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Abstract
Flagship-class high-performance computing (HPC) systems, also known as supercomputers, are large, complex systems that
require particular attention for continuous and long-term stable operations. The K computer was a Japanese flagship-class
supercomputer ranked as the fastest supercomputer in the Top500 ranking when it first appeared. It was composed of more
than eighty thousand compute nodes and consumed more than 12 MW when running the LINPACK benchmark for the Top500
submission. A combined power substation, with a natural gas co-generation system (CGS), was used for the power supply, and
also a large air/water cooling facility was used to extract the massive heat generated from this HPC system. During the years
of its regular operation, a large log dataset has been generated from the K computer system and its facility, and several visual
analytics systems have been developed to better understand the K computer’s behavior during the operation as well as the
probable correlation of operational temperature with the critical hardware failures. In this paper, we will reflect on these visual
analytics systems, mainly developed by graduate students, intended to be used by different types of end users on the HPC site.
In addition, we will discuss the importance of collaborative development involving the end users, and also the importance of
technical people in the middle for assisting in the deployment and possible continuation of the developed systems.

CCS Concepts
• Human-centered computing → Visualization systems and tools; Visual analytics; • Hardware → Robustness;

1. Introduction

Stable and uninterrupted operation is highly demanded for the op-
eration of any HPC system. However, hardware failures can be
considered inherent in the long-term operation of any HPC system
due to the large number of hardware components involved. For in-
stance, as shown in Fig. 1, the K computer system [MKS∗12] was
composed of 82,944 SPARC64 VIIIfx CPUs, 82,944 Interconnect
Controllers (ICCs), 663,552 DRAM memory modules, and 10,368
power supply units. The K computer system consumed more than
12 MW of power during the LINPACK benchmark [Don88] when
it surpassed the barrier of 10 PFlops for the first time in the Top
500 list [top]. To remove the massive heat generated during the
regular operation, the cooling facility produced chilled water with
a temperature around 15oC for removing the heat from the CPUs
and ICCs, and produced cooled air around 17oC for removing the
heat from the memory modules and power supply units inside the
compute racks. Sensor information data sampled at different fre-
quencies have been gathered and stored as big log datasets and
used for analyzing from statistical perspectives, and we can cite
the computational resource allocation [YUM∗14], hardware failure
analysis [Sho16], and energy efficiency [TSTY20].

• 864 Compute Racks
• 24 System Boards (SB) 

• 4 CPU (SPARC64 VIIIfx)

• 4 ICC (SPARC64 VIIIfx)

• 32 DIMM (DRAM) 

• 12 PSU (Power Supply)
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Figure 1: Overview of the K computer system and its facility.
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With the advancements in sensor technology and measurement
techniques, a variety of measurements, in the form of time-series
log data, can be obtained from the HPC systems and infrastruc-
ture facilities. It is worth noting that there is currently increasing
attention to Operational Data Analytics (ODA) [BJB∗19], which
is focused on the near real-time monitoring, archiving, and anal-
ysis of the HPC system and facility, as shown in the survey by
Ott et al. [OSB∗20]. Currently, the K computer was replaced by
an even larger, power-hungry HPC system, the Fugaku supercom-
puter [SKTO22], which has been incorporating such ODA oriented
mechanism, and a part of the data has been publicly available via
Grafana-based dashboard, as shown in Fig. 2. However, in this
work, we are mostly interested in the post-analysis of the stored
log data, trying to obtain valuable information and knowledge from
the data aiming to ameliorate the operation and maintenance of the
HPC system and its facility.

