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Figure 1: Clusters of lines are analyzed by visualizing cluster-specific contextual information in the form of cluster hulls (colored surfaces),
and using a measure of local line consistency within a cluster to adapt the line density automatically so that important structures are
conveyed. Via brushing the user can interactively select where automated density control is applied.

Abstract
We propose a visualization approach to interactively explore the structure of clusters of lines in 3D space. We introduce cluster
consistency fields to indicate the local consistency of the lines in a cluster depending on line density and dispersion of line
directions. Via brushing the user can select a focus region where lines are shown, and the consistency fields are used to auto-
matically control the density of displayed lines according to information content. The brush is automatically continued along
the gradient of the consistency field towards high information regions, or along a derived mean direction field to reveal major
pathways. For a given line clustering, visualizations of cluster hulls are added to preserve context information.

1. Introduction

Clustering of lines is used in many applications [MVvW05, AT06,
AMP10,YWSC12] to condense large line sets to few representative
lines that expose the major geometric trends in the initial set. Here,
we refer to a line as a sequence of vertices where every pair of
consecutive vertices is connected by a straight line segment. While
the representative lines serve as a basis for the application-specific
analysis process, the distribution and spatial coverage of the lines
per cluster, and the variation of these characteristics among clusters
is usually not examined any further. Instead, it is quietly assumed
that the lines in one cluster follow the representative line closely.

For large line sets and a reasonable number of clusters, however,
the lines in one cluster usually show significant local deviations
from the representative, requiring indicators of where deviations
occur and how these deviations reflect in the lines’ geometries.
Computing a large enough set of clusters so that the per-cluster
deviations are small, on the other hand, contradicts the requirement
to effectively reduce the number of representatives for the upcom-
ing analysis process. Thus, one cannot avoid significant local de-
viations in general, yet one can try to analyze these deviations in
3D space to better interpret the consistency of grouped elements.
Such an analysis is also important to compare different clusterings
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to each other, and to eventually shed light on specific properties of
the used clustering algorithm and distance metric.

To perform a consistency analysis of a given cluster, the lines be-
longing to that cluster can be shown in addition to the representa-
tive line, either entirely or only to a certain percentage [YWSC12,
OLK∗14]. While the first approach can quickly introduce occlu-
sions, the second one can withhold important information if the
lines are thinned out randomly. Yu et al. [YWSC12] address these
shortcomings by showing in addition to the representative line also
lines indicating the cluster boundaries. This can reveal the spatial
extent of a cluster, but it cannot effectively reveal a cluster’s con-
sistency in the interior.

Our contribution: Building upon these previous works, our ap-
proach enables an interactive visual exploration of the local consis-
tency of a cluster of lines, in context of the clusters in the current
clustering. We introduce a measure of cluster consistency in 3D
space, which considers the local density of lines as well as the vari-
ance of the local line directions. Boundary surfaces in the scalar-
valued consistency field are used to indicate a cluster’s shape.

Starting with a context view showing cluster boundaries and rep-
resentatives, we let the user brush a region where lines should be
added. By using a hierarchy of line clusters [KFW16], the line
density in the brushed region is controlled to emphasize regions
where lines are strongly diverging, at the same time showing only
few representative lines in regions where lines behave similar. The
object-space cluster consistency is used to determine the line den-
sity. To further guide the user towards regions of low consistency,
the brush is continued automatically along the gradient of the con-
sistency field. Alternatively, the brush can be continued along the
major trends in the line set by following bundles of similar lines.

Our specific contributions are:

• Cluster consistency fields as spatial indicators for the line con-
sistency in a cluster.
• The use of cluster consistency fields to reveal the most represen-

tative lines in a brushed focus region.
• A method to continue a user-selected brush along major path-

ways and towards regions of high information content.

We demonstrate our approach by visualizing a number of real-
world examples comprised of large line sets. Some of these data
sets are shown in Fig. 1, hinting towards the specific visualizations
targeted in this work. Equipped with a cluster panel that shows an
abstract view of a given line clustering, the user can interactively
select clusters based on their consistency, and compare clusters us-
ing their hulls and overlaps.

