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Abstract
This paper addresses the problem of reconstructing non-rigid 3D geometries from temporal image sequences captured with
only a single camera under full perspective projection. Without the knowledge of a shape deformation model, this task is severly
under-constrained, because multiple shape configurations can produce the same image projections. The challenge remains even
if a template 3D model of the static, un-deformed state is available, because the depth along the line of sight is unkown. Often,
this is handled by assuming an orthographic camera model. In contrast, we address a full perspective camera model. Also,
our reconstruction is not limited to the model parts that are visible in the current image, but deformation is estimated for the
entire template across the temporal sequence. In a first step, we compute a template of the geometry in un-deformed pose,
assuming that the object was captured while being static. Next, the object starts to deform while being captured by a single
camera, and the non-rigid shape is reconstructed sequentially by estimating the camera position and the deformations with
respect to the template model. Our objective minimization function combines image data and temporal consistency information,
and constrains the deformation space by a rotation-invariant volumetric graph Laplacian and as-rigid-as-possible constraints
defined on the tesselation of the template model. The method is evaluated on synthetic and real data, including different object
classes, thereby concentrating on the class of articulated deformations.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Curve, surface, solid, and object representation I.4.8 [Image Processing and Computer Vision]: Scene Analysis—
Motion, Shape, Tracking

1. Introduction

3D shape from 2D image observation is a subset of inverse prob-
lems encountered in human and computer vision, known as 3D re-
construction problems. For a human it is usually an easy task to in-
fer the 3D structure shown in an image. Similarly, in the computer
vision field, 3D reconstruction from multi-view image sets, dis-
playing a static object, is a well explored topic [TMHF99]. When
the object does not move, the available redundancy from multiple
views can be exploited. However, many objects exist that can take
different 3D configurations. As soon as the object deforms over
time, rigid methods will fail. If the deforming object is captured
by only a single camera, resulting in monocular image informa-
tion per object configuration, the reconstruction turns into an under-
determined problem. In order to solve the problem, prior informa-
tion about the unknown object is needed.
The approaches for non-rigid monocular reconstruction presented
in the literature can be divided into three main classes. Traditional
non-rigid structure from motion approaches (NRSfM) reconstruct
deformable objects from points being tracked throughout a video
sequence [BHB00, RRA13, ZTH13, AmMAC14]. A recent review

can be found in [WYJZ15]. Incorporating a statistical shape prior,
the 3D deforming shapes are represented by a linear combina-
tion of basis shapes. The basis shapes and the shape coefficients
are recovered from the image projection matrix together with the
camera motion in a batch approach. This limits the applicabitily
of these methods to models with small deformations where the
whole surface is visible during the acquisition time. Those meth-
ods that do consider feature occlusion model occlusions as out-
liers [THB08]. Hence, these methods cannot handle severe occlu-
sions that are likely to occur, especially for volumetric deformable
objects. The second class involves machine learning approaches
that make use of 3D training data to learn a deformation model
[GWBB09, MSS∗17]. Thus, these methods are only applicable to
a restricted number of object classes, namely to those where an
appropriate training set in terms of 3D scans is available. Thirdly,
template-based methods [SF10, BGCC12, KKBJ16, HE09] assume
the availability of a 3D shape model prior to reconstruction and at-
tempt to estimate the surface deformation in a frame-to-frame ap-
proach for consecutive images.
Since we are interesed in reconstructing the entire deformable volu-
metric shapes, our method has to deal with occlusions and disocclu-
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sions in the monocular image sequence. Moreover, no prior infor-
mation about the deformation model is available. Our work builds
on template-based approaches. As shape prior, we combine two
constraints that supplement each other. On the one hand side, we
constrain the volumetric deformable reconstruction problem using
the volumetric graph Laplacian (VGL) introduced by [ZHS∗13].
The Laplacian encodes surface details as the difference between
each mesh vertex and the average of its neighbors. By apply-
ing the Laplacian to a volumetric graph defined inside the mesh,
VGL imposes volumetric contraints that penalize unnatural volume
changes. This is combined with an as-rigid-as-possible (ARAP)
constraint [SA07] with the objective of preserving the object sur-
face properties during deformation.
Our method can be divided in two components: The first step deals
with the template computation of the rest pose. For this purpose,
the object is captured in its initial state with a multi-view camera
set-up, such that traditional rigid reconstruction techniques can be
employed for template generation [Wu13, WACS11, BBE14]. The
template serves as a geometric and topological prior for the next
step, where the template model is modified in order to satisfy the
image data fitting constraints imposed by the new input frame de-
picting the object in a deformed state. The fitting constraints con-
sist of point correspondences and color-dependent silhouette con-
straints. Unlike other template-based approaches [KKBJ16], our
method does not require any user-input to establish 2D-3D cor-
respondences. The approach is evaluated on a variety of generic
volumetric objects
The remainder of this paper is structured as follows: The next sec-
tion gives an overview on related works, followed by a section that
describes our method to reconstruct a deformable volumetric object
from monocular images under full perspective projection. Finally,
experiments and results on synthetic and real sequences are pre-
sented in Section 4.

