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Abstract
Tubular flow analysis plays an important role in many fields, such as for blood flow analysis in medicine, e.g., for the diagnosis
of cardiovascular diseases and treatment planning. Phase-contrast magnetic resonance imaging (PC-MRI) allows for non-
invasive in vivo-measurements of such tubular flow, but may suffer from imaging artifacts. New acquisition techniques (or
sequences) that are being developed to increase image quality and reduce measurement time have to be validated against the
current clinical standard. Computational Fluid Dynamics (CFD), on the other hand, allows for simulating noise-free tubular
flow, but optimization of the underlying model depends on multiple parameters and can be a tedious procedure that may run
into local optima. Data assimilation is the process of optimally combining the data from both PC-MRI and CFD domains.
We present an interactive visual analysis approach to support domain experts in the above-mentioned fields by addressing
PC-MRI and CFD ensembles as well as their combination. We develop a multi-field similarity measure including both scalar
and vector fields to explore common hemodynamic parameters, and visualize the evolution of the ensemble similarities in a
low-dimensional embedding. Linked views to spatial visualizations of selected time steps support an in-detail analysis of the
spatio-temporal distribution of differences. To evaluate our system, we reached out to experts from the PC-MRI and CFD
domains and summarize their feedback.

1. Introduction

Tubular flow refers to flow of liquids within tubular structures.
A prominent example is the flow of blood within vascular struc-
tures. Analyzing blood flow is of relevance to diagnose cardiovas-
cular diseases and to plan respective treatments. Measurement tech-
niques such as phase-contrast magnetic resonance imaging (PC-
MRI) are increasingly used to capture spatio-temporal information
about blood flow. The imaging allows for a non-invasive data ac-
quisition. The analysis of derived hemodynamic parameters can
provide a biomarker to indicate abnormal blood flow [HKK∗16].
However, the acquired imaging data still have low spatio-temporal
resolutions and are prone to noise and artifacts such as partial vol-
ume averaging effects. The artifacts may lead to incorrect veloci-
ties, especially at vessel walls, as the observed regions remain at a
sub-voxel scale. To diminish such drawbacks, new acquisition tech-
niques (or sequences) are being developed. The goal is to improve
the spatial and temporal resolution while preserving a reasonable
scanning time. Each sequence has its own weakness and strength
compared to others and needs to be validated against the current
clinical standard, especially with respect to derived hemodynamic
parameters. Such a comparison can be a tedious task, but is manda-
tory for methodological approval. Computational Fluid Dynamics
(CFD), on the other hand, can generate noise-free simulations of

high spatio-temporal resolution. The outcome is, however, based
on a larger set of parameters. In order to use the CFD simulation
outcome for the analysis of a measured data set, the parameters
need to be tuned to have the outcome match the measured data,
e.g., to perform data assimilation. In a multi-parameter setting, this
can be a complex and challenging task.

The stated problems and tasks were motivated by our collabo-
ration partners from the respective fields. We incorporate their in-
put to develop and present a visual computing pipeline to support
domain experts in three scenarios: (1) Compare measured data ac-
quired using different imaging settings to observe their impact. (2)
Compare simulation runs generated using different parameter set-
tings to observe their impact. (3) Compare measured data to simu-
lated data to detect best matches in the context of data assimilation.

Such comparisons require us to analyze similarities in multi-field
tubular flow ensembles. Thus, core to our visual computing pipeline
is a similarity-based visual ensemble analysis. The analysis goals
can be summarized as: (1) Analyzing the impact of (imaging and
simulation) parameters on the tubular flow. (2) Detection of spatial
regions of interest with high flow variations within the ensemble
or between ensemble members. (3) Refined similarity analyses for
spatial regions of interest.
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To generate simulation ensembles, boundary geometry and ini-
tial conditions can either be provided or extracted from the imag-
ing data (cf. Section 3.1), which are fed to a simulation model
to allow for data-driven simulations. Then, we sample the multi-
dimensional parameter space to run the simulation model with dif-
ferent parameter settings (cf. Section 3.2). For the comparative vi-
sual analysis of the ensemble data, we need to capture their differ-
ences or similarities. Our analysis is based on a novel multi-field
similarity measure for combined scalar and vector fields (cf. Sec-
tion 3.3). Our novel similarity measure is evaluated for simple
synthetic data with known ground truth in Section 4. Based on
the similarity measure, we developed an interactive visual analysis
approach that uses linked views between similarity-space embed-
dings and volume visualizations to support the analysis goals listed
above, see Section 3.4.

To evaluate our system, the methods are applied to and eval-
uated on in-vitro flow imaging data acquired using PC-MRI and
flow phantoms of different geometrical complexity. For the CFD
simulations we used a Lattice-Boltzmann method. Analysis results
are presented in Section 5. We also reached out to experts from
the PC-MRI and CFD domain and let them use our tool. We sum-
marize their feedback in Section 6. The methods and feedback are
discussed in Section 7.

Our main contributions can be summarized as follows: (1) We
developed a novel, general scheme to compute multi-field similar-
ity, which we use to combine scalar and vector field similarity. (2)
We embed the scheme into a visual computing pipeline for the anal-
ysis of measured and simulated blood flow. (3) We demonstrate
how our tool can support experts from the MRI and CFD domain
to analyze their data by conducting two case studies.

2. Related work

We group related work in analysis methods for tubular flow data
obtained via PC-MRI and CFD data, ensemble visualization meth-
ods, and multi-field similarity approaches.

Analysis of PC-MRI and CFD data. Sampling a parameter space
according to fitted statistical models and generating simulation en-
sembles with the sampled parameter values is a common approach
to generate ensembles. For example, in the HemeLB [MC08]
framework, simulation settings were configured based on statisti-
cal data (such as pulse and blood pressure) taken from different
patients. For each setting a simulation was generated. The outcome
was compared using the location and intensity of wall shear stress
(WSS). This approach, however, was not based on blood flow imag-
ing data. Jiang et al. [JJVS∗11], instead, acquired 4D PC-MRI data
and applied a segmentation step to obtain input geometry for per-
forming several simulation runs (using a Navier-Stokes solver). As
before, the data sets were compared using WSS. High correlations
between simulated and measured data could be observed. As WSS
is derived from velocity fields, which may suffer from imaging ar-
tifacts, we believe it would be better to perform the comparison
directly on the velocity fields and not solely on derived features,
while hemodynamic parameters such as WSS or pressure can be
investigated as additional features.

