second challenge for such meth-
ods is to find all interesting features, which cannot be guaranteed
even with highly dense sampling.

While all flow visualization techniques are generally applicable,
medical flow data has unique requirements. In medical flow visu-
alization, both laminar flow and the vessel surface, which is impor-
tant for anatomical context information, may occlude interesting,
nested flow patterns. Therefore, a variety of methods have been
designed specifically for medical applications. A lens metaphor
was used by Gasteiger et al. as a screen-space filtering technique
that blends between different visualizations on demand [GNBP11].
This allows for clipping parts of the vessel surface to reveal un-
derlying flow structures. However, this method is limited to the ex-
amination of local features. Automatic cut-aways for simultaneous
visualization of wall parameters and blood flow were introduced
by Lawonn et al. [LGV∗16]. They additionally use animation for
clutter reduction. With this, only small parts of the lines are visi-
ble at the same time. Oeltze et al. use streamline clustering based
on geometric attributes and cluster representatives to reduce clut-
ter [OLK∗14]. Later, they proposed a similar approach to detect
embedded vortical flow in cerebral aneurysms [OJCJP16]. Another
efficient clustering approach for blood flow data using coherent
structures was presented by Englund et al. [ERH16]. Meuschke
et al. map the aneurysm surface and pathline cluster representatives
to a hemisphere in order to perform an automatic classification of
the flow patterns [MOJB∗19].

While clustering-based methods are well suited to give an
overview of flow, they are less suitable to probe specific flow behav-
ior. Targeting specific medically relevant flow patterns, Neugebauer
et al. used the ostium as a seeding plane for pathlines, highlight-
ing the flow entering and leaving an aneurysm [NJB∗11]. Behrendt
et al. filtered pathlines based on user-selected regions on the vessel
surface [BBB∗18]. The region selection could be performed either
manually or based on static surface parameters, disregarding the
temporal dimension of the underlying data. Additionally, the need
to perform manual selections on the vessel surface makes this ap-
proach time-consuming for larger patient databases.
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The aforementioned studies rely on pre-integrated pathlines and are
therefore limited by the quality of these lines, especially if a spe-
cific flow feature is poorly represented in the unfiltered set. Van Pelt
et al. placed seed points on user-defined vessel cross-sections to ex-
tract global patterns, such as splitting flow [vBB∗10]. The applica-
tion also offers different seeding strategies and templates. However,
they cannot be automatically adapted based on features of inter-
est. The authors performed a user study with four cardiologists,
who expressed interest in exploring the effects of different seed-
ing strategies, but preferred to only use a single strategy at a time.
Broos et al. determined suitable seeding points for pathlines in 4D
PC-MRI data based on a transfer function [BHK∗16]. This function
calculates a probability value for each voxel based on features such
as velocity magnitude or the λ2 criterion indicating vorticity. The
calculated probability determines the likelihood for this voxel to be
used as a seed point. While sampling the entire space-time domain
is appropriate for low-resolution 4D PC-MRI data, it is not feasible
for highly resolved simulation data.

Engelke et al. recently introduced evolutionary algorithms for
flow visualization [EH18]. They formulated the task of finding rep-
resentative lines in a steady flow field as an optimization prob-
lem, achieving high quality results while requiring significantly
fewer line computations as traditional filtering approaches. They
also managed to overcome the problem of under-sampling, since
the approach is not tied to a predefined sampling resolution. We
build upon this work by

• Extending the algorithm to support time-dependent data and pro-
duce pathlines instead of streamlines.

• Adapting the fitness function to specific requirements for blood
flow analysis in cerebral aneurysms, including the ability to in-
corporate properties of the vessel surface into the fitness calcu-
lation, inspired by Behrendt et al. [BBB∗18].

• Embedding this technique into a framework designed to support
clinical research and treatment decisions for cerebral aneurysms.