2. Related Work

There are very few non-rigid reconstruction methods presented in
the literature that attempt to reconstruct an entire deformable vol-
ume from monocular image observations. The presented approach
can be categorized into template-based reconstruction methods.
These approaches have in common that they assume the 3D shape
in one reference image to be known prior to reconstruction. Point
correspondences between this reference image and a current im-
age are established and the goal is to recover the deformations of
the 3D template vertices such that the shape best conforms to the
image observation. Still, the depth of the vertices along the line of
sight is ill-constrained and different penalty functions have been
proposed to overcome these ambiguities, including temporal con-
sistency across consecutive images and geometric constraints on
the template shape, cp. [SF10] for an extensive review.
Early template-based reconstruction methods focused on the recon-
struction of developable surfaces, that are fully observed during ac-
quisition [SHF07, SMNLF08, BGCC12, OVF12].
Volumetric Non-Rigid Reconstruction is even more challenging
than the reconstruction of planar-like surfaces, because only the
front part of the object surface is visible in the image, while the
back surface and the interior have to be inferred without direct im-
age information. Recently, a few methods have been presented that

make template-based approaches applicable to volumetric objects:
[VA13] combine a template- and silhouette-based reconstruction
approach under orthographic projection. The deformation is con-
strained by volumetric inextensibility constraints defined on virtual
nodes in the mesh interior. This method requires considerably less
point correspondences, but is limited to objects that have a plane
of symmetry parallel to the image plane and does not infer con-
cavities. Inspired by this, we go even further and address generic
objects without topological restrictions under full perspective pro-
jection.
[KKBJ16] deform a 3D template to fit user-clicked 2D-3D corre-
spondences under weak perspective projection. This method uses
the ARAP [SA07] as shape constraint but allows for non-uniform,
local deformations by imposing a sparsity constraint on local stiff-
ness. The method simultaneously estimates an object specific stiff-
ness model and the deformation of the mesh with respect to several
different object instances in a global optimization. It is not opti-
mized for large pose difference between the template and the pose
depicted in the target images where it can result in erroneous cam-
era estimation. Moreover, reconstructed parts may be bent in an
unnatural direction. We, too, employ an ARAP deformation con-
straint and add a temporal consistency constraint. This enables fea-
ture tracking such that user input is not necessary anymore.
[YRCA15] compute a dense template using a short rigid sequence.
Sequentially, a photometric cost is minimized that simultaneously
estimates dense image correspondences and 3D deformations. The
deformation is regularized spatially by the ARAP surface func-
tional without any additional volumetric constraints.
[ZNI∗14] present a template-based non-rigid reconstruction frame-
work that achieves real-time performance on diverse scenes. In con-
trast to our preconditions, their methods work on temporal depth
image sequences captured with a stereo camera setup. In a frame-
to-frame approach they first align the template model to the current
depth data and subsequently, perform non-rigid surface fitting by
minizing geometric and photometric constraints, where the defor-
mation is penalized by an ARAP shape regularizer.
Our contribution is a non-rigid shape estimation method that is gen-
eral applicable to a broad range of object classes. The only prere-
quisites are that the object is captured in rest pose and that the
surface contains enough details for feature extraction. We do not
require any user-input to establish correspondences between the
template model and the current image. In contrast to many other
approaches, our method uses a full perspective camera model and
handles fully volumetric objects.