Although the log data types, as well as the target goals, are dif-
ferent, we can identify various works addressing such a direction.
For instance, log analyses of different supercomputers at Sandia
National Laboratories and Lawrence Livermore National Labora-
tory [OS07] are examples of such post analyses. There are also
GPU failure analyses for the Titan supercomputer at the Oak Ridge
Leadership Computing Facility [RMJM19], and a more complete
analysis (power, energy, and thermal dynamics), including GPU
failures, for its successor, the Summit supercomputer [SOK∗21].
We can also cite a visual analytics tool developed for identifying
characteristic patterns from the HPC system behaviors and failures
on the Theta Cray XC40 supercomputer at the Argonne Leader-

Figure 2: Web-based dashboard for the monitoring and analysis
of the operational status of the Fugaku supercomputer at RIKEN
R-CCS. Publicly accessible from the following URL: https://

status.fugaku.r-ccs.riken.jp/.

ship Computing Facility (ALCF) [SLE∗19]. At the ALCF, a cool-
ing system analysis, including coolant monitor failures, was also
conducted for the Mira supercomputer [RPK∗21].

In this work, we present several visual analytics systems that are
collaboratively developed with academic partners and discuss ob-
served gaps from the perspectives of the end user and third party.
Our observation shows that, as in other application domains, the
gaps due to mismatches of goals and expectations between the de-
veloper and user sides are easily caused in visualization research
projects for HPC systems. The gaps we faced still remain challeng-
ing to be resolved and highlight the need for a multitude of con-
siderations for future research projects, including the succession of
projects with available student resources and the deployment pro-
cess of research results for practical usage.

2. Log Data Analysis

There was a transition period, of more than a year and a half,
from the end of the K computer operation in August 2019 until the
start of the official operation of a new supercomputer, Fugaku in
March 2021. During this period, an on-premise, OpenStack-based
private cloud system (Fig. 3) was installed to assist the K com-
puter users in their post-hoc analyses of simulation results. The Fu-
gaku supercomputer debuted as the most powerful supercomputer
in the Top500 ranking and is composed of 158,976 compute nodes

K Pre-Post Cloud System 

• 22 Intel Xeon Platinum 8168

• 4 NVIDIA Tesla P100

• 4 NVIDIA Tesla V100

• 105 TB SSD + 150TB HDD

Virtualized Resources

Up to 96 vCPUs / 1 GPU / 320GB RAM/ 8TB SSD

Global File System (GFS)

(around 30 PB)

Simulation

Data

Log

Data
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Server
(to mount GFS)
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DesktopUbuntu LTS (18.04.3, 20.04.1)

VPNGFS
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drives 
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Figure 3: OpenStack-based private cloud system (K Pre/Post
Cloud) for assisting the post-hoc analyses of vast amounts of data
stored on the K computer’s persistent storage (Global File System).

Table 1: Example of CSV data from the K computer and its facility.

Sampling rate Contents
I/O (among Node and Local File System)

10 min. 82,944 nodes
864 Compute racks

5 min. 1,163 measurements
(temperature, voltage, on/off position, etc.)
Power consumption (per rack)

1 min. 192 racks (kW)
2 Co-Generation Systems

1 min. 16 measurements
(power generation, vapor generation, etc.)
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Figure 4: Spatiotemporal distribution of critical DIMM (left) and
CPU (right) failures requiring component substitution.

(ARM-based Fujitsu A64FX CPUs) distributed over 432 compute
racks (reduced to half compared to the 864 racks of the K com-
puter) arranged in a planar space and connected via a high-speed
network. It is worth mentioning that the power and cooling facility
has been upgraded to deal with the increase in power consumption
and heat generation. Considering the existence of a vast amount
of log data gathered during the regular operation of the K com-
puter, during the transition period, we focused on trying to better
understand the operational behavior of such a large HPC system
and its facility. Several measurements and information have been
gathered at different sampling rates and stored as CSV-based log
data. Table 1 shows some of them as illustrative examples. In addi-
tion, there was also a maintenance information sheet with a list of
the replaced components due to the hardware failure. Fig. 4 shows
a spatiotemporal distribution of the DIMM and CPU failures that
required hardware replacement. Initially, simple 2D plots, obtained
from gnuplot and Python-based plotting tools, have been used to
analyze the aforementioned log datasets on the on-premise cloud
system.