Evolutionary algorithms can be used for optimization problems,
where an analytic solution does not exist and an exhausting explo-
ration is not feasible. Application areas for evolutionary algorithms
include parameter optimization (e.g., curvature of pipes) [BS93],
packing and scheduling problems, and biological modeling. A re-
cent book [KBB∗16] discusses evolutionary algorithms in the con-
text of computational intelligence.

A method to automatically highlight expressive structures in
flow fields was presented by Engelke et al. [ELPH18]. Its under-
lying concept, i.e., multiplication and deletion of particles, is based
on local flow properties and cannot be transferred to a line-based
approach, where the fitness criteria are defined only for an en-
tire line. Esturo et al. presented a method to find globally optimal
stream surfaces by utilizing a domain graph [ESRT13]. The ap-
proach is tied to a predefined resolution and unable to find solu-
tions not contained in the graph. In general, adaptive methods fol-
low a similar goal as evolutionary approaches by striving to spend
most efforts in regions of interest. A good example in the context
of flow analysis is the work by Barakat et al., which uses adaptive
refinement for an accurate computation of the flow map [BT13].
The exploitation or refinement aspect of this approach is similar to
that of evolutionary algorithms, which is facilitated by mutation.
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Figure 2: Overview of the workflows and layers within our frame-
work.

The exploration aspect differs, as the coverage of adaptive meth-
ods is determined in the first step by choosing a base resolution.
In contrast, evolutionary algorithms try to achieve good coverage
by continuous exploration, which allows them to work with a low
population size from the beginning.

4. Evolutionary Aneurysmal Flow Exploration

Within this section we describe our method, consisting of two Path-
line Generation and Pathline Visualization. We start by providing
an overview of the associated workflow for different types of users.

4.1. Interaction and Workflow

The visualization and analysis system is composed of three lay-
ers: the Technical Layer that represents the computational back-
bone of the system, the Advanced Layer targeted at researchers and
the Clinical Layer targeted at physicians. Additionally, there is a
Preprocessing Layer, which details the data processing before be-
ing imported in our system (Fig. 2).

PREPROCESSING LAYER: Our framework was developed for
cerebral aneurysm surface models who are typically extracted from
contrast-enhanced 3D rotational angiography. For the cases pre-
sented in this work, a threshold-based segmentation approach was
applied to the 3D DSA images, followed by marching cubes to ob-
tain a triangulated surface mesh using MeVisLab 2.7 (MeVis Med-
ical Solutions AG, Bremen, Germany) [RBH∗11], similar to the
approach described in [GBNP15]. For the separation of aneurysm
from parent-vessel, we used a semi-automatic neck curve detec-
tion [SBN∗18]. Based on the segmented aneurysm surfaces, hemo-
dynamic simulations were carried out using STAR-CCM+ 13.04.

TECHNICAL LAYER: This layer contains the main computa-
tional components, mainly the evolutionary algorithm with its inte-
grated pathline integrator. It is only targeted towards the develop-
ers and maintainers of the system and receives its configuration and
data from the other layers.

ADVANCED LAYER: This layer is targeted towards researchers
in the medical domain and provides a variety of exploration op-
tions. It is designed to support the creation of non-dataset-specific
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presets for later use in the clinical layer. Thus, it allows the con-
figuration of the fitness function as well as the genetic parameters
for the evolutionary algorithm. The Fitness Function Editor enables
the user to create a fitness function using a weighted combination of
configurable properties, as described in Section 4.2. Similarly, the
Genetic Parameter Editor allows to configure the parameters for
the evolutionary algorithm, such as the mutation rate or number of
individuals. The fitness function together with genetic parameters
can be saved as a named, dataset-independent preset for specific
clinical use cases, e.g., extracting flow structures close to regions
with high WSS or OSI. To support comprehensibility of the evolu-
tionary algorithm, it is possible to explicitly filter pathlines in the
3D view based on their overall fitness value. Comprehending why
the evolutionary algorithm converges to specific pathline bundles
can be a valuable aid in designing fitness functions for later clinical
use. For a more in-depth analysis, users may also view the previ-
ous generations of pathlines, thus allowing them to trace how the
evolutionary algorithm generated the final result. Additionally, the
advanced layer also allows to freely configure the pathline visual-
ization with respect to mapping attributes to color scales or opac-
ity, as described in Section 4.3. These settings can also be stored as
dataset-independent presets for later clinical use.