3. Method for Non-Rigid Reconstruction

We formulate the problem of monocular deformable reconstruction
in the following way: Given a deformable monocular RGB image

sequence
{

I f : Ω
f ⊂ R2→ R3

}F

f=1
together with a 3D template

model X0 as input, the aim is to estimate a deforming surface X f

across a temporal sequence f ∈ {1, · · · ,F}. We use a perspective
camera model and assume that the RGB camera capturing the de-
forming object is calibrated such that the internal camera param-
eters are known. The perspective projection of a point x f ∈ R3 at
frame f with external camera parameters R f and t f and calibration
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matrix K f is defined by a function g f : R3×R f × t f ×K f →Ω
f ⊂

R2.

3.1. Template Computation

The 3D template model consists of a triangular mesh with N
surface vertices X0 =

{
x0

i ∈ R3| i = {1, · · · ,N}
}

. Connection be-
tween these vertices are defined via a neighborhood set Ni, that
includes all the vertex indices that are connected to vertex x0

i . The
mesh topology is constant for the entire sequence. The template
mesh is computed from a rigid multi-view image sequence using
structure-from-motion [WACS11], subsequent point cloud densifi-
cation [FP10], and Poisson surface meshing [KH13]. The pipeline
for template mesh creation is shown in Figure 1a-1c.
To further enable volume deformation constraints without making
strong object assumptions like kinematic skeletons or parametric
shape models, volume vertices Y0 =

{
y0

i ∈ R3| i = {1, · · · ,M}
}

are added in the mesh interior and the volumetric template is tes-
selated with tetrahedra constrained by the volume vertices [Si15].
The inner volume edges are inferred by a set Mi, similar to the
surface mesh topology. It is assured that volume vertices are evenly
distributed including thin regions and their distance is similar to the
average surface edge distance, guaranteeing equally shaped tetra-
hedra. The template volume graph is depicted in Figure 1d for an
exemplary object. The template serves as a geometrical and topo-
logical prior for non-rigid reconstruction.

3.2. Energy function for non-rigid reconstruction

The goal is to determine the locations of the template vertices Xt

at any time t. We assume a known internal calibration matrix K. In
addition, we expect the sourrounding scene of the deforming object
to contain sufficiently rigid parts for global rotation and translation
estimation (R f , t f ), similar to [YWSHSH15]. Then, the unknown
deformation of the template mesh is estimated by minimization of a
non-linear energy function in a frame-to-frame approach using the
Levenberg-Marquardt-Algorithm. Consequently, the running time
complexity grows linear with the number of frames. The optimiza-
tion value is initialized for each frame with the estimated shape
from the previous time instance. The energy function (1) comprises
two main terms, one accounts for the image data fitting (E f it), the
other controls the smoothness of the deformation (Ereg). For an ar-
bitrary time instant t, the optimization problem can be formulated
as

min
X f ,Y f

E(X f ,Y f ) = min
X f ,Y f

E f it(X
f ,Y f )+Ereg(X f ,Y f ). (1)