2. Related Work

Our approach uses a hierarchical clustering of a line set. Let us re-
fer to the book by Jain [Jai10] for an exhaustive summary of avail-
able clustering algorithms. An overview of similarity measures for
lines is given in the comparative study by Zhang et al. [ZHT06].
Oeltze and co-workers [OLK∗14] evaluate clustering approaches
for streamlines using geometry-based similarity measures. Differ-
ent clustering approaches and similarity measures for fiber tracts in

diffusion tensor imaging data have been evaluated by Moberts et
al. [MVvW05].

Yu et al. [YWSC12] use hierarchical clustering to generate a
small representative set of streamlines in a flow field. They fur-
ther select streamlines close to the cluster boundaries to convey the
spatial extent of computed clusters. Kanzler et al. [KFW16] use a
line cluster hierarchy for view-dependent line density control. Ev-
ery segment of a line determines a level in the pre-computed line
hierarchy depending on a screen-space importance measure, and
only if the line is the representative line at this level the segment is
drawn. For the construction of a line cluster hierarchy we follow the
work by Kanzler et al., which uses a variant of Agglomerative Hier-
archical Clustering (AHC) with single linkage and graph matching
to construct a fully balanced cluster tree.

Both aforementioned approaches try to find the minimum num-
ber of lines that represent the important structures in a given
line set. This process can be performed either via importance- or
similarity-based criteria in object-space, or in screen-space by se-
lecting the rendered lines dynamically on a frame-to-frame basis.
Screen-space approaches determine for each new view the subset
of lines to be rendered so that occlusions are reduced and more
important lines are favored over less important ones [MCHM10,
LMSC11, MWS13]. Indicators for the amount of occlusion in the
rendered images are based on the “overdraw”, i.e., the number
of projected line points per pixel [MCHM10, MWS13], or the
maximum projected entropy per pixel [LMSC11]. View-dependent
opacity control was introduced by Guenther et al. [GRT13] to fade
out those parts of foreground lines that occlude more important
ones.

For the selection of representative lines in object-space a number
of different criteria have been proposed, for instance, based on the
line density [TB96,MHHI98,MTHG03,SHH∗07], the line distribu-
tion [JL97, LMG06, LHS08, SLCZ09, RPP∗09], or the coverage of
specific flow or line features [VKP00, YKP05, CCK07, MJL∗12].
Behrendt et al. [BBB∗18] suggest an explorative approach to se-
lect lines based on surface features. The explorative selection of
point clouds can be accomplished by encircling a target location as
described by Yu et al. [YEII12]. An interactive focus and context
approach using a 2D lens to analyze flow structures is described
by Gasteiger et al. [GNBP11] and Fuhrmann et al. [FG98]. While
Jackson et al. [JCK12] are using a dedicated haptic device to ex-
plore flow structures in 3D, our method is designed for standard in-
put devices (mouse and keyboard). Our proposed consistency mea-
sure to control the line density is related to the measure of infor-
mation entropy that was introduced by Xu et al. [XLS10]. They
use the local directional variation of a given vector field as entropy
measure, and generate an entropy field that is then used to guide the
placement of streamlines. We introduce a similar measure using the
local directional variations of lines in a cluster, and we further ex-
tend this measure to also consider the line density.

3. Method Overview

The input of our method consists of a set of lines, e.g., stream-
lines, where each line is represented by a sequence of vertices. If
no initial clustering is given, we use the mean-of-closest-point dis-
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(a) (b) (c) (d) (e)

Figure 2: (a) Initial line set. (b) Representative lines of 8 clusters and hulls of two clusters. (c) All lines going through a brushed focus
region. (d) View-dependent line density control using local consistency. (e) Automatic refinement and continuation of focus region towards
important structures in the surrounding.

tance [CGG04] as distance metric and compute a balanced cluster
tree using graph matching [KFW16].