Ensemble visualization. Our approach is based on the concept
of ensemble visualization. Ensembles were used in a wide range
of scientific applications, one of which is the analysis of weather
and climate data. One main motivation for generating simula-
tion ensembles is due to complex models, which cause high data
uncertainty. Thus, tools have been developed that can solve or
are tailored for specific needs such as predicting hurricane tra-
jectories [PWB∗09] or generating atmospheric probability mod-
els [PWH11]. Respective approaches in ensemble visualization of-
ten try to aggregate the simulation runs to obtain statistical informa-
tion such as the median and standard deviation around the median
or outliers, which can then be visualized, e.g., by rendering bands
or selected representatives [WHLS18]. Our primary goal is to com-
pare simulation runs, i.e., aggregating information across simula-
tion runs is only of interest as a secondary analysis goal. Demir
et al. [DDW14] create a linearization of space to generate multi-
level representations of 3D ensembles. At each level, a single bar
in a multi-chart represents statistical properties such as correlation
between ensemble members within the respective 3D sub-domain.
This approach, however, is restricted to a single scalar field per
member. Additionally, making use of a Monte Carlo sampling strat-
egy could be a more effective way to achieve an overview visual-
ization of the whole domain than by starting at a coarse resolution,
we believe.

Since we are dealing with flow data, we consider vector fields in
addition to scalar fields. Jarema et al. [JDKW15] use a comparative
approach to analyze non-temporal 2D vector field ensembles which
aims to quickly identify the most similar groups of ensemble mem-
bers and those of high variation. Hierarchical clustering is used to
group pairs of members according to their similarity and glyphs in
a spatial representation. We, instead, make use of 3D vector field
ensembles, where glyph renderings would suffer from occlusion.
Instead we analyze similarity among ensemble members, where we
can build upon the comparative visualization approach proposed by
Fofonov et al. [FML15]. They use similarity embeddings of indi-
vidual ensemble members for comparative views. However, their
approach is restricted to scalar fields. Hence, we extend their work
by proposing a multi-field similarity measure for combined scalar
and vector field similarity analysis. To address the spatial distri-
bution of difference for a single time step in particular, we iden-
tify groups by performing a connected component analysis [IS09]
on the per-field voxel-wise standard deviation using a user-defined
threshold.

Multi-field Similarity Measures. When assuming scalar fields,
many similarity measures exist based on correlation [Don03] or
gradients [EHNP04, NNN11, STS06]. Fofonov and Linsen [FL19]
proposed a measure as an extension to isosurface similarity, which
they showed to be superior for certain applications. We built upon
this for handling scalar fields. They also extended their measure to
multi-fields, but excluding vector fields.

For vector fields one can define the dissimilarity of vector fields
by calculating the averaged and also normalized magnitude of vec-
tor differences

ddi f f =
∑

N
i=1 |uA(pi)−uB(pi)|

2Numax
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Figure 1: Visual Computing Pipeline: Geometry and flow parameters are extracted from tubular flow measurements for generating flow
simulations. Ensemble of (measured and simulated) flow data is fed to the similarity-based visual analysis linking similarity-space and
volume visualizations.

of the respective velocity fields uA and uB. Here, umax denotes
the maximum velocity magnitude of all vector fields. Jiang et
al. [JJVS∗11] used a weighted metric

dJiang(uA,uB) = αe−2 arcsin( uA·uB
|uA|·|uB|

)
+βe−

|uA|−|uB|
umax

with α,β ≥ 0 and α+β = 1 has already been used by the authors
to compare simulations with 4D-PC-MRI data, where α = β = 0.5
was chosen. We propose novel measures that separates magnitude
and orientation.

Moreover, we propose a general scheme to generate multi-
field similarity. In principle, any metric can be applied within our
scheme including the metrics mentioned here. However, for our vi-
sual analysis we aim for simplicity and want to reduce the number
of parameters that need to be chosen manually. We nevertheless
have integrated the presented metrics into our system.

3. Visual Analysis of Ensemble Data

Our goal is to support domain experts from the MRI and CFD
domain with a comprehensive system that supports all processing
steps from handling measured data over setting up the simulation
ensemble to the similarity-based analysis. To address respective
data and tasks, we developed a visual computing pipeline, depicted
in Figure 1. As for the MRI domain, our system provides interac-
tive segmentation and cropping methods to focus the visual analy-
sis on a region of interest. Simulation ensembles can be generated
given a simulation boundary geometry and a multi-parameter sim-
ulation method. The measured data can be used to extract a bound-
ary geometry and to estimate parameters (Section 3.1) which can
be fed to the simulation model to create data-driven simulations
(Section 3.2). The result is an ensemble of imaging data, simu-
lation data, or their combination, which is then visually analyzed
(Section 3.4) based on the proposed multi-field similarity measure
(Section 3.3).

3.1. Measured Data Processing

In a first step, we need to extract the boundary geometry for the flow
from the given imaging data. If an anatomical image is acquired at
high spatial resolution and high signal-to-noise ratio, it is advisable
to use that as input. In general, any measured scalar or vector field
can be used, where in the case of a vector field, one can simply con-
vert it to a scalar field by taking the magnitudes. As the segmenta-
tion of the flow volume serves as simulation domain, a high-quality
segmentation result is desired. We apply a customizable visual pro-
cessing pipeline, which depending on the image quality includes
cropping, thresholding, and morphology operations combined with
median and Gaussian filtering to reduce noise and undesired arti-
facts and to smooth the geometry. To further improve the segmenta-
tion, we also provide a probabilistic semi-automatic random-walker
implementation [PRH10]. Here, the user needs to place foreground
and background labels on arbitrary slices of the input volume by
a simple, integrated freehand drawing tool. This can be especially
useful if the contained geometry is too complex for a segmenta-
tion by the above-mentioned image operations. A subsequent bi-
narization step leads to a binary mask, from which an isosurface
is extracted using the Marching Cubes algorithm [LC87] to ob-
tain the boundary geometry. As the simulation method requires a
water-tight mesh, we automatically close holes in the geometry (if
existent). To do so, we convert the isosurface triangle soup to a half-
edge data structure to reconstruct connectivity information. Redun-
dant vertices are removed using a fast neighbor-search octree im-
plementation [BSC15]. Exploiting the half-edge data structure, we
find edges without adjacent faces and loop around the boundary of
each hole until we reach the starting edge. The arithmetic mean of
all vertex positions on the connected path is added to the geometry
and connected to the surrounding vertices to fill the hole.