The fitting term E f it , given by

E f it(X
f ,Y f ) = λpEpoint(X f )+λsEsil(X

f , Y f ) with λp, λs ∈ R,

consists of a weighted sum of point correspondences (2) and sil-
houette constraints, as in [VA13], but extended with color condi-
tions (3). Both terms require image data information.
The point correspondences assure that specific 3D surface points
project to the correct image location. For this purpose, inter-
frame 2D-2D SIFT matches are computed [FE13], that can be
related to points on the surface of the previously computed 3D

(a) Camera pose estimation with SFM [WACS11]

(b) Dense point cloud [FP10] (c) Poisson surface mesh [KH13]

(d) Volumetric graph structure

Figure 1: Pipeline for template construction from a rigid image
sequence using structure-from-motion, followed by interior volume
tesselation. Surface vertices and edges are colored in red, while
volume vertices and edges are highlighted in blue.
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shape model in terms of barycentric coordinates., assuming that
the mesh facets are sufficiently small such that they remain
flat as the surface deforms and perspective effects are negligi-
ble. This results in a set of 2D-3D correspondence pairs C f ={
(u f

i ,v
f
i ) |u

f
i ∈Ω

f , v f
i = ∑

3
j=1 b f

i, jx
f
k f

i, j
∈ R3

}Pf

i=1
, where b f

i ∈ R3

is the barycentric coordinate of a surface point v f
i that is contained

in a mesh triangle with vertex indices k f
i ∈ R3 and u f

i is the corre-
sponding 2D image location. Pf specifies the number of correspon-
dences. Hence, the point correspondence constraint can be formu-
lated as

Epoint(X f ) =
1

P f

Pf

∑
i=1

∥∥∥(g f (∑3
j=1 b f

i, jx
f
k f

i, j
)−u f

i

)∥∥∥2
. (2)

The silhouette constraint penalizes volume configurations that
project outside the image silhouette. This requires the input im-
ages to be segmented [LSS09]. Similar to [VA13], we compute for
each image location the Euclidean distance to the closest silhou-
ette point. For complicated deformations, vertices may project into
a silhouette part that is related to a different surface region. To al-
leviate these apparent minima, we compute color-based silhouettes
for specified color ranges. If a color is associated to each template
surface vertex, one can constrain the visible vertices to project in-
side the related color-based silhouette while the non-visible and
volume vertices are constrained to project inside the union of all
these silhouettes. A visibility flag ψi ∈ {0,1} for each surface ver-
tex is computed prior to each Levenberg-Marquardt update step by
rendering the current 3D volume with the estimated camera param-
eters. Let D f

R : Ω
f → R define the Euclidean distance for each

pixel to the closest pixel inside the silhouette and let D f
R j

define
the distance map for specified color ranges such that ∩ jR j = ∅ and
∪ jR j = R, where R is the region of the entire silhouette. In ad-
dition, a region flag ηi indicates for each vertex xi the index j of
the corresponding color regionR j. Figure 2 visualizes this for one
exemplary input image. Then, the color-based silhouette constraint
is given by

Esil(X
f , Y f ) =

1
N

N

∑
i=1

(
ψi ∑

j
1ηi( j)

∥∥∥D f
R j

(g f (x f
i ))
∥∥∥2

+(1−ψi)
∥∥∥D f
R(g

f (x f
i ))
∥∥∥2
)

+
1
M

M

∑
i=1

∥∥∥D f
R(g

f (y f
i ))
∥∥∥2

.

(3)

The monocular image information alone leaves reconstruction am-
biguities. Thus, a regularization term that comprises a weighted
combination of three terms is added: Firstly, a temporal smooth-
ness term that penalizes strong frame-to-frame deformations (4),
secondly, spatial smoothness is imposed by an as-rigid-as possible
functional on the mesh surface (5), and thirdly, volume preserva-
tion is realized by a rotation-invariant volumetric graph Laplacian
(6). This can be formulated as

Ereg(X f ,Y f ) = γtEtemp(X f )+ γsEsur f ace(X
f )+ γvEvolume(Y

f )

(a) Definition of color-based
regions.