Every node in the computed cluster tree represents a cluster of
lines that are grouped together based on the used distance metric.
For selecting a single representative line at each node, we perform a
top-down sweep through the tree as follows: We traverse the tree in
breadth-first order, and whenever we encounter a node that has not
been visited we determine the representative line, i.e., the line that
has the smallest average mean-of-closest-point distance to all lines
in the cluster at that node. This line becomes the representative line
for every cluster at the nodes along the path from the current node
to the leaf node where the line is the only cluster member. In this
way we build a hierarchy of representatives which explain as much
as possible of the cluster variation at the highest (coarsest) levels.
In addition, the hierarchy is nested in that at every inner node one of
the child nodes has the same representative than that node. This en-
ables to keep the current representatives and progressively add the
new ones when going from one level to the next finer one. Fig. 2 (a)
and (b), respectively, show a line set and the 8 representative lines
(as well as two cluster hulls) at level three of the computed cluster
hierarchy.

For every cluster down to a user-selected level a cluster consis-
tency field (CCF) is pre-computed (c.f. Section 4). If at run-time
a CCF is requested that has not been computed, it is generated in
turn within less than a second on the GPU. A CCF is similar to a
visitation volume [Jon08,BCM∗08,BFMW12], which is generated
by rasterizing lines into a 3D voxel grid and counting the number of
lines going through every voxel. Level sets in this field can then be
visualized to show the spatial extend of the lines in one cluster, i.e.,
the cluster hull (see Fig. 2 (b)), and multiple hulls can be displayed
concurrently to enable a comparative cluster analysis. In addition
to line density, we also store a measure of the directional variance
of the lines going through a voxel.

While cluster hulls provide context information about a cluster’s
shape and spatial extent, they do not, in general, show the lines’
geometries. To select a region in 3D space where lines are shown,
the user can brush a region on a cluster hull, and this region is ex-
truded to 3D in a specific way (c.f. Section 5). Via brushing the
user increases a visibility parameter in the selected region, request-

ing additional lines besides the cluster representatives. If all lines
passing through the selected region are shown concurrently, how-
ever, occlusions are quickly introduced and important structures are
hidden (see Fig. 2 (c)).

To adapt the density of displayed lines in the selected focus re-
gion, we employ the CCF as a measure of information content (c.f.
Section 5), as shown in Fig. 2 (d). Furthermore, since regions con-
veying high information can be missed when brushing manually,
the visibility is transported automatically along the gradient in the
CCF towards regions of low consistency (Fig. 2 (e)), or along bun-
dles with low directional variance to reveal major trends in the line
set. In either case, line density control is active to focus only on the
most relevant lines.

4. Cluster Consistency Fields

CCFs are computed on the GPU using rasterization of lines into
a Cartesian 3D voxel grid. Initially, we compute the resolution
rx× ry× rz of the voxel grid into which the lines are voxelized. If
the resolution is too high, a voxel carries merely information about
one single line passing through it, yet if it is too low, the CCF can-
not serve the purpose of a local indicator of consistency. In our
implementation we link the average distance of the cluster repre-
sentative to all lines in the cluster to the side length of cube-shaped
voxels. Our experiments have shown that this choice gives a good
balance between locality and information content. The grid size is
set so that the aspect ratio of the bounding box of the lines per clus-
ter is maintained. The vertex coordinates vi are then transformed to
local object coordinates in the range from (0,0,0) to (rx,ry,rz).

The voxel values can be optionally filtered using a low-pass fil-
ter with adjustable extent. In this way, high frequencies in whatever
values are sampled can be removed, and a smooth consistency rep-
resentation is obtained. In particular, if a feature is present in one
voxel the smoothing process distributes this information into the
surrounding region. In combination with our proposed brush-based
focus visualization this leads to an improved continuation of fea-
tures beyond the brush extent. For this reason we store a separate
low-pass filtered version for every CCF we generate.

For each line in parallel, and starting with the first vertex, ev-
ery pair of vertices vi and vi+1 is processed consecutively. A line
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through vi and vi+1 is clipped against the voxel boundaries, via
line-face intersection tests in the order of their occurrence from vi
to vi+1. If vi and vi+1 are located in the same voxel, no new in-
tersection point is generated. This gives a sequence of voxel-face
intersections, and every pair of consecutive intersections represents
a line segment that enters into a voxel and exits that voxel. From
all line segments that are generated for a single voxel, a number
of different quantities are derived to generate different variants of
CCFs. These variants are explained in the following.