In a second step, we need to define the in- and outlets of the
flow, which are required for the definition of simulation boundary
conditions. We re-use the acquired binary mask for a centerline ex-
traction from which we automatically derive initial in- and outlets.
Each endpoint of the resulting set of connected segments that is not
at a bifurcation is considered a candidate for an initial in- or outlet.
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We define a local disk-shaped area with radius being the respective
radius of the segment. Its orientation is simply determined by the
vector from the preceeding point on the centerline to the considered
point. If a measured flow field is provided, it is sampled within the
disk to determine the normalized average local flow direction to
automatically set the candidate to either in- or outlet. This initial
automatic assignment can be adjusted interactively by observing
the extracted geometry and detected in- and outlets in a 3D inter-
active visual representation as in Fig. 2. Additional disks can be
arbitrarily placed along the centerline and might be used to sample
the flow’s cross-section at certain regions of interest which can be
visualized using simple line plots depicting the evolution over time.

Figure 2: Interactive 3D rendering of the extracted geometry, its
centerline (black) and detected inlet (green) and outlet (red). Ad-
ditional disks (blue) can be placed along the centerline to analyze
the local flow profile. The pump’s hose has been cropped.

3.2. Simulation Ensemble Generation

Given a simulation boundary geometry as well as inlets and out-
lets for the flow and a multi-parameter simulation method, we
can generate a simulation ensemble. The geometry hereby is ei-
ther provided by a domain expert or has been acquired from the
measured data (cf. Section 3.1). In principle, any method could
be used that can simulate tubular flow. In this paper, we apply
Lattice-Boltzmann methods [KKK∗17] using a Bouzidi [BFL01]
boundary condition, both implemented by the OpenLB frame-
work [KMT∗18] to generate simulation runs. The implementation
discretizes the domain into a regular grid and has been shown to
accurately handle even irregular geometries at appropriate reso-
lutions, while being efficient by exploiting modern parallel hard-
ware [HHKR12]. The relevant simulation parameters and their
respective value ranges depend on the actual problem, assump-
tions made, and the model used. Typical parameters for tubular
flow are the fluid’s density ρ and viscosity ν. A common model
constant for Lattice-Boltzmann methods is the Smagorinsky con-
stant [MHK∗17] that affects the behavior of turbulent flow. We start
with identifying plausible value ranges with respect to the prob-
lem. For the fluid’s density and viscosity, we derive the range from
common literature values. For the Smagorinsky constant CS typi-
cally positive values in the order of 10−1 with CS ≥ 0.1 are cho-
sen [MHK∗17], which we adopt for our purposes. Higher values
hereby lead to more straightened turbulence. The peak flow veloc-
ity at the inlet may also be varied, but it can also be derived from
measured data as described in Section 3.1.

Apart from the simulation parameters, there are also numeri-
cal parameters. These are grid constant ∆x and relaxation time τ

?,
which define the spatial and temporal resolution of the simulation.
The characteristic velocity um defines the highest expected simu-
lated velocity, which is crucial for stability and usually requires an
educated guess. An initial value can also be derived from measured
data, e.g., by setting it to V ENC which refers to the velocity encod-
ing in MRI measurements. Additionally, further constraints need to
be satisfied in order to generate stable simulations, i.e.,

1
3

ρ

ν
um(τ

?−0.5)∆x < 0.4

needs to be fulfilled [KKK∗17].

To generate the ensemble, we need to sample the simulation pa-
rameter ranges. Sampling can be performed with respect to a prob-
ability distribution. For example, if an average value is known to-
gether with an uncertainty in the form of the standard deviation or
variance, we can use a Gaussian kernel to obtain a normal distri-
bution. Since we mainly had intervals for parameter ranges, we se-
lected a uniform sampling leading to an equal distribution of sam-
ples within the given interval for the examples presented in this
paper. Parameter ranges, distributions, and number of samples per
parameter dimension can be chosen by the user. Then, we generate
a simulation run for each sample of the parameter space. We exe-
cute the ensemble generation on a compute cluster. One may also
follow an adaptive sampling strategy, where after an initial anal-
ysis further runs are generated in regions of interest, but one has
to consider that running the simulation requires some time, even
when executed on the cluster. To reduce the amount of unstable
simulations in advance, our system gives immediate feedback, if a
parameter setting does not fulfill the above-mentioned condition.

3.3. Dissimilarity Measure

In the following we present a similarity measure for combined
scalar and vector fields for comparing the time steps of the ensem-
ble data. A time step is initially given as the velocity field u at a
simulated or measured point in time. Such a vector field has two
characteristics, its magnitudes and its directions, each of which can
be transformed into separate three-dimensional scalar fields by cal-
culating the magnitudes |u| and angle differences ϕ (with respect
to another velocity field). Additional hemodynamic parameters can
be derived from the velocity field, both scalar and vector-valued
such as wall shear stress (WSS) magnitude or vorticity, respec-
tively [HKK∗16].

For measuring scalar field similarity, Fofonov and Lin-
sen [FL19] have already defined an effective distance metric, which
we adopt. It is based on a generalization of the comparison of
two isocontours, each extracted from a scalar field. The applica-
bility of this method has already been well investigated and con-
firmed [FL18]. A Monte Carlo sampling is chosen, in which N ran-
dom samples are selected within the common domain. The number
of data points considered can thus be reduced significantly without
losing important properties. Fofonov and Linsen reported a sam-
ple size of N = 16,384 to be sufficient for all simulations they en-
countered, which they showed by the convergence of differences
in distances when linearly increasing the number of data points.
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Further experiments on other volumetric data sets support the find-
ing [FL18, LHFL19]. In general, the actual number of samples re-
quired is highly dependant on the image resolution. Since our simu-
lation space is restricted to be inside the boundary geometry, even a
number may suffice. As defining a random sampling inside a com-
plex geometry is difficult, we generate random samples within the
bounding volume of the geometry but only consider those samples
that fall inside the volume that the geometry bounds.