We began a research project by extending an existing collabo-
ration with a research group at Kobe University to work with the
above time-varying and multivariate log data. Later, we extended
this collaboration with a research group at UC Davis (University
of California, Davis) as they were also working on a similar topic.
Some graduate students participated in this project, and incorpo-
rated the work in their dissertations, and we can say that it was
a success from an academic perspective. In the developments, the
target end users, with different computational skills, have partici-
pated in the evaluation and feedback. In addition, some technical
staff has assisted with the deployment for practical usage. As in the
statement of the scope of the VisGap Symposium, while most of the
developed prototype systems have shown their value and potential,
the end users are still waiting for further work to enhance them as
practical tools for daily work. In the following section, we describe
some of the visual analytics tools, mainly developed by graduate
students, and discuss some lessons learned.

3. Visual Analytics Systems

The K computer enabled the users to run large batch-based jobs
using tens of thousands of compute nodes for up to 24 hours, as
well as huge batch jobs by using the entire K computer system
for up to 8 hours during periodical large-scale job execution sea-
sons. During its regular operation, many small and medium size
jobs have co-existed; thus, critical hardware failures, which re-
quire the substitution of the failed components, may impact the

jobs of the users. Due to its undesirable consequences, statistical
hardware failure analyses have been carried out during the opera-
tional period [YUM∗14, Sho16]. The Arrhenius model, shown in
Eq. 1, describes the relationship between the lifetime of compo-
nents and the temperature, which is aging [KK11, VdSdSM∗19] in
other words, and has been considered in the design of the K com-
puter’s CPU [Tak12].

L = Ae
Ea
kT (1)

In this equation, L corresponds to the lifetime, A is a constant,
Ea corresponds to the activation energy expressed in eV , k corre-
sponds to the Boltzmann’s constant (8.6×10−5eV/K), and T cor-
responds the temperature expressed in the kelvins. To investigate
such a probable correlation between temperature and critical hard-
ware failures, several visual analytics tools have been developed, as
described in the next subsections.

3.1. Biclustering and Transfer Entropy-Based System

To understand the correlation between the temperature and critical
hardware failures, it is essential to review a set of temperature data
(CPU, intake/exhaust air to/from the racks, cooling water supply to
the racks) measured during the regular operation of the K computer
in conjunction with maintenance information regarding the failed
component substitution. To facilitate the system development, data
pre-processing has been carried out to reduce the size of the data
since the CPU temperature was measured for the entire set (82,944
CPUs) every 5 minutes. The averaged CPU temperature per rack
(total of 864 racks) and per day has been generated and used as the
target data to be analyzed.

A graduate student from Kobe University, at that time, worked on

Figure 5: Overview of the developed visual analytics system. The
brushable data and failure plot screens (located on the lower part)
are used to select a period of interest and the target failure for the
analysis. The heatmap screen (upper left) shows the spectral biclus-
tering result and the causal network screen (upper right) shows the
causal relationship in the form of colored directed arcs.
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a visual analytics system [KSNS18, KSN∗19] for this matter. The
GUI of the developed system is shown in Fig. 5. In this system,
users can flexibly choose a period of interest by brushing the data
plot screen based on the failure information shown in the failure
plot screen. Then, the heatmap screen for the critical hardware fail-
ures, with its spatial locations, is updated, accordingly. The transfer
entropy (TE) [Sch00] is used to estimate the causal index (strength
of the impact of one on the other) from the resulting heatmap, and
the obtained results are plotted in the form of circles and arcs on the
causal network screen for visual causal relationship analysis. This
system also uses spectral biclustering (SBC) [TSS05] to filter the
input data (matrix data shown as the heatmap) for the TE calcula-
tion. The SBC is used to delimit the data space, that is, instead of
utilizing the entire data space of the heatmap, the SBC will try to
delimit the racks involved in the CPU failures as much as possible,
and avoid involving unnecessary data in the TE calculation.