CLINICAL LAYER: This layer is reduced to a minimum of in-
teraction, especially tailored to the clinical users and designed to
support treatment decisions. It allows for a selection of datasets
from the preprocessing layer and presets from the advanced layer.
A manual configuration of the fitness function, genetic parameters
or visualization settings is not available. Thus, the configuration for
a clinical workflow needs to be prepared first within the Advanced
Layer. The user can select multiple datasets to perform batch pro-
cessing with a single preset configuration. Additionally, basic in-
teractions like rotation and zooming in the 3D view are supported.

4.2. Pathline Generation

The input to the evolutionary algorithm is the aneurysm geometry
and the simulated blood flow. A plane is automatically fitted in the
vessel inlet, which serves as seeding plane for the pathline genera-
tion. The evolutionary algorithm details, such as the highly domain-
specific encoding of solution candidates and the genetic operators,
have been specifically designed for our application.

INDIVIDUALS: The genome of the individuals encodes a sin-
gle seed point, which uniquely defines a pathline with respect to
the integration settings. Thus, the search space Ω is defined by the
integral lines’ seeding domain. The individuals are stored as two-
dimensional points Ii = (xi,yi) in the local coordinate system of the
seeding plane, with xi,yi ∈ [0,1]. For the integration process, they
are transformed into world coordinates. New individuals are always
initialized with random values in their genome.

MUTATION: In this step, we add a weighted displacement vector
d ∈ [−1.0,1.0]d to the individual’s genome; here, d is the dimen-
sion of the search space. Furthermore, we facilitate a generation-
dependent weight which decreases with increasing generation
count by a constant value, ensuring that with increasing average
fitness of the population, solution candidates are altered less.

EVALUATION: To evaluate the fitness of an individual, the entire

pathline has to be integrated from its seed point. We use Shepard
interpolation with four samples to acquire the velocity vector from
the flow field. The integration is performed with Runge-Kutta-4
(RK4) and a fixed step size of 0.25, although, at the end of the
integration, only every fourth point is kept to speed up the visu-
alization and evaluation of the lines. Our collaborating physicians
prefer a fixed seeding time to prevent visual confusion from path-
lines seeded at different time points being visible simultaneously
(recall Figure 1). Furthermore, this better mimics the clinical time-
dependent data using contrast agent, which arrives in the vessel as a
bolus. Therefore, we always seed at the first time step (t = 0). The
fitness function f (Ii) is assembled from a set of local properties
f1.. fn. The properties can be grouped into two categories:

Line properties produce fitness information based on pathline
geometry, such as length or curvature. Both of these measures can
indicate the presence of vortex structures, as a pathline is often
longer and has higher curvature when passing through a vortex.
In cases where a separation of the aneurysm from the parent vessel
is available, the residence time of a pathline within the aneurysm
can also be used. Thus, only lines in specific regions are favored
and thereby implicitly filtered in a spatial manner.

Surface properties produce fitness information based on at-
tributes of the vessel surface close to the pathlines, such as pressure,
WSS and OSI. For each vertex of the line, the closest vertex on the
surface is efficiently determined using a KD tree. Then, the selected
attribute from the surface vertex is normalized and assigned to the
pathline vertex as a fitness indicator. Optionally, a distance penalty
can be used to reduce the fitness indicator value after a certain dis-
tance from the surface to focus on near-wall features.