Let pi, i = 1, . . . ,N, be the Monte Carlo sample points and
ci = (|u(pi)| − umin)/(umax − umin) be the respective scalar val-
ues normalized by the value range [umin,umax] of magnitudes of
all fields. By testing each ci against an iso-value v, isocontours can
be defined, which define sets of sample points lying inside the iso-
contours (ci ≥ v). The Jaccard index is an effective measure for
calculating the similarity of two sets A and B of sample points. An
isosurface dissimilarity or distance metric is then given by

dAB = 1− |A∩B|
|A∪B| .

Fofonov et al. generalized the metric arguing with infinitely many
isocontours to

dAB = 1− ∑
N
i=1 1−max(cA

i ,c
B
i )

∑
N
i=1 1−min(cA

i ,c
B
i )

(1)

and showed that is has more desirable properties for defining em-
beddings than other metrics based on gradients or correlation.

If we now want to consider the vector field similarity of the ve-
locity directions u

|u| of two respective vector fields uA and uB, a
scalar field distance metric can no longer be applied. Instead, a met-
ric needs to be defined which maps the dissimilarities ϕAB(p) of
two respective direction vectors uA

|uA| and uB
|uB| at a point p to the in-

terval [0,1]. As already stated, a straight-forward mapping to use is
the angle between the directions. Then, the metric can be described
as follows:

ϕAB(p)=


1
π

arccos
(

uA(p)·uB(p)
|uA(p)|·|uB(p)|

)
if |uA(p)| 6= 0∧|uB(p)| 6= 0

0 if |uA(p)|= 0∧|uB(p)|= 0
1 otherwise.

Thus, if the velocity in both fields is non-zero, the angle between
the two direction vectors, normalized to the interval [0,1], is com-
puted. If both input velocities are zero, then the fields are maxi-
mally similar at point p and the dissimilarity metric evaluates to
0 (identity-of-indiscernibles property of a metric). If exactly one
of the two velocities is zero, the metric evaluates to the maximum
dissimilarity 1. A zero velocity inside the simulation domain is ex-
pected to be a rare case, even more so in the measured data due
to the noise. Hence, such a case would be an outstanding case that
should be detected and given attention. In order to combine the re-
sults of all sample points into a single metric, we calculate the mean
dissimilarity

d∠(A,B) =
∑

N
i=1 ϕAB(pi)

N
. (2)

Having defined distance (or dissimilarity metrics) for scalar and
vector fields, a multi-field distance metric can be defined by com-
bining the metrics. Assuming that we want to combine distances

obtained by n applications of one of the distance metrics on a scalar
or vector field, we need to define a function f to combine them.
The fact that both metrics are defined on the interval [0,1] can be
exploited for their combination. Function f shall have the proper-
ties

f (x1, . . . ,xn) =


1 if ∃i : xi = 1
0 if ∀i : xi = 0
0≤ γ≤ 1 otherwise

such that a consistent interpretation of individual and combined dis-
tance metrics is possible. Moreover, f (x1, . . . ,xn) (and thus γ) shall
be a monotonically increasing function for all inputs xi (within the
interval [0,1]). Thus, if all distance metrics x j, j 6= i, are constant
and xi increases, then f (x1, . . . ,xn) shall also increase (or remain
constant). One possible choice is to set

fmax(x1, . . . ,xn) = max(x1, . . . ,xn). (3)

However, only the entry representing the greatest dissimilarity of
all distance metrics is used. This is useful, if one is looking for
ensemble members that are similar in all fields. The disadvantage,
however, is that a lot of information gets lost. In particular, it is not
clear whether only one field is responsible for the dissimilarity, or
several. Therefore, to equally include all field dissimilarities, we
propose to use the function

fprod(x1, . . . ,xn) = 1−
n

∏
i=1

(1− xi). (4)

The product additionally penalizes high dissimilarity across all
fields, which was found to be a desirable property for the embed-
ding, especially when compared to computing the mean dissimilar-
ities. Moreover, it can be easily checked that all desired properties
are fulfilled. Which of the two combination rules to choose depends
on the analysis task.

The metrics proposed and discussed above will be further evalu-
ated in Section 4.

3.4. Visual Analysis

Similarity-space visualization. Our visual analysis component
consists of multiple linked views, but the main view is the
similarity-space visualization, which is supposed to exhibit the
similarity of the ensemble members including their temporal evo-
lution (if available). Thus, we want to develop a lower-dimensional
embedding for the whole ensemble of measured and simulated
data, where dissimilarities between time steps are represented by
Euclidean distances in the embedding. Each time step of each en-
semble member is represented by one point in the embedding. If
two points are close in the embedding, the fields of the correspond-
ing ensemble member time steps should be similar with respect to
the chosen similarity measure. To analyze the temporal evolution,
we connect the embedded points belonging to one time series in
chronological order to form curves that are parametrized over time.

To generate the embedding, we first need to define the similar-
ity space, i.e., we have to decide which of the dissimilarity met-
rics of the previous section to choose. Having defined the metric,
we can compute pairwise similarities among all time steps of all
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ensemble members (possibly including both measured and simu-
lated data). The pairwise dissimilarities can be stored in a sym-
metric distance matrix. Given the distance matrix, we follow the
approach of multi-run plots proposed by Fofonov et al. [FML15],
where the distance metric is fed to a classical multidimensional
scaling (MDS) approach [Wic03]. Since our objective is to have
the Euclidean point distances in the embedding match the dissimi-
larities stored in the distance matrix, the objective function is that of
an MDS approach such that we should prefer an embedding com-
puted by MDS over one of the many other dimensionality reduction
approaches (cf. [SNAA19, NA19]).