The causal network screen, which visualizes the causal indices
as easy-to-understand directional graphs with color mapping, was
highly rated by the end users during its practical evaluation. This
visual representation is an amelioration from the initial prototype
visualization using the thickness to represent the degree of causal-
ity. We should also mention that Fig. 4 was used as the failure plot
screen for the initial prototype system. This gradual improvement
is one of the positive consequences of collaborative development.
Another lesson learned during this development is that it can lead to
a better understanding of the visualization results by better knowing
the pros and cons (or limitations) of the proposed approach, com-
pared to the traditional use of the plotting tools as black boxes. Al-
though the student was well motivated to work on further improve-
ments by incorporating the convergent cross-mapping method, the
lack of time for the development before his graduation (M. Sc.) and
the lack of a candidate to take over the ongoing work required us to
suspend the development. We hope that other well-motivated stu-
dents will be able to accomplish the research before moving to a
potential production run, with a focus on the log data of the Fugaku
supercomputer (instead of the K computer), which is constantly
collected over time after starting its operation.

3.2. Two-Step Dimensionality Reduction-Based System

The previous visual analytics system used averaged data, which
can lead to overlooking relevant aspects during the analysis. Grad-
uate students from UC Davis worked on a dimensionality reduc-
tion (DR) based visual analytics system capable of handling the
original raw data without averaging them, which was named Mul-
TiDR [FSS∗21] (Fig. 6). This system was developed as a general-
purpose framework to support the effective analysis of multivariate
time-series data, which includes the log data from HPC systems
and their facility. The MulTiDR employs two-step DR to generate
an overview of the data and supports the interpretation of the DR
results, using contrastive learning [FKM20] and interactive visual-
ization. In the first step of DR, MulTiDR compresses and converts
a third-order tensor into a matrix, and then, in the second step,
it projects high-dimensional data points into a lower-dimensional
space. Similar to the existing DR methods, the two-step DR result
shows similarities of instances, variables, or time points, and en-

Figure 6: MulTiDR on the Ubuntu 20.04.1 LTS GNOME remote
desktop, using the K Pre/Post Cloud system, during the analysis
of a hardware failure day. User-selected clusters on the two-step
DR view (upper left) are highlighted in the rack view (upper right)
showing the physical coordinates of the racks with similar behav-
iors.

ables visual identification of essential patterns, such as clusters and
outliers.

Fig. 6 shows a visual analysis result of the entire log data from
the K computer system for a single day. In addition to the tem-
perature measurements, voltage measurements from the PSUs, and
information from the air cooling fans installed on the compute
racks comprising 1,163 different measures have been used. Since
these measurements are collected every 5 minutes then 1,440 times-
tamps are generated in a single day. This single-day log data col-
lected from 864 racks was represented as a T ×N×D tensor where
T = 1,440, N = 864, and D = 1,163 with more than 1.4 billion el-
ements in total. From the pair of scatterplots showing the two-step
DR results, users can select clusters of interests that will be colored
differently from each other. The racks belonging to the selected
clusters will be also highlighted in the rack view (located on the top
right), which shows the actual physical positions of the K computer
racks. Additional line chart-based visualizations assist in better un-
derstanding the selected instances, valuables, or time points. For
instance, the feature contribution visualization helps users charac-
terize each of the selected clusters.

The MuTiDR has an easy-to-interact user interface for selecting
clusters of interest and the web-based client implementation greatly
facilitates the usage even for those who are accustomed to using
Windows OS during their daily work. While MulTiDR is a general-
purpose system,

the GUI showed in Fig. 6 was tailored for the K computer’s log
data analysis. In addition, the command line-based data conversion
tool was also tailored for the K computer’s log data. The offline data
conversion and the MulTiDR server-side setup on the K Pre/Post
Cloud system could be conducted without difficulty by people ac-
customed to the Linux environment. Although it is a well-known
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fact, we learned that it can be difficult to convince someone to use
a different OS environment, and it becomes highly important to
provide an application capable of running on the OS of the tar-
get end user. We also learned that the client/server implementation
could greatly facilitate mitigating the problem by doing separately
the data conversion and server setup for the end users.