ANEURYSM GEOMETRY: If the aneurysm in the dataset is seg-
mented, all indicator values for pathline vertices outside a specific
region can be disregarded, effectively preventing surface attributes
outside of the aneurysm from contributing to the fitness of a line.

fp(Ii) =

|Ii|⊙
j=1

(vi j) (1)

f (Ii) =
n

∑
p=1

( fp(Ii) ·wp) (2)

PATHLINE FITNESS: Each local pathline property fp(Ii) is as-
sembled from the per-vertex fitness indicators vi j, depending on
the number of vertices |Ii| in the line (Eq. 1). Depending on the user
configuration,� is interpreted as sum, avg or max. Using the sum of
the individual indicator values tends to prefer longer lines, as each
vertex contributes to the overall fitness even if it has low fitness in-
dicators. Using the average favors short lines, as each vertex with
lower fitness indicators reduces the overall line fitness. Using the
highest indicator eliminates the length of the line as a fitness factor.
The final fitness value for a pathline is the weighted combination
of all its pathline properties (Eq. 2). While individual weights (wp)
may be useful and add flexibility for advanced fitness function con-
figurations, we do not explore this aspect and thus use the default
value of 1 to weight all pathline properties.

When using a fitness function f (Ii) with respect to multiple sur-
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(a) (b)

Figure 3: Different parameter mapping options for pathlines. In (a), the residence time inside the aneurysm is mapped to the opacity and
the flow velocity is mapped onto color using a temperature scale (white is slow). In (b), the per-vertex fitness indicator is mapped to color
(green-to-red-scale) and the overall line fitness is mapped to thickness.

face attributes, normalization is important to avoid a bias, as the lo-
cal fitness values may have different value ranges. Thus, we equal-
ize the value ranges by normalizing all attribute values to the range
[0,1]. The user can further constrain this range, e.g., treating all val-
ues below or above a given threshold as zero. During the pathline
integration, per-vertex fitness indicators and the overall line fitness
are stored as attributes and thus are available for exploration and
visualization purposes in the Advanced Layer.

4.3. Pathline and Context Visualization

Pathlines are visualized as a strip of view-oriented quads in-
side a semi-transparent vessel model. The opacity of the vessel
wall is calculated using a combination of the Fresnel and Phong
terms to highlight both the vessel boundaries and the surface
shape [GNKP10]. It is possible to map a scalar attribute, such as
velocity magnitude or fitness indicators, onto the pathlines (Fig. 3).

5. Results

In this section, we analyze our approach at first with respect to tech-
nical quality and performance, and discuss the method from an ap-
plication point of view.

5.1. Technical Analysis

First, we analyze our evolutionary algorithm with respect to its con-
vergence and reproducibility to evaluate the Technical Layer of our
workflow. Afterwards, we perform comparisons between our algo-
rithm and a uniform seeding approach regarding the coverage of
lines and its performance.

CONVERGENCE: The evolutionary algorithm empirically con-
verges against an ideal result with respect to its fitness function. The
convergence speed and the number of iterations needed to reach a
sufficiently good result depends on the characteristic behavior of
the fitness function within the search domain. There are two main
parameters that control the trade-off between the quality of the re-
sult and the computation time. These are the population size and
the number of generations. To determine a good default value for

the number of generations and the population size, we have run
the algorithm on several datasets with different settings and have
recorded the fitness values for each generation. Representative val-
ues are obtained by averaging the fitness values from ten runs for
each population size.

The developments of the maximum fitness and different aver-
ages of the best lines are shown in Figure 4 for two datasets. The
convergence speed and maximum fitness for the different popula-
tion sizes is similar in both datasets, suggesting that the population
size mainly influences the number of lines the algorithm produces.
As a reference, the fitness reached by a uniform seeding approach
for 1,000 line computations is plotted. In the first case (Fig. 4(a)),
the uniform seeding produces a single line with a higher fitness
than all lines generated by the evolutionary algorithm. However,
the 10%, 20% and 50% best lines by the evolutionary algorithm
exceed those of the uniform seeding approach after only a few iter-
ations. In the second case, the peak fitness value of the evolutionary
algorithm soon exceeds the reference values (Fig. 4(b)). After a few
additional iterations, even the average fitness of the 10% best lines
from the evolutionary algorithm comes close to the fitness of the
best uniformly seeded line. This shows that better results as with
the standard approach can be achieved even though areas with high
fitness values are sparse and localized.