4.1. Line density fields

For each line segment, the real length of the line from the entry to
the exit point is computed and added into the CCF. Since in general
the first and last vertex of a line do not lie on a face, we consider
the length from the first vertex to the first face intersection and from
the last face intersection to the last vertex in these cases.

Adding a length value to the CCF means to add this value to a
counter at the voxel the line is currently passing through. Note that
this is different to the construction of visitation volumes, where ev-
ery segment adds the same contribution to a voxel regardless of
its length. Our approach, in contrast, keeps track of the voxels’
fill rates to obtain a more accurate measure of the line density per
voxel.

The line density distribution within one cluster provides infor-
mation about where and how many lines come close together (see
Fig. 3 (left)). The level set to a threshold just above zero gives an
approximate hull enclosing all lines. Regions in which only few
isolated lines occur appear as low value regions which can be fil-
tered out by slightly increasing the threshold. Then again, these
regions can also be emphasized to show outliers which have been
assigned to a cluster even though at least in some region they devi-
ate strongly from the rest of the lines in that cluster. Fig. 3 (right)
shows the cluster hulls that were rendered as level sets in multiple
cluster density fields.

Level sets in the line density field are visualized using direct iso-
surface raycasting. For shading, gradients are calculated on-the-fly
using central differences. The cluster hulls should be as transpar-
ent as possible without failing to communicate the outer shape. We
therefore adapt the opacity of the isosurface depending on the an-
gle between the surface normal and view direction [HGH∗10]. In
this way, the silhouettes of cluster hulls are enhanced while a non-
obscured view into the cluster interior is provided otherwise.

4.2. Directional variance fields

Nearby lines in one single cluster that follow the same direction
are in most cases less interesting than lines following different di-
rections, they even carry redundant information and can thus be
condensed. Xu et al. [XLS10] have motivated this statement in the
context of vector fields via information entropy as a measure of
how much information is carried by a region, depending on the di-
rectional uniformity of the vectors in this region. Measuring the
variation of lines per volumetric unit allows to directly communi-
cate locations which are potentially relevant for the understanding
of the underlying line structure, at the same time determining re-
gions where less lines than available can be shown. In complex line

Figure 3: Left: Representative lines of 8 clusters are shown in com-
bination with summed up density of all clusters mapped linearly to
opacity. Right: Hulls of 8 clusters using line density fields.

sets, like turbulent structures, lines can deviate strongly in direc-
tion. By solely filtering line segments of low directional variance,
the resulting image can still suffer from visual clutter. A measure of
variation is therefore used as an additional filtering criterion for the
visualization algorithm, and we use it in particular in combination
with interactive brushing to balance the number of shown lines with
respect to the information they carry. Furthermore, the measure is
used to guide towards regions of high information content which
have not been selected by the user. Similar in spirit to the approach
by Xu et al. [XLS10], we calculate per voxel the directional vari-
ance of all line segments passing through that voxel. Let the line
segments in a certain voxel be given as a set of direction vectors
d1, ...,dn. The directional variance, weighted by the length of each
line segment, is defined as following:

σ(d1, ...,dn) = 1−|| ∑i di

∑i ||di||
|| (1)

If the directional variance is high, σ is close to one, while it is zero
if all directions are equal. This is demonstrated in Fig. 4, where
the directional variance around the core of a tornado is shown. As
can be seen, the variance is strongly increasing towards the core,
with the magnitude of the gradient of the variance starting to grow
strongly with decreasing distance from the core.

Figure 4: Left: Cluster variance field of the Tornado data set. Color
and opacity mapping is as for cluster density. Right: Magnitude of
the gradient of the cluster variance field. The maximum gradients
are located around the core of the tornado.
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4.3. Mean direction fields

The mean direction volume of a cluster stores at every voxel one
representative average line segment; by averaging separately the
start points and end points of all flow-aligned line segments in a
voxel. This gives two average points which define the average line
direction that is stored per voxel. The mean direction volume is not
visualized directly but used for accessing the main flow direction
per voxel in constant time.