Using classical MDS, the axes of the projection space are the
principal directions with corresponding eigenvalues. Only those
with large eigenvalues contribute significantly to the projection.
Hence, the number of principal directions used is determined by
the number of significant eigenvalues. In practice, the dimensional-
ity of a visual space is restricted to, at most, 3 dimensions. Thus, we
use the first three principal directions to create 1D, 2D, or 3D simi-
larity plots using the time axis as second axis in the 1D case. To de-
cide, which dimensionality to pick for the embedding, we perform
an eigenanalysis, which is supported by plotting a bar chart with
largest eigenvalues. The intrinsic dimensionality can be deduced,
which can then be used for the embedding. If the intrinsic dimen-
sionality is larger than three, we could interactively swap axes to
look into more than 3 principal directions (cf. [FML15]), but this
was not necessary for the examples presented in this paper.

To each ensemble member a unique color is assigned according
to a user-defined color map, which is used to color code the re-
sulting time lines. To add back time information when using 2D or
3D embeddings, the members’ respective color changes over time,
linearly transitioning towards white. Ensemble members with no
temporal component represent static data. Such members are de-
picted as horizontal lines in the 1D case and as spheres in the 2D
and 3D case, respectively. Examples of 1D, 2D, and 3D plots are
presented in Figures 3(a), 3(b), and 3(c), respectively.

The similarity-space embedding provides a natural starting point
for our analytical workflow. All ensemble members are loaded
to the visualization for further investigations. The eigenvalue bar-
charts are used to select the appropriate dimensionality of the em-
beddings, but the user may also switch between 1D, 2D, or 3D em-
beddings. Similarly, the user may also select a respective similarity
measure. Further, a subset of ensemble members can be selected,
for which the embedding is recalculated. This is especially useful if
the ensemble contains outliers that make other ensemble members
clutter together. The outliers may be removed to provide more de-
grees of freedom for embedding the remaining members. Similarly,
one can drill down on clusters and subclusters.

Volume visualizations. Having detected time steps of ensemble
members that deserve an in-depth analysis, linked views to volume
visualizations are provided. The volume visualizations of a selected
time step shall allow for (i) the multi-field visualization of a single
ensemble member, (ii) the comparative visualization of two ensem-
ble members, (iii) the statistical visualization of all ensemble mem-
bers. Visualizing a single ensemble member supports the in-depth
analysis of a member that has been identified as being interesting
during the ensemble analysis. Visual comparison of two ensemble

members allows for the detection of spatial regions where two iden-
tified ensemble members differ, e.g., in which regions a simulation
run fails to reproduce a measured field. The simultaneous volume
visualization of all ensemble members shall support the identifica-
tion of spatial regions with different ensemble behavior, e.g., de-
tecting spatial regions where all ensemble members tend to concur
or tend to disagree. Moreover, we use regions with high disagree-
ment to define new seeds for the similarity-space embedding. By
comparing the embeddings for selected regions only, the effect of
sequences or simulation parameters can be analyzed.

For volume visualizations of a single ensemble member, we use
direct volume rendering via (multi-modal) GPU-based raycasting
and linked slice-based viewers. For the slice-based visualization,
the user may use a handle metaphor to arbitrarily position a plane
in the volume, from which the slice projection is derived. Interact-
ing with such a slice view reveals the local velocity values. Addi-
tionally, the cursor’s position is projected back into 3D space for a
better spatial understanding of the linked views, see Figure 10(a).
For velocity fields of selected time steps, streamlines (or pathlines
for members with multiple time steps) can be calculated using a
classical Runge-Kutta integration scheme and visualized using a
velocity-magnitude or direction color-coding, see Figure 11.

For a comparative volume visualizations of any scalar or vector
field of two selected ensemble members, we create a (vector) dif-
ference volume from the respective fields and provide slice-based
visualization of the difference volume as well as a direct volume
rendering, see Figure 10(a). Depending on the transfer function,
regions of high differences can be highlighted, e.g., when using
a maximum intensity projection. Alternatively, juxtaposed linked
volume visualizations enable a fast comparison of two velocity
fields, especially with regard to flow features such as turbulences
or vortices, cf. the streamline visualizations in Figure 11.

To support volume visualization for the entire ensemble, we first
calculate the mean volume of all N ensemble members for a point
in time and for any selected field. For vector fields, the mean of
each, x-, y- and z-component is calculated, so that each voxel is
effectively represented by a mean vector x. We then use this average
to calculate a similarity volume as shown in Figure 5, where we
perform a voxel-wise calculation

σ =

√√√√ 1
N

N

∑
i=1
|xi−x|, (5)

similar to computing the standard deviation. We then perform a
user-defined thresholding on the scalar field of σ-values to create
a binary volume, on which we run a connected component analy-
sis [IS09]. The resulting regions are filtered and sorted in descend-
ing order according to their enclosed volume (simply estimated by
the number of enclosed voxels). The boundary geometry (cf. Sec-
tion 3.1) is then rendered with low opacity and overlaid with a ray-
casting of the binary volumes representing the detected regions,
where each region gets assigned a unique color. The resulting visu-
alization can be seen in Figure 8, respectively. This allows for a fast
assessment of the spatial distribution of difference for any field of
the ensemble at a selected point in time. The methods were imple-
mented using Voreen [MSRMH09], an open-source framework for
volume visualization and will be published in an upcoming release.
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4. Evaluation of Similarity Measure

To evaluate our similarity measure, we generate an ensemble of
three very simple synthetic vector fields, which is summarized in
Table 1. In particular, the vector fields are homogeneous and can,
therefore, be described by a single vector for each time step. Since
our evaluation is performed qualitatively, the vectors have been
chosen to quite drastically change either magnitude, direction, or
both over time. Thus, each vector depends on a parameter θ∈ (0,1]
which was equidistantly sampled 40 times to simulate the change
over time by an increasing parameter θ.

Member Quantity Vector Color
1 Magnitude (θ,θ) orange
2 Direction (cos(2πθ),sin(2πθ)) pink
3 Combined (θ · cos(2πθ),θ · sin(2πθ)) blue

Table 1: Ensemble of the synthetic flow fields used as ground truth
for our similarity measure evaluation. Each member is defined by
a unique vector depending on θ which increases linearly over time
on interval (0,1] using 40 samples. The last column provides the
color used in the similarity plots for the runs.