A fitness map shows the projected fitness of each individual
on the seed plane for a single run of the evolutionary algorithm
(Fig. 5(a)). The projection is achieved by rendering a Voronoi dia-
gram, where each seed point creates a cell that is colored accord-
ing to the fitness of that point. With the given settings (np = 200,
pe = 30%, pc = 0%, pm = 30%, pi = 40%), the evolutionary algo-
rithm integrated 8,120 pathlines in total. The map shows that the
sampling rate automatically adapts to the fitness function. The res-
olution of the map is noticeably lower in areas with lower fitness,
as the algorithm generally favours the exploration of high-fitness
areas. To compare the result with fitness maps created using uni-
form seeding, we first use the same number of lines (Fig. 5(b)).
Then, we increase the number of lines to 106 lines to obtain a map
that is close to the ground truth (Fig. 5(c)). In regions with lower
to medium fitness, the evolutionary algorithm is very close to the
comparative run with the same number of lines. In areas with high
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Figure 4: Average fitness curves (max fitness, top 10%, top 20%, top 50% and all lines) for 10 respective runs on two datasets (a) and (b)
with identical configuration (pe = 30%, pc = 0%, pm = 30%, pi = 40%), but different population sizes (100 and 500). Horizontal lines
indicate max fitness, top 10% and top 20% reached with uniform seeding of 1000 lines. Note that the best lines’ fitness might be higher
with uniform seeding compared to the evolutionary algorithm (see (a)), the averages are far below. Even after a couple of generations the
evolutionary algorithm produces more lines with higher fitness than the uniform seeding approach.

(a) (b) (c)

Figure 5: Fitness map of the seed plane from the evolutionary algorithm and a total of 8120 line computations; (a) and a uniform sampling
using the same number of lines (b) and 106 lines (c). Darker colors indicate higher fitness values, whereas in white areas the resulting
pathline did not pass the aneurysm and therefore no fitness value is assigned. Seeding 106 lines takes multiple hours and thus is unfeasible
in practical applications, hence uniform seeding approaches would likely miss the isolated and spatially confined maxima on the plane.

fitness, it is almost identical to the densely sampled map (compare
highlighted regions in Figure 5). The fitness values reached by all
three approaches are summarized in Table 1. For both uniform sam-
pling computations the fitness values are very similar. Integrating
106 lines leads to a better peak fitness due to a more exhaustive
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Figure 6: Varying population size in comparison. Blue graphs
show generations needed until the best 25 lines reach 50, 60 and
70% of the maximum fitness, respectively. Red graphs show total
the amount of performed line computations.

sampling of the seeding space. The evolutionary approach reaches
nearly the same peak fitness as the dense seeding, despite integrat-
ing significantly fewer lines. However, the 10%, 20% and 50% best
lines have a significantly higher fitness than both of the uniform
approaches.

To understand the influence of the population size on the conver-
gence and thus the total number of lines that have to be computed,
we recorded the fitness reached for identical configurations, but dif-
ferent population sizes (Fig. 6). As expected, a greater number of
individuals for each generation increases the speed at which the
evolutionary algorithm converges, but also increases the computa-
tional effort.

Table 1: Fitness comparison between our evolutionary approach
and uniform seeding with 8,120 and 106 pathlines respectively.

Ev. algorithm 8,120 lines 106 lines
Fitness Max 112.1 113.6 119.1
Fitness Avg. 10% 96.7 60.5 60.3
Fitness Avg. 20% 90.6 51.6 50.9
Fitness Avg. 50% 64 36.4 34.9
Fitness Avg. 100% 32.2 23.4 22.6
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(a) (b)

Figure 7: Pathlines from two evolutionary algorithms using the
same configuration, but different random seeds.