(b) Distance map correspond-
ing to R1.

(c) Distance map correspond-
ing to R2.

(d) Distance map correspond-
ing to R3.

Figure 2: Definition of color regions Ri with related color-based
distance maps that define for each pixel the distance to the closest
pixel inside the specified region. The Euclidean distance is visu-
alized with contour lines. The union of all color-based regions is
equal to the silhouette.

with weighting coefficients γt , γs, γv ∈ R.
The temporal smoothness term can be formulated as

Etemp(X f ) =
1
N

N

∑
i=1

∥∥∥x f
i −x f−1

i

∥∥∥2
, (4)

where X f−1 defines the 3D surface of the previous time frame. This
constraint encourages temporally smooth deformations.
The second term allows local surface deformations that do not alter
the relative locations between vertices and each of their neighbors,
thereby preserving surface details. This deviation is measured by
the as-rigid-as possible criterion [SA07] defined by

Esur f ace(X
f ) =

1
N

N

∑
i=1

1
|Ni| ∑

j∈Ni

∥∥∥(x f
i −x f

j )−Ri(x
f−1
i −x f−1

j )
∥∥∥2

,

(5)
where Ri defines the local rotations for one vertex between consec-
utive frames, taking the surrounding neighborhood into account.
The local rotation is re-computed in each optimization step.
These two terms retain temporal and surface smoothness during
deformation, but unnatural volume changes can still occure due to
strong deformations. To preserve the volume, we impose the graph
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Laplacian on the interior template graph structure. The volumet-
ric graph Laplacian was introduced by [ZHS∗13] and applied to
transfer curve-based deformations of 2D cartoon characters to 3D
meshes. It is applied to the interior volume graph

(
Y f ,{Mi}i

)
and

can be formulated as

Evolume(Y
f ) =

1
M

M

∑
i=1

1
|Mi| ∑

j∈Mi

∥∥∥L(y f
i )−RiL(y0

j)
∥∥∥2

, (6)

where L(yi) = yi− 1
|Mi| ∑ j∈Mi

y j defines the Laplacian coordi-

nates of the volume vertices, paticularly L(y0) specify the Lapla-
cian coordinates of the template model in undeformed state. These
are transformed by a local rotation, computed just as in the ARAP
case, thus, allowing for locally rigid changes in the Laplacian dif-
ference vectors.
Each criterion term is normalized such that they are not influenced
by the resolution of the surface, the density of the volume sampling
or the number of feature correspondences.

4. Experimental Results

In this section, we present results obtained on three different
datasets, covering different object classes. Two datasets, the pixar
lamp (Figure 6) and the sackboy sequence (Figure 7), are syntheti-
cally generated. Hence, they allow for quantitative evaluation. The
third data sequence of a jointed doll (Figure 5), obtained from real
image observations, is evaluated qualitatively. The datasets used in
the experiments are publically available at https://cvg.hhi.
fraunhofer.de/.

4.1. Real data

The jointed doll sequence was acquired with a single RGB camera.
Between each time instance the 3D object configuration is modified
as in a stop motion film. This results in a smooth articulated move-
ment of the limbs across the sequence. The sequence includes par-
ticular challenges due to intra-object occlusion, that can be noted
in the last three frames of Figure 5, where the right arm is occluded
by the body, and the left hand moves in front of the face. For tem-
plate creation, the object was captured in its rest pose with a struc-
ture from motion method. To guide our monocular non-rigid recon-
struction procedure, feature correspondences between consecutive
frames are established as shown in Figure 3 [FE13]. Final results
of our volumetric non-rigid reconstruction can be seen in Figure
5 for some exemplary frames of the jointed doll sequence, as well
as in the supplemental video. The presented method is able to re-
construct the present 3D deformation while preserving the interior
volume properties.