First, the metrics in Equations 1 and 2 are evaluated for separate
consideration of magnitude and direction. Figure 3(a) shows a 1D
embedding with time as second axis using only velocity magnitude
for dissimilarity (Equation 1). As expected, Member 2, which does
not change its magnitude shows up as a horizontal line. If only
the magnitude changes (Member 1), the corresponding curve also
exhibits a drastic change. If the changes in magnitude and direction
are combined (Member 3), the resulting curve behaves similarly,
since the direction has no influence. However, the curves are not
identical, since the magnitudes differ by a factor of

√
2. Member

3 approaches Member 2, as their magnitudes approach each other
towards the end. The actual position at the last time step, however,
is not the same as, since the second principal directions also has
a non-negligible influence, which can be seen by considering the
corresponding eigenvalue barchart. Member 1, on the other hand,
moves away again due to its increased magnitude.

Figure 3(b) shows a 2D embedding using only velocity direction
for dissimilarity (Equation 2). As expected, the circular curves of
Members 2 and 3 coincide. Member 1 does not change direction
and, thus, is represented by the dot.

When using our proposed combination of magnitude and direc-
tion information using the metrics in Equations 3 or 4, we observe
that both magnitude and direction are captured appropriately. Fig-
ure 3(c) shows the results when using Equation 4. Here, 3D embed-
dings are used. We observe a circular curve on a plane for Member
2 and an almost linear path for Member 1. The curve of Member 3
clearly represents the desired combination of both aforementioned,
where the circular curve of Member 2 is translated over time in the
direction of the curve of Member 1 to form a spiral.

We compare our result against that of Jiang et al. [JJVS∗11] as
discussed in Section 2, which is shown in Figure 3(d). The circle
described by Member 2 is severely distorted, while Member 1 is
almost static. Consequently, Member 3 also shows up as a distorted

(a) 1D similarity plot for synthetic data ensemble using metric from Equa-
tion 1 only considering vector magnitude. The eigenvalue barchart indi-
cates that using the first principal directions (viewed over time) preserves
most information.

(b) 2D similarity plot for synthetic data ensemble using metric in Equa-
tion 2 only considering vector direction. The eigenvalue barchart indi-
cates that using the first two principal directions is sufficient.

(c) 3D similarity plot for synthetic data ensemble using combined
metric in Equation 4. The eigenvalue barchart indicates that using the
first three principal directions is sufficient.

(d) 3D similarity plot for synthetic data ensemble using the metric by
Jiang et al. The eigenvalue barchart indicates that using the first three prin-
cipal directions may not be enough.

Figure 3: Similarity plots (left) and respective eigenvalue bar
charts (right) using different similarity measures for the synthetic
vector field ensemble.
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circle that almost coincides with Member 2. Hence, we can con-
clude that our measure follows better the expectations.

Finally, we interpret the x, y, and z components of the vector
fields as three scalar fields to compare our result against that of
Fofonov et al. [FL19] using their multi-field approach for scalar
fields. The result, however, does not properly reassemble the circu-
lar shape as our measure did.

5. Ensemble Analysis Results

In this section, as a proof of concept, we apply our methods to in-
vitro imaging data sets acquired by a 9.4 T Bruker BioSpec small
animal scanner for flow boundaries of different complexities.

5.1. Pipe Flow Phantom

Figure 4: 2D similarity space embedding for the pipe flow phan-
tom ensemble using our similarity measure by combining velocity
magnitude and angle information by fprod . Q-annotated numbers
encode the pump speed in ml/min and R-annotated numbers en-
code the grid constant in µm.

The simplest tubular flow imaginable is laminar flow in a pipe.
Hence, this example is the state-of-the-art benchmark in CFD sim-
ulations. We transfer this example to the MRI domain and try to
draw conclusions using our visual analysis approach. More pre-
cisely, we use data generated by the 4D center-out stack-of-stars
PC velocity mapping sequence (V ENC = 150cms−1) applied on
a phantom made from acrylic glass, which contains four smaller
tubes. A water pump was connected to two of the tubes, while
the others were connected such that they define a closed circuit.
For the experiments, 4 different pump speeds of 200, 400, 600 and
800ml/min and 4 different isotropic resolutions of 200, 150, 120
and 100 pixels with a respective grid constant of 150, 200, 250 and
300 µm3 have been chosen. Each pump speed was measured in all
resolutions by otherwise identical conditions to generate an ensem-
ble with a total of 16 members for each of which an “anatomical”
image and the velocity vector fields is provided. In principle, the
four smaller tubes are mostly identical, however we choose to use
all of them for the analysis to effectively increase our sample size.

Figure 5: Similarity volume rendering for pipe flow phantom en-
semble using maximum intensity projection. The green handle
metaphor can be used to position an arbitrary plane from which
a slice-based representation can be derived.

(a) Pump speed of 200ml/min (b) Pump speed of 800ml/min

Figure 6: Cross-section through magnitude velocity vector differ-
ence volume calculated between the lowest and highest resolution
for different pump speeds for pipe flow phantom. The plane was
chosen as shown in Figure 5.

First, we use the magnitude images of the highest resolution to per-
form a segmentation using the semi-automatic random-walker im-
plementation. The segmentation is then used, according to our pro-
posed analysis workflow, to place seeds for the similarity embed-
ding. Since fluctuations in pump/water speed have been averaged
out over time, the measurements represent mostly steady flow, i.e.,
we have one time step for each ensemble member.

Using our similarity measure, we combine the dissimilarities of
the velocity magnitude (Equation 1) and angle difference (Equa-
tion 2) using fprod (Equation 4) to create a 2D embedding for the
entire ensemble, see Figure 4. Function fprod was chosen, as we
want to give equal impact to both magnitude and direction. Us-
ing the first two principle components as axes, we can immedi-
ately identify 4 groups with 4 ensemble members each. The groups
are formed by members obtained using the same pump speed. The
groups also exhibit an order according to increasing pump speed.
Within each group we observe an order based on the grid constant.

The similarity volume reveals that the highest difference across
all ensemble members is found at the ends of the tubes and near
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their boundary. In the PC-MRI domain, acquiring accurate flow
data at the vessel walls is a common problem and thus active field
of research.