REPRODUCIBILITY: Due to the random nature of both the muta-
tion and initialization of new points, two runs of the evolutionary
algorithm with identical configuration will generate different line
sets. To analyze the sensitivity of the results to this randomness, we
performed multiple runs with identical configuration. Visually, the
resulting pathline sets are highly similar (Fig. 7). Additionally, we
compare the fitness maps from 20 runs with different seed values
and highlight regions with a relative fitness above a given thresh-
old. The resulting images are thresholded and used to compute the
mean pairwise Sørensen-Dice coefficient (DC) using the DC calcu-
lator by Tom Lawton [Law17]. DC is a summary measure of spa-
tial overlap to compare the similarity of two binary images, where
0 means no overlap and 1 refers to complete overlap. For regions
with a relative fitness above 0 (i.e., the seed regions that produce
pathlines entering the aneurysm), the DC reached a value of 0.87.
The DC for regions with a relative fitness above 25% and 90% of
the maximum reached 0.72 and 0.42, respectively. Visual inspec-
tion shows that the differences are mostly located around the edges
of the detected regions. Increasing the threshold lowers the over-
all size of the regions, thus increasing this effect and lowering the
DC. Yet, regardless of the threshold, overlaying all 20 fitness maps
shows that the detected regions are visually similar (Fig. 8). Thus
we can conclude that, despite the variances in the results, the al-
gorithm acts in a predictable and stable way. However, as exact re-
producibility may be important in some use cases, our framework
exposes the seed value for the random number generator to the user.

(a) (b) (c)

Figure 8: Average projection of the 20 thresholded seed plane fit-
ness maps with the same fitness function, but different random seed
values. Thresholds for the relative fitness were set to 0% (a), 25%
(b) and 90% (c)

(a) (b) (c)

Figure 9: Comparison of expressive line sets for an aneurysm: We
compare the output of a uniform seeding approach (using ParaView
5.5.0 (a) and our in-house integrator (b)) with our evolutionary
algorithm (c). In both (a) and (b), almost no lines reach the dome
and therefore leave it heavily underpopulated, whereas the dome is
densely covered in (c).

Running the evolutionary algorithm twice with an identical config-
uration and random seed value will always yield identical results.

COVERAGE: Uniform seeding strategies on the inflow plane suf-
fer from poor line-coverage in hard-to-reach parts of the aneurysm,
especially in blebs. To demonstrate the ability of our algorithm to
reach these areas, we compared it against ParaView (version 5.5.0)
as well as our own line integrator using a uniform seeding strategy.
In all cases, we seeded 300 individual lines. Both ParaView as well
as our application used uniformly distributed seed points at the inlet
for the uniform seeding approach. As we were not able to entirely
replicate our own integration parameters in ParaView, the resulting
lines are slightly different. The evolutionary algorithm was config-
ured with np = 300, pe = 30%, pc = 0%, pm = 30%, pi = 40%,
using the total length of each line in the aneurysm as its fitness
function and iterated over 30 generations. Both uniform seeding
approaches produce similar results (Fig. 9(a) and 9(b)), with the
top part of the aneurysm nearly entirely empty. The evolutionary

(a) (b)

Figure 10: Comparison of line coverage using uniform seeding
methods (a) and our method (b) when searching for pathlines pass-
ing near a specific area on the vessel surface (arrow).
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(a) (b) (c) (d) (e)

Figure 11: Selected cases for our evaluation comprising four aneurysms at the anterior communicating artery (Case 1 (a) – male, 36 years;
Case 2 (b) – male, 63 years; Case 3 (c) – male, 86 years; Case 5 (e) – female, 38 years) and one at the bifurcating middle cerebral artery
aneurysm (Case 4 (d) – female, 59 years).

seeding, on the other hand, manages to capture the flow in the en-
tire aneurysm (Fig. 9(c)).