Regarding the visual analysis, although it was easily possible to
visually identify different clusters and their spatial distribution, via
the rack view, the interpretation of the variables was still difficult
due to the large number of corresponding entities (1,163 entities).
Although the developer implemented an extension on the data con-
version tool to improve the selection of the variables for facilitating
this interpretation, we learned that this type of customization for
each practical use would be considered a non-research activity, and
it might be difficult to ask graduate students for such efforts.

It is worth mentioning that this additional modification gave
important clues to the user side for further customization such
as the conversion of natural gas co-generation system (CGS) log
data [Sek12] and the turbostat log data from a different supercom-
puter (JCAHPC Oakforest-PACS) [NHS20]. The availability of the
source code as well as minimum necessary documentation was also
crucial to build and use on different hardware systems. For instance,
Fig. 7 shows the MulTiDR running on the current Fugaku Pre/Post
environment.

3.3. Functional Data Analysis-Based System

The graduate students from UC Davis also developed a visual
analytics system [SFS∗22] incorporating functional data analysis
(FDA) [RS05] to analyze consecutively measured data. The se-
lected log data for the analysis was composed of temperature and
voltage measurements, where abnormal values have the potential
to induce malfunctions and failures. It is worth mentioning that
continuously updating data inherently has infinite dimensions, and
FDA methods often suffer from high computational costs when
dealing with large time series data. To analyze the log data in
a streaming manner, a progressive algorithm for instantaneously
generating the magnitude-shape (MS) plot [DG17] was developed,
In addition, this system also enables the augmentation of analy-
sis using the MS plot with functional principal component analysis
(FPCA) and interactive visualizations to aid in reviewing clusters
identified from the MS plot.

The original MS plot requires recomputation when new time
points and/or time series are added (e.g., adding temperatures ob-
tained from different compute racks). To provide useful intermedi-
ate results or to enable the incremental addition of time points and
time series, the developed progressive algorithm generates the MS
plot with estimated directional outlyingness measures in addition
to a refinement mechanism to maintain the MS plot quality. A per-
formance evaluation was carried out using filtered data composed
of 390 temperature measurements per compute rack (336,960 mea-
surements in total) by using a MacBook Pro (13-inch, 2019) with a
2.8 GHz Quad-Core Intel Core i7 processor and 16 GB 2,133 MHz
LPDDR3 memory. Considering the existence of a 2-week data with
4,032 time points (collected every 5-minute interval), the update of
the MS plot without the progressive algorithm (i.e., a recalculation

Figure 7: Running the MS plot algorithm (left side) and MulTiDR
(right side) on the RHEL8 Xfce remote desktop using the Fugaku
Pre/Post Environment (via Open OnDemand). The MulTiDR loaded
the Oakforest-PACS supercomputer’s turbostat log data, and is
used for the identification and characterization of CPUs with simi-
lar temporal behaviors during high load conditions.

on 4,033 time points) required 8.2 minutes, in contrast to the 2.5
seconds when applying the progressive algorithm. For the exclu-
sion and addition of time series (with the size of 4,032×336,959),
the subsequent update of the MS plot with approximation was com-
pleted in 16.6 seconds, in comparison to the overall update time of
8.4 minutes without using the progressive algorithm.

The prototype visual analytics framework, which implemented
the aforementioned algorithm, also provided an easy-to-interact
user interface to select desired outliers to be analyzed. The space
view facilitates easy identification of racks with a large number of
outliers, and the FPCA view enables further analysis of the outliers
by means of FPCA. The value and potential of the proposed ap-
proach were highly evaluated by visualization research peers and
resulted in one of the three most highly rated papers from the 2022
IEEE Pacific Visualization Symposium (PacificVis) [CRZ22]. Al-
though it can definitely be considered a success story from the aca-
demic perspective, we are still seeking a better way to apply the
framework to practical analyses for the end users. At least, for now,
we confirmed that the progressive MS plot algorithm is ready to
be used on the current Fugaku Pre/Post environment, as shown in
Fig. 7.