4.2. Synthetic data

Two further image sequences were created synthetically
to enable quantitative performance evaluation of the pro-
posed method. The rigged pixar lamp is publically avail-
able at http://uploaded.net/file/3vl8g79c.
The sackboy model http://voila3d.com/model.
php?view=LittleBigPlanet_Sackboy_3d_model_
_QU2UNIBX9UCSM0IS0UEW2F0H8 was rigged in blender and

Figure 3: 2D SIFT correspondences highlighted in green between
two consecutive image frames shown in the left column.

both models were animated and rendered, in order to generate the
2D monocular image sequence. The articulated joints of the two
models are shown in Figure 4. The 3D mesh of the first frame is

Figure 4: Definition of articulated joints for the two synthetically
generated deformation sequences. Joints are labeled in red.

used as the template model in rest pose. Qualitative results for the
3D deformation estimation are shown in Figure 6 and 7 and in the
supplemental video.
In order to access the quality of the estimated reconstruction with
respect to the original 3D sequence quantitatively, we evaluated
the Hausdorff distance [CRS98]. This metric computes the
largest distance that occurs between one point on one mesh and
its closest surface point on the other mesh. The distance metric
is not symmetric. We compute the one-sided Hausdorff distance
from the original mesh to the reconstructed mesh, sampled at
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Figure 5: A template model for the jointed doll (first column), generated from a rigid multi-view sequence, is modified to be consistent
with a monocular image sequence (bottom). At each time instance the camera parameters are esimated from rigid correspondences in the
background (here: book).

Figure 6: A dynamic 3D volume model is generated (top) that captures different object configurations shown in a monocular image sequence
(bottom) for the pixar lamp.

Figure 7: Non-rigid shape estimation from our method on the sackboy sequence.
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f 2 3 4 5 6 7 8 9 10 11
pixar lamp 1.91 1.95 2.05 2.18 2.40 2.66 2.91 3.10 3.21 3.23
sackboy 3.43 3.37 3.31 3.28 3.23 3.21 3.17 3.13 3.12 3.12

f 12 13 14 15 16 17 18 19 20
pixar lamp 3.21 3.16 3.05 3.00 2.98 2.99 2.97 2.95 2.90
sackboy 3.11 3.08 3.10 3.11 3.10 3.12 3.18 3.21 3.25

Table 1: One-sided Hausdorff distance between the true mesh deformation and the estimated deformed mesh, generated from the knowledge
of monocular image information per time instance. The unity is in percent with respect to the diagonal of the object bounding box.

all vertex locations. Let the true vertex locations be given by
V f =

{
v f

i ∈ R3| i = {1, · · · ,N}
}

and let M f = (X f ,Ni) define the
triangulated surface of the estimated mesh.
Then, the one-sided Hausdorff metric can be formulated as

d f
H = sup

v f
i ∈V f

inf
x f∈M f

∥∥∥v f
i −x f

∥∥∥
for all frames f .
Table 1 lists the values for the two 20-frame synthetic datasets,
where frame 1 corresponds to the rest pose. The error distance is
measured with respect to the diagonal of the bounding box of the
mesh and is expressed in percent. For both sequences the maximal
error is below 3.32% in relation to the diagonal length across all
frames.

5. Conclusion

We presented a non-rigid reconstruction approach from monocular
images under full perspective projection. The ill-conditioned prob-
lem is regularized by utilizing the knowledge about a 3D template
model in rest pose and imposing surface and volume constraints on
this geometry. The data term is a pairwise term that encourages cor-
rect projection of corresponding points and at the same time guides
the deformation by silhouette information where color consistency
can be incorporated. The method fulfils our objective of generality,
because it is independent of any user input and capable to cope with
volumetric deforming objects. We have shown results on a novel
real world camera sequence, as well as a qualitaive evaluation on
two new synthetic sequences.
As we are interested in learning deformation parameters from 2D
images, a next step will be to apply motion separation algorithms
to the 3D sequences, and use the obtained results for joint estima-
tion. The information about partially rigid parts could then be used
to improve the deformation estimation for articulated objects.