5. Line Density Control via Brushing

We use the pre-computed CCFs to visualize cluster context infor-
mation, i.e., cluster hulls, and to adapt the density of lines that are
shown in a region that is brushed by the user. Cluster boundaries are
visualized as isocontours in the cluster density field, and they sup-
port the user in identifying the boundaries of the brushable zone. At
the same time they hint towards prominent regions, for instance, re-
gions where the consistency of lines is extraordinarily low or high.
This forms the context in which the user queries additional lines,
and by this, analyses interactively the internal cluster structure. The
user can request a more detailed representation of the line set by in-
teractively using a brush in screen-space. Therefore, the 2D brush
region is extruded to 3D along the viewing direction, defining a
3D brush volume in which the visibility is increased. Per default,
the visibility is zero everywhere, meaning that only the cluster rep-
resentatives are visualized. Where the visibility is increased, addi-
tional lines are shown, yet their density is controlled by the content
of the CCFs as well as occlusion information that is computed for
that location. The hierarchical decomposition of a selected cluster
is utilized in combination with the visibility values to adapt the line
density so that a sparse set of lines is shown where lines are close
together, yet enough lines are shown to emphasize the important
trends in regions where the cluster consistency is low.

Whenever the brush is moved a visibility volume is filled with
visibility values ∈ (0,1). Voxels in the brush volume get assigned
a high visibility value. Simultaneously, via raycasting from every
voxel center towards the viewplane in the cluster density field, the
amount of occlusion, i.e., the accumulated density, a voxel receives
due to lines in front of it is estimated. Voxels in the visibility vol-
ume that are not in the brush volume keep their values from previ-
ous frames, yet these values are continuously faded out over time if
not queried once again. This allows one to move the camera while
brushing without losing the previously brushed location, a mecha-
nism that is demonstrated in Fig. 5, where the brush is applied and
frozen before moving the camera to another viewpoint.

5.1. Local line density control

Based on the cluster tree every line gets assigned a level-id, which
indicates the lowest level of the tree at which the line is chosen as
representative. Note that for every line there is at least one level
where this line is a representative line, at latest at the leaf node
where the line is the only cluster member. The level-id is used dur-
ing rendering to decide whether a line segment should be rendered
in the selected focus region or not. Note that level-ids are divided
by the depth of the cluster tree to obtain values in (0,1).

Figure 5: The visibility volume is visualized using raycasting for
demonstration purposes. The camera was originally positioned at
the top left while using the brush. After brushing, the visibility val-
ues were frozen and the camera position was changed. With accu-
mulated density samples, the visibility values are higher.

3D line sets can be rendered efficiently via the rasterization-
based rendering pipeline on the GPU, by constructing for every line
segment a tube on-the-fly in a geometry shader resulting in 8× 2
triangles per line segment. Every vertex that is generated when ren-
dering a tube can access the visibility value at its object-space loca-
tion, and this value can then be used to modify the rendering style
of the tube segment or to discard the segment entirely. Every vertex
compares the visibility value with the level-id of the line it belongs
to. Only if the visibility value is larger than the level-id, the ver-
tex is rendered, and it is discarded otherwise. In this way, the line
density can be adapted automatically to the local object-space vis-
ibility, i.e., in regions of high visibility far more lines are rendered
than in low visibility regions. In principle, also other rendering pa-
rameters can be controlled by in this way, for instance, opacity or
color.

After all visibility values are resolved to per-vertex properties,
the actual rendering is performed in two passes: In the first pass all
lines are rasterized into a texture including their screen-space depth.
We are using an intermediate vertex property for fading lines in or
out to avoid sudden changes at the rendered image while moving
the brush. Fading in or out is done by modifying the radius of the
segment. The second pass performs raycasting and blends the pre-
viously rendered lines with the cluster hulls.