3.4. Sequential DR-Based System

A graduate student from Kobe University has worked on develop-
ing a visual analytics system [FSF∗22] (Fig. 8) using DR and the
same averaged data used in Sec. 3.1 to identify periods of time
and spatial locations, where we see characteristic operational be-
haviors. It is worth noting that, in this development, the person in
charge of the operation of the power and cooling facility has ac-
tively participated in the evaluation and feedback due to the interest
in obtaining some knowledge from the previous facility (designed
for the K computer). Supercomputers are shared computational
resources and usually operate with different computational work-
loads at different locations (space) and timings (time). Therefore,
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Figure 8: Overview of the sequential DR-based visual analytics
system. The upper part shows the DR plot (left) for temporal points
and the temporal information plot of clusters. The lower part shows
the DR plot (left) for spatial points and the spatial information plot
of clusters.

a better understanding of the supercomputer system’s heat gener-
ation and cooling behavior was highly desired from the facility’s
operational side for decision-making and optimization planning.

The log data is represented as a third-order tensor (or 3D array)
with the axes of time, space, and measured values and applies mul-
tiple DR steps based on a user-selected temporal or spatial region of
interest corresponding to a certain time period or compute rack po-
sitions. While these multiple DR steps follow a similar procedure to
the two-step DR utilized in MulTiDR (Sec. 3.2), by actively involv-
ing users to specify time points to be used in the second step, the
system can mitigate the information loss caused by DR of the mas-
sive amount of elements. Through multiple DR steps, it produces
a 2D scatterplot where users can find groups (clusters) of points
(with spatial or temporal information) with similar, or depending
on the point of view, dissimilar behaviors. PCA was applied to
compress the data and Uniform Manifold Approximation and Pro-
jection (UMAP) [MHM18], which is a nonlinear DR method with
low computational overhead, was applied to find similar points.

The web-based GUI of the implemented prototype system is
shown in the Fig. 8, where the upper part represents the temporal
selection view consisting of three plots: (a)-1 shows the DR results
for temporal points; (a)-2 shows the temporal information; and (a)-
3 shows each cluster’s average of measurement values normalized
to have unit variance. The lower part represents the spatial selec-
tion view consisting of three plots similar to the temporal selection
view. From the scatterplot in (a)-1, users can select a temporal clus-
ter of interest. Once a temporal cluster is selected, the temporal in-
formation of the selected cluster is shown on (a)-2, and the average
measurement values for the selected clusters are plotted as a bar
chart on (a)-3. Users can also visualize related information of the
points, via the tooltip, by positioning the mouse cursor on the de-
sired points. This interactive exploration process is repeated until
the temporal clusters of interest are determined.

During the continuous development and improvement of the sys-
tem, the developer has sometimes acted as the end user and made
a variety of visual analyses to discuss with the operational staff,

and this interaction was important not only for the validation of
the developed system but also for the end user side to better under-
stand the potential and limitations of the proposed approach. The
graduate student was highly motivated and working on further en-
hancements, including functionality for enabling a more detailed
comparative analysis. However, due to the graduation (M. Sc.),
this work remains suspended similar to another work presented in
Sec. 3.1. This issue is probably even peculiar to Japanese society,
where most graduate students prefer to start working for a company
instead of pursuing a doctoral course, resulting in a short period of
time for dedicating to research and development. In addition, it is
usually difficult to obtain sufficient support from former graduate
students, and, therefore, it becomes highly important to obtain as
much information, for instance, in the form of source codes and
documentation, before their graduation.