Acknowledgments

This research has received funding from the EUs Horizon 2020
research and innovation programme under grant agreement number
687757 (REPLICATE).

References

[AmMAC14] AGUDO A., M. MONTIEL J. M., AGAPITO L., CALVO B.:
Online dense non-rigid 3d shape and camera motion recovery. In British
Machine Vision Conference (BMVC) (2014). 1

[BBE14] BLUMENTHAL-BARBY D., EISERT P.: High-resolution depth
for binocular image-based modelling. Computers & Graphics 39 (2014),
89–100. 2

[BGCC12] BARTOLI A., GÉRARD Y., CHARDEBECQ F., COLLINS T.:
On template-based reconstruction from a single view: Analytical solu-
tions and proofs of well-posedness for developable, isometric and con-
formal surfaces. In IEEE International Conference on Computer Vision
and Pattern Recognition (CVPR) (2012), pp. 2026–2033. 1, 2

[BHB00] BREGLER C., HERTZMANN A., BIERMANN H.: Recovering
non-rigid 3d shape from image streams. In IEEE International Confer-
ence on Computer Vision and Pattern Recognition (CVPR) (2000), vol. 2,
pp. 690–696. 1

[CRS98] CIGNONI P., ROCCHINI C., SCOPIGNO R.: Metro: Measuring
error on simplified surfaces. Computer Graphics Forum 17 (1998), 167–
174. 5

[FE13] FURCH J., EISERT P.: An iterative method for improving feature
matches. In IEEE International Conference on 3DTV (2013), pp. 406–
413. 3, 5

[FP10] FURUKAWA Y., PONCE J.: Accurate, dense, and robust multi-
view sterepsis. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI) 32, 8 (2010), 1362–1376. 3

[GWBB09] GUAN P., WEISS A., BALAN A. O., BLACK M. J.: Esti-
mamting human shape and pose from a single image. In IEEE Interna-
tional Conference on Computer Vision and Pattern Recognition (CVPR)
(2009), pp. 1381–1388. 1

[HE09] HILSMANN A., EISERT P.: Joint estimation of deformable mo-
tion and photometric parameters in single view video. In IEEE Inter-
national Conference on Computer Vision (ICCV) (2009), pp. 390–397.
1

[KH13] KAZHDAN M., HOPPE H.: Screened poisson surface reconstruc-
tion. ACM Transactions on Graphics (TOG) 32, 3 (2013), 29. 3

[KKBJ16] KANAZAWA A., KOVALSKY S., BASRI R., JACOBS D.:
Learning 3d deformation of animals from 2d images. Computer Graph-
ics Forum 35, 2 (2016), 365–374. 1, 2

[LSS09] LIU J., SUN J., SHUM H.-Y.: Paint selection. ACM Transac-
tions on Graphics (ToG) 28, 3 (2009), 69. 4

[MSS∗17] MEHTA D., SRIDHAR S., SOTNYCHENKO O., RHODIN H.,
SHAFIEI M., SEIDEL H.-P., XU W., CASAS D., THEOBALT C.: VNect:
Real-time 3d human pose estimation with a single rgb camera. ACM
Transactions on Graphics (TOG) (2017). 1

[OVF12] ÖSTLUND J., VAROL A., FUA P.: Laplacian meshes for
monocular 3d shape recovery. In European Conference on Computer
Vision (ECCV) (2012), pp. 412–425. 2

[RRA13] R.GARG, ROUSSOS A., AGAPITO L.: Dense variational re-
construction of non-rigid surfaces from monocular video. In IEEE In-
ternational Conference on Computer Vision and Pattern Recognition
(CVPR) (2013), pp. 1272–1279. 1