PERFORMANCE: The most time-consuming part of the evolu-
tionary algorithm is the evaluation of the fitness function, as it
requires the full integration of a pathline and subsequent calcu-
lation of the fitness indicators for each pathline vertex. Figure 10
presents a comparison between the result from a uniform seeding
approach with subsequent filtering and our evolutionary algorithm
using an identical fitness criterion. For the uniform approach, 1,000
lines were seeded in total, whereas 23 lines remained after filtering
(Fig. 10(a)). For the evolutionary approach, 460 lines were seeded
in total (np = 100, pe = 30%, pc = 0%, pm = 30%, pi = 40%) over
ten generations and the best 47 lines were used (Fig. 10(b)). 53
lines with a fitness value of 0 were discarded. Despite seeding less
than half of the amount of lines than with the uniform approach,
the evolutionary algorithm produces a denser set of lines fulfilling
the criterion. Integrating the 1000 lines using the uniform approach
took 53 seconds (without performing filtering) on an Intel i5-6500
with four cores clocked at 3.2 GHz, whereas the evolutionary algo-
rithm took 45 seconds (including the evaluation of the fitness func-
tion). Integrating and evaluating pathlines to computing the densely
seeded map from Figure 5(c) took eight hours. Since only small ar-
eas on the seeding plane result in lines with a high fitness value
(Fig. 5), the uniform seeding approach struggles to position a suf-
ficient amount of seed points in these areas without strongly over-
sampling areas with lower fitness. Based on the results (Fig. 6), we
concluded that a population size of 200 or 300 is the best trade-
off between fast convergence, total amount of line computations
including evaluation and run stability, i.e., less variations between
runs with different random seeds. While a population size of 100
also provides reasonable convergence speed and stability, the total
amount of generated lines may be insufficient to facilitate a dense
3D visualization.

5.2. Expert Feedback

We performed a general evaluation with an experienced neurora-
diologist (Physician A), who was also involved in the design pro-
cess of our framework. Afterwards, we conducted a more specific
evaluation of the Clinical Layer of our workflow with three addi-
tional neuroradiologists (Physician B, Physician C and Physician
D), who were not familiar with our tool, to validate its clinical use-

fulness with respect to treatment planning. As suggested by Preim
et. al, such a procedure is crucial to achieve meaningful evaluation
results [PRI18]. Our goal was to evaluate

1. which fitness function configuration produces the most satisfac-
tory line bundles for this purpose.

2. whether the visualization of hemodynamic information using
evolutionary pathlines influences the treatment decision.

To answer question 1, we asked Physician A to compare the
resulting lines of different fitness functions. The comparison con-
sisted of pathlines optimized for length and to pass by surface areas
in the aneurysm with high and low wall shear stress (WSS) as well
as high and low oscillatory shear index (OSI). The physician was
able to easily identify differences between line bundles optimized
with respect to high or low OSI. Interestingly, he was able to in-
fer the location of high and low OSI or WSS values on the surface
by comparing their respective line bundles. To evaluate the blood
flow for treatment decisions, he preferred the length-based fitness
function, as it ensured that the entire aneurysm was filled with path-
lines. He did not find significant differences in the pathline bundles
created using the OSI-based fitness function in comparison to the
WSS-based fitness function. This could be explained with the fact
that the OSI is derived from the WSS. Therefore both attributes
lead to similar line bundles.

In clinical practice, the placement of stents with or without coil-
ing to treat aneurysms is decided based on the patient-specific
anatomy. To assess a benefit in treatment planning, we had to iden-
tify well suited test cases first. Therefore, we conducted a quick
survey of a database containing more than 100 cerebral aneurysms
with Physician A, who had been treating these patients. We se-
lected five cases with a challenging anatomy, i.e., aneurysms that
are located at bifurcations with almost symmetrical outlet config-
urations (Fig. 11). To answer question 2, we presented the other
experts (Physician B-D) with these five cases. They varied with re-
spect to their work experience of endovascular treatment, including
the hospital director (20 years of neurointerventional experience),
a senior physician (9 years) and a novice physician (1 year). They
were blinded to the applied treatment and patient outcome, but pro-
vided with clinical information such as the patients’ sex and age.