4. Lessons Learned

Several people have participated and contributed in different ways
to this set of projects at different periods, including some from
the beginning. It was started as an unofficial collaborative research
project involving universities (Kobe University and UC Davis) and
a research institute (RIKEN R-CCS), where a win-win situation
with mutual gains was expected. From the development side, ac-
cess to the data and the list of needs were the requirements for
initiating the research and development activities, and on the other
hand, the user side was eager to try new tools not only for obtaining
knowledge from the vast amounts of stored data but also for learn-
ing state-of-the-art techniques and approaches. Although it could
be a well-known fact, we could reconfirm the importance of mu-
tual understanding that the goals and expectations from both sides
can be quite different. For instance, we can list some of them, as
shown in Table 2.

It is also well-known that graduate students are usually under
constant pressure for publications, and their research and develop-
ment schedule usually follows the submission deadlines for aca-
demic events and journal publications. As a result, developed soft-
ware for research purposes usually has only the necessary function-
ality for the evaluations required for the publications, and many of
them are released as open source software as is. For the user side,
it was highly important to understand this workflow, and not to ex-
pect production-level software from the graduate students’ side. For
the daily work usage, usually, an effective and stable software sys-
tem with a detailed user manual and support is desired, and some-
times there is no issue to pay for the necessary software and service.
Therefore, there is also a possibility to continue the developments

Table 2: Goals and expectations from both sides.

Development Side User Side
Supervisors Supervisors
Graduate students R&D and Technical staffs
Publication Practical use
Research purposes Daily work usage
Evaluation quality Manual and User support
Open Source Software (OSS) Commercial software or OSS

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

16



J. Nonaka et. al / Developments of Visual Analytics Systems for K Computer Log Data

such as customizations and functionality enhancements on the user
side. However, for this purpose, we felt that a more close collabo-
rative development from the beginning stage will be highly benefi-
cial since it becomes difficult to undertake the development without
knowing the details.

Focusing on the daily work usage, enhancements on the applica-
tion’s robustness can probably be outsourced considering the exist-
ing best programming practices and techniques. Performance and
scalability are other points that require careful attention due to the
volume of data and available hardware for data analysis. Since even
a laptop could be used as the development platform by using small
test case data; then, there is a possibility that the developed appli-
cation may not be taking full advantage of the available resources
on the target hardware system (multicore CPU, GPU, and abun-
dant memory). We also observed that web-based applications could
greatly facilitate the usage by different types of users, and in a
similar manner, we see great potential in the web-based Open On-
Demand [HJN∗16] for providing an easy-to-use environment for
the deployment and usage of visual data analysis applications, as
shown in Fig. 7. This functionality was recently implemented on
the Fugaku environment [NMY23]. We will continue exploring its
potential for visual data analysis.

Similar to what we observed with the supercomputer
users [NS20], we have different groups of users with different
skills. On one side, we have highly skilled users who can customize
or enhance by themselves, but at the same time, we have users
who was accustomed to using Windows-based GUI applications.
For the latter, the support of technical staff in the middle for the
deployment and data pre-processing was crucial. We also learned
that such people in the middle can play an important role in assist-
ing the actual end users to understand the value and potential of
the newly developed tools, and to convince the managerial level for
obtaining the necessary budget for converting them to daily work
software tools. In the end, one of the main lessons learned was the
importance of clearly understanding the limits (e.g. available time,
human resources, and others) of both sides and not pushing over
the boundaries to have a harmonious, successful win-win situation.

5. Conclusions

In this paper, we made reflections on the visual analytics systems
developed for analyzing log data generated during the years of op-
eration of the K computer, a former Japanese flagship supercom-
puter. Several graduate students participated in this project propos-
ing different approaches for the visual analysis of such large time-
varying multivariate data. From the academic point of view, we can
say without hesitation that it was a complete success with some pa-
pers being published in top-ranked journals including an honorable
mention award. From the practical point of view, it would proba-
bly be better to have a further continuation in the development of
each of the developed systems. However, it is worth mentioning
that we observed several positive aspects of these developments as
discussed in the lesson learned section. We are aware that each re-
search and development program has its own peculiarity and the
cases presented here might be too specific. However, we hope that
our experience would be interesting for others who might face sim-
ilar situations.
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