[SA07] SORKINE O., ALEXA M.: As-rigid-as-possible surface mod-
elling. In Symposium on Geometry Processing (2007), vol. 4. 2, 4

[SF10] SALZMANN M., FUA P.: Deformable surface 3d reconstruction

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

43



L. Kausch & A. Hilsmann & P. Eisert / Template-Based 3D Non-Rigid Shape Estimation from Monocular Image Sequences

from monocular images. Synthesis Lectures on Computer Vision 2, 1
(2010), 1–113. 1, 2

[SHF07] SALZMANN M., HARTLEY R., FUA P.: Convex optimization
for deformable surface 3-d tracking. In IEEE International Conference
on Computer Vision and Pattern Recognition (CVPR) (2007). 2

[Si15] SI H.: Tetgen, a delaunay-based quality tetrhedral mesh generator.
ACM Transactions on Mathematical Software (TOMS) 41, 2 (2015), 11.
3

[SMNLF08] SALZMANN M., MORENO-NOGUER F., LEPETIT V., FUA
P.: Closed-form solution to non-rigid 3d surface registration. In Euro-
pean Conference on Computer Vision (ECCV) (2008), pp. 581–594. 2

[THB08] TORRESANI L., HERTZMANN A., BREGLER C.: Nonrigid
structure-from-motion: Estimating shape and motion with hierarchical
priors. IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI) 30, 5 (2008), 878–892. 1

[TMHF99] TRIGGS B., MCLAUCHLAN P., HARTLEY R., FITZGIBBON
A.: Bundle adjustment: A modern synthesis. In Vision Algorithms Work-
shop: Theory and Practice (1999), pp. 298–372. 1

[VA13] VICENTE S., AGAPITO L.: Balloon shapes: reconstructing and
deforming objects with volume from images. In IEEE International Con-
ference on 3DTV (2013), pp. 223–230. 2, 3, 4

[WACS11] WU C., AGARWAL S., CURLESS B., SEITZ S. M.: Multi-
core bundle adjustment. In IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR) (2011). 2, 3

[Wu13] WU C.: Towards linear-time incremental structure from motion.
In IEEE International Conference on 3DTV-Conference (2013), pp. 127–
134. 2

[WYJZ15] WANG Y., YAN X., JIANG M., ZHEN J.: Research on non-
rigid structure from motion: A literature review. Journal of Fiber Bio-
engineering and Informatics 8 (2015), 751–760. 1

[YRCA15] YU R., RUSSEL C., CAMPBELL N. D. F., AGAPITO L.: Di-
rect, dense and deformable: Template-based non-rigid 3d reconstruction
from rgb video. In IEEE International Conference on Computer Vision
(ICCV) (2015), pp. 918–926. 2

[YWSHSH15] YUCER K., WANG O., SORKINE-HORNUNG A.,
SORKINE-HORNUNG O.: Reconstruction of articulated objects from a
moving camera. In IEEE International Conference on Computer Vision
Workshops (2015), pp. 28–36. 3

[ZHS∗13] ZHOU K., HUANG J., SNYDER J., LIU X., BAO H., GUO B.,
SHUM H.-Y.: Large mesh deformation using the volumetric graph lapla-
cian. IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI) 35 (2013). 2, 5

[ZNI∗14] ZOLLHÖFER M., NIESSNER M., IZADI S., REHMANN
C., ZACH C., FISCHER M., WU C., FITZGIBBON A., LOOP C.,
THEOBALT C., STAMMINGER M.: Real-time non-rigid reconstruction
using rgb-d camera. ACM Transactions on Graphics (TOG) 33, 4 (2014),
156. 2

[ZTH13] ZHANG X., TANG A., HUNG Y.: A decomposition method for
non-rigid structure from motion with orthographic cameras. In Proceed-
ings of the International Conference on Image Processing, Computer Vi-
sion, and Pattern Recognition (IPCV) (2013), p. 1. 1

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

44