Another observation from the similarity space embedding in Fig-
ure 4 is that the spread within each of the 4 groups increases with
higher pump speed, i.e., their velocities presumably differ more for
higher pump speeds. To assure that this is not a projection artifact
of the embedding, we interactively selected pairs of highest dissim-
ilarity among the groups with lowest and highest spread, respec-
tively, and visualize the magnitude of the respective vector field
difference volumes. We observe in Figure 6 that the differences in
velocities indeed increases with higher pump speed.

5.2. Aneurysm Flow Phantom

Figure 7: 1D similarity embedding for brain aneurysm ensemble.
The parameters of each run are encoded by a combination of res-
olution r, inlet flow velocity magnitude m, viscosity ν, and density
ρ. The indices denote the respective value, 0 being the lowest. The
bottom group represents simulation runs that failed indicated by
early termination or fluctuations. The dashed line represents the
(not time-varying) measured data.

To evaluate our methods on a more complex and more realistic
geometry and to evaluate the effect of multiple simulation parame-
ters, an in-vitro brain aneurysm model was measured by the use of
4D FLASH PC velocity mapping MRI sequence. The in-vitro flow
phantom was 3D printed and remodeled using liquid latex to have
a similar elasticity close to the human vessel wall. In our study, the
experiment has been performed with a flow rate of 400ml/min,
V ENC = 300cms−1, and an isotropic resolution equal to 391µm3

resulting in an image resolution of 1283 pixels.

First, we process the measured data as described in Section 3.1.
In particular, we apply a thresholding operation and a median fil-
ter on the velocity magnitude field to extract the vessel lumen. A
3D Gaussian filter is used to obtain a smoother surface during iso-
surface extraction, the result of which can be seen in Figure 2. We
generate a simulation ensemble by varying parameters viscosity,

Figure 8: The 4 largest regions calculated by a connected com-
ponent analysis on the similarity volume (binarization threshold =
20) for the last time step of converged simulations and measured
data, generated using the brain aneurysm phantom.

Figure 9: 2D similarity embedding, where seeds have been re-
stricted to the green and red region in Figure 8. Plotted points
overlap in the projection due to density having negligible impact
on the simulation output.

density, and the inflow velocity. In our simulations, we assume
the moving fluid to be blood rather than water, as blood has a
wider range of viscosity (3× 10−3m2 s−1 - 4× 10−3m2 s−1) and
density values (1043kgm−3-1057kgm−3). We equidistantly sam-
ple the parameter space using the respective minimum and max-
imum values from the intervals. The inflow velocity was chosen
to be at 320 cms−1, 400 cms−1, and 480 cms−1, respectively. The
Smagorinsky constant was set to 0.1, which is common for a simu-
lation domain of this kind [MHK∗17].

The simulation output is a velocity vector field similar to what
is provided by the measurement. We used three different simula-
tion resolutions, however, downsampled them to 128 voxels in each
spatial dimension, which was found to provide a suitable trade-off
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(a) Volume visualization. (b) Respective cross-
section.

Figure 10: Velocity magnitude difference visualization of measured
data and the simulation run most similar to it, after the most dis-
similar regions have been removed according to Figure 8. A spe-
cific voxel value is shown by hovering the cursor over a pixel in
the cross-section. The position is mapped back into 3D space in
the volume visualization as indicated by the red dot and connected
orthogonal lines.

(a) Measured data. (b) Most similar simulation run.

Figure 11: Juxtaposed comparative streamline visualization of
measured data set and the simulation run most similar to it.

between resolving the desired flow features and allowing for an in-
teractive analysis. Our analysis goal was to find a simulation that
best matches the measurement. Consequently, we added the mea-
surement to the generated ensemble. Using our multi-field similar-
ity measure fmax (Equation 3), we combine the dissimilarities of the
velocity magnitude (Equation 1) and angle difference (Equation 2)
to create the 1D similarity-space visualization shown in Figure 7.
We chose fmax because we want to find the simulation run that is
most similar to the measured data in all fields. While the simulated
data are spatio-temporal, the measured data have no time-varying
component and, therefore, are represented by a horizontal (dashed)
line. In the 1D embedding, we observe two cluttered groups, the
lower of which contains unstable simulations, indicated by early
termination and severe fluctuations. We therefore select the upper
group only and generate a new 1D embedding which can be seen in
the accompanying video. In the new embedding the simulation runs
also all show a similar evolution over time. However, they differ by
some offset and we were able to identify three groups consisting

of three runs each. These groups were found to have different re-
spective inflow velocity magnitude, i.e., this parameter influences
the outcome most. Each of the curves actually coincides with two
other curves which correspond to different density values. Thus, we
can conclude that density has a negligible impact in comparison to
other parameters.

Next, we visualize the regions of high dissimilarity using the
similarity volume of the selection of stable runs and the respective
connected components of high disagreement shown in Figure 8.
We observe four regions, which we analyze further by creating new
embeddings for the last time step of each converged simulation and
the measured data, where seeds have been restricted to the iden-
tified regions, see Figure 9. The red and green regions are caused
by so-called phase wraps in the measurement. Phase wraps occur
when measured flow velocity v is higher than V ENC such that it
will be mapped to an incorrect velocity. For the other two regions
near the inlet and outlet we observed a high variation between the
simulations. It therefore seems that boundary conditions are quite
sensitive to parameter changes. In order to provide a spatial under-
standing of the actual similarity of the velocity vector fields, we
provide volume difference visualizations (cf. Figure 10) as well as
juxtaposed streamline renderings (cf. Figure 11) for both the mea-
sured data set and the time step of the simulation run which is most
similar according to our measure fmax. It was selected by consider-
ing the lowest Euclidean distance between time steps of measure-
ment and simulations in the embedding. Additionally, we remove
the already detected regions of high local dissimilarity according to
Figure 8 from the difference volume to better explore the distribu-
tion of difference in the remaining space. It reveals high differences
in the region where the vessel experiences high curvature, as well
as right after the flow passed by the aneurysm.

6. Domain Expert Evaluation

Our tool supports experts from both the MRI and CFD domain to
analyze their data. It must therefore, as a whole, be intuitive and
useful to them. We reached out to three domain experts and made
them use all components of the analysis workflow embedded in our
tool. In the following, we summarize their feedback. The interviews
were performed in one session for each domain, where two MRI
experts (P1, P2) participated in the first session (S1) and one CFD
expert (P3) in the second session (S2).