The first visualization only depicted the vessel surface without
any hemodynamic information. The physicians were asked about
their treatment decision based on the given visualization. After-
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Table 2: Results of our evaluation for physicians B, C and D, when
only seeing the 3D view for anatomical information (before) and
after seeing our pathline visualization (after). Treatment decisions
were: stent-assisted coiling (C & S), y-stenting (Y–S), i.e., implant-
ing two stents, and coiling without stenting (C). Changes in treat-
ment decisions are highlighted via color-coding.

Physician B Physician C Physician D
Case 1 - before C & S C & S Y – S
Case 1 - after C & S C & S C & S
Case 2 - before Y – S C & S Y – S
Case 2 - after Y – S C & S Y – S
Case 3 - before C C & S Y – S
Case 3 - after C Y – S C & S
Case 4 - before Y – S C & S Y – S
Case 4 - after Y – S Y – S Y – S
Case 5 - before Y – S C & S Y – S
Case 5 - after Y – S Y – S Y – S

wards, we presented them with the same dataset using our visual-
ization techniques, including pathlines extracted by the evolution-
ary algorithm, and asked whether they would revise their decision.
In both cases, they had full control of the viewing direction. For this
evaluation, we chose a fitness function based on both line length
and residence time of the flow inside the aneurysm, as it achieves a
pathline coverage superior to uniform seeding approaches and cov-
ers the whole aneurysm. The results are provided in Table 2.

In four of five cases, at least one physician changed his or
her treatment decision after exploring our evolutionary pathlines.
These changes were motivated by an improved understanding of
the intra-aneurysmal flow and its splitting into the outlets, includ-
ing flow patterns. In three cases, these changes lead to more con-
sistency in the final decision between the physicians. The third
aneurysm was the most challenging one, as two physicians changed
their minds and the final decisions are not consistent between them.
On the one hand, their initial decisions were similarly inconsistent,
but on the other hand, we selected challenging cases. Interestingly,
the most experienced physician never changed his mind.

6. Discussion and Conclusion

We presented an adaption of the recently developed evolutionary
lines to the medical domain by carefully adjusting the genetic op-
erators to fit clinical and research requirements. We showed the use-
fulness of an evolutionary algorithm for seeding pathlines in cere-
bral blood flow data. Our approach shows significant improvements
over existing seeding strategies, both in terms of computational ef-
fort and quality of results. Better coverage of hemodynamically in-
teresting regions, such as aneurysm domes or blebs, is the major
advantage over previous work. Thus, flow patterns can be identi-
fied in a more reproducible manner, which is essential to assessing
the aneurysm rupture risk.

We mainly examined the feasibility of using evolutionary lines
to visualize hemodynamics in cerebral aneurysms. The design of
our fitness functions is tailored towards the examination of simu-
lated blood flow in cerebral aneurysms, but could also be adapted

to fulfil the specific research requirements for other blood vessels
or data acquisition methods. An interesting extension would be the
introduction of a normalization between the fitness value ranges of
surface and pathline properties, in order to allow more combina-
tions of properties and thus increase the flexibility of the fitness
function. Further improvements, especially with respect to the con-
version speed, could be achieved by an in-depth analysis of the
parameter space of the genetic operators.

Currently, each individual in our evolutionary algorithm repre-
sents a single pathline. For the future, we plan to support additional
types of structures, such as streaklines or line bundles. The evolu-
tionary algorithm treats and optimizes each individual as a sepa-
rate entity, therefore increasing the fitness of singular lines, but not
guaranteeing diversity between the resulting lines. By using line
bundles instead of singular lines as individuals, the coverage within
the aneurysm could be further improved. A different solution to this
problem could be the usage of seed plane fitness maps, which are
generated as a side-product of the evolutionary algorithm, for a fi-
nal seeding step.
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