For S1, an ensemble of measured data similar to the one pre-
sented in Section 5.2 was provided by the experts in advance, which
we used as input for our tool. Since generating simulation ensem-
bles is not of primary interest for the MRI domain, the simulation
ensemble generation was only briefly discussed. In contrast, in S2
more focus was given to this particular feature and respectively less
on the measured data preparation step. During the sessions, no sim-
ulation ensembles were run, as this would have taken too much
time. Nevertheless, in both sessions the experts defined parameter
ranges to set up a simulation. P2 even drew one sample from the
parameter space and ran this locally on his computer. For S2, we
prepared the data set in Section 5.2, which already includes repre-
sentative simulation data.

For the visual analysis, the experts were given an overview about
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all linked views and their respective interaction. Especially the sim-
ilarity embedding was explained in detail to allow for useful inter-
pretations. Since Euclidean distances represent dissimilarities, all
experts found the embedding comprehensive and intuitive, regard-
less of the number and order of the principal directions used. P3
reported that, in his domain, plots similar to our 1D embedding are
used to analyze respective quantities of simulations like the drag
coefficient. The similarity volume and the detected regions of high-
est dissimilarities were also rated quite intuitive by all experts.

All experts were asked about how they think the tool could be
used in their daily work and what a typical use-case could look
like. P1 and P2 conduct research in MRI pulse-sequence design
and therefore typically perform a lot of experiments. Since the re-
sulting imaging data needs to be compared to results from estab-
lished standards, they found the tool to be a good starting point
for their analysis. They especially pointed out the usefulness of the
similarity embedding. However, they found that the interpretation
of dissimilarity can be improved. Since Euclidean distances in the
embedding only have a relative interpretation, it is currently not
possible to tell without an in-depth analysis what the correspond-
ing absolute dissimilarity is. They therefore suggested to add some
statistical power to the similarity space visualization, e.g., by inte-
grating statistical properties.

P3 instead typically deals with Lattice-Boltzmann methods in
his research and claimed that it would be very beneficial for him
and other members of his domain to use our tool. Especially the
simulation ensemble generation caught his attention and he liked
how comfortable the parameter space can be sampled which, he
proposed, could be very beneficial for beginners in the simulation
domain. When asked for further improvements, he suggested to in-
tegrate more tools to analyze the parameter space, e.g., by cluster-
ing the points in the similarity embedding according to their pa-
rameters. Part of his research includes adaptive grid refinement of
the simulation lattice. He considers the visualization of the similar-
ity volume and regions of high dissimilarities useful for this task.
In particular, a simulation ensemble with different refinement set-
tings could be generated and analyzed for dissimilar regions where,
conclusively, the refinement would need to be adjusted.

7. Discussion

As a proof of concept, our approach was applied on two domains of
different complexity. We could show that our multi-field similarity
measure can be used effectively to generate low-dimensional sim-
ilarity visualizations that provide a good overview for ensembles
created from measured and simulation data. We created a bench-
mark scenario for PC-MRI sequences where laminar flow inside
a flow phantom was generated by a water pump. Pump speed and
resolution of the measurements were changed and we could show
the effect on the measured data. Another measurement of flow in-
side a brain aneurysm phantom was used to extract a more complex
flow geometry, for which a simulation ensemble was generated. We
could determine the effect of individual parameters on the simula-
tion outcome and compared the result to the measured data.

In the proof of concept, two fields were combined. In princi-
ple, of course, our measure is applicable to more than two fields.

In future work, we want to add further hemodynamic parameters
to the analysis. The embedding is limited to up to three principal
directions, however, for all the data we used to, three dimensions
properly reassembled most of the data as indicated by the respec-
tive eigenvalue bar charts. Generally, our approach is independent
of any measurement technique and simulation method. However,
depending on the methods, the number of considered parameters
might be considerably large, resulting in ensembles with a lot of
members. Consequently, a large amount of simulations would need
to be run and visualized in our similarity based visualization, which
may cause visual clutter. To compensate for that, the similarity of
intermediate time steps towards the measured data could be calcu-
lated at the time the simulations runs. Those not getting, at least,
as similar as defined by a user defined threshold or even experi-
ence increased dissimilarity as time progresses could be interrupted
early and removed from the ensemble. For defining such a thresh-
old, similarity between multiple measurements or time steps of a
time-varying measured data set could be used. Support for the lat-
ter, e.g., for consideration of the cardiac cycle we think is a neces-
sary step and straight forward to incorporate in the current pipeline.
Further spatial visualizations could easily be integrated such as the
arrow glyph-based visualization for a pair of velocity vector fields
as proposed by de Hoon et al. [dHvPJV14].

We asked domain experts from the CFD and MRI domain to pro-
vide feedback on the intuitiveness and usefulness of our methods
and the application they are embedded in. The overall feedback was
very positive, however, the similarity plot as an overview visualiza-
tion would clearly benefit from representing absolute similarities,
not only relative.

8. Conclusions and Future Work

We presented a tool for the generation and analysis of tubular multi-
field ensembles and especially addressed use cases for experts from
the CFD and MRI domain. The visual computing workflow in-
cludes a data processing step for measured data which can be used
to initialize in- and outlets and estimate parameters for a multi-
parameter simulation model. Simulation ensembles were gener-
ated using a Lattice-Boltzmann method by sampling the parameter
space of relevant parameters and can be combined with measured
data. We applied our similarity-based visual analysis approach to
ensembles from both domains and could show that relevant proper-
ties can be extracted easily by using multiple linked views showing
the spatio-temporal distribution of difference. This was confirmed
by feedback of experts from the respective domains.

In future work, we want to integrate time-varying in-vitro and
in-vivo measurements to achieve an even better understanding of
the similarity space when compared to simulated data. As in-vivo
measurements are involved, we want to not only consider static, but
also deformable geometry in our workflow. Since the simulation
outcome might be sensitive with regard to the simulation domain,
we also want to integrate an uncertainty based sampling strategy
for the geometry similarly to what was proposed by Scheid-Rehder
et al. [SRLM19]. Finally, we want to address the feedback of the
domain experts and advance the similarity space embedding visu-
alization such that it can represent absolute similarity.
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