Visibility values for each voxel (x,y,z) in the brush volume (a
cone with its center axis going through the camera position and the
selected point in screen-space) are set by a compute shader accord-
ing to

Vx,y,z = 1−min(max(((λ+ r)− pd ∗DAcc + pv ∗Var),0),1) (2)

With this formula, we provide a number of options to accentuate
specific structures in the line set: λ defines a threshold that has to
be exceeded before visibility values are set. By setting λ to a high
value, more density values along the ray have to be accumulated or
a region of high directional variance has to be passed, before vis-
ibility values are increased. Increasing λ enables a deeper insight
into the data set. r ∈ [0,1] is the distance of the ray to the center of
the brush in screen-space. With this, threshold λ is increased with
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Figure 6: By modifying parameters of the brush, different struc-
tures of the Aneurysm II data set are brought out. Left: Lines which
are usually covered can be inspected. Right: Lines in regions of
high variance are emphasized.

increasing distance to the center of the brush, leading to a reduced
density of lines at the border of the brush. DAcc is the accumulated
density along each ray from the camera to the corresponding voxel.
The visibility values are increased with accumulated density, to not
only show the nearest lines but to allow a placement of visibility
values behind a number of lines as can be seen in Fig. 6 (left).
The impact of this quantity is controlled by parameter pd . Regions
showing a high directional variance Var can be explicitly empha-
sized by increasing parameter pv, as can be seen in Fig. 6 (right).

5.2. Brush guidance

By relying solely on the screen-space location of the used brush, the
user can easily miss significant structures which are not in the brush
volume, yet located very close to the brushed region in 3D space.
In order to guide the user towards such structures, we propose a
mechanism to automatically continue the selected brush volume
anisotropically into their direction. This is achieved by letting vis-
ibility values being transported into the surrounding, either along
gradient vectors in the CCF or lines passing through the selected
cluster as illustrated in Fig. 7:

Mean Direction The visibility values are transported along the
mean direction of lines, which is encoded in the mean direction
field (see Fig. 7 (b)). By continuing the visibility values along
the mean direction, crossing lines can be detected and the main
path can be identified.

Variability Gradient By using the gradient field of the directional
variance field, and transporting the visibility values along the
gradient directions, nearby locations with high visibility will be
revealed. This effect is shown in Fig. 7 (a), where the transport
is towards the center of the vortex.

A mixture of both transport mechanisms is possible, by using
them in combination but with different priorities. For instance, in
the current implementation we use a linear blend between the gra-
dient direction and the mean line direction according to the gradient
magnitude. Altogether, visibility values are increased in the brush
volume, transported into the dominating direction, and faded out
over time. Thus, we can control the distance the visibility values
can be continued via a global parameter that controls the life time
of continuation.

The transport of visibility values is performed per frame in a
compute shader. For each voxel, the visibility value and the vector
indicating the location to which this value should be continued is
computed. Instead of writing the visibility value to that location, we
gather the visibility value from the location indicated by the inverse
vector via tri-linear interpolation in the field of current visibility
values.

6. Results

In the following, we show the quality of our method based on four
data sets. All images were generated on a standard desktop com-
puter (Intel 6x3.50 GHz processor, 32 GB RAM, and an NVIDIA
GeForce GTX 1070 Ti graphics card). We have tested our method
with following data sets:

Tornado 10000 streamlines were randomly seeded in a 2563 vec-
tor field representing a tornado (Fig. 13).

Aneurysm I and II 4070 (Fig. 1 (right)) and 9200 streamlines
(Fig. 11) describing the blood flow in two different aneurysms.
[BMC14].

Turbulence 10000 streamlines were randomly seeded in a simu-
lated turbulent vector field of size 10243 [AEE∗16] (Fig. 12).

We compare our approach to importance-based line density con-
trol as proposed by Kanzler et al. [KFW16]. The lines of one cluster
were extracted and set as input. The curvatures along the lines were
mapped to importance values as proposed by the authors. The shad-
ing of lines was adjusted to focus on the distribution of line density.
In Fig. 8 (left), we can see the overall density of lines adapted in a
way to have an overview of the data set and to have an unobscured
view towards the main vortex located at the left. With our brush-
based approach in combination with refinement and transport of
visibility values, the vortex at the left can be inspected (Fig. 8 (cen-
ter)). By further inspecting the data set, another vortex at the bottom
is revealed, which is not visible when using the importance crite-
rion. The vortex is stretched resulting in low curvature and hence

(a)

(b)

Figure 7: Visibility values (blue) are controlling the line density.
(a) Visibility values are transported to areas of higher variation.
(b) Visibility values are transported along mean direction.
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Figure 8: Comparison of importance-based density control as proposed by Kanzler et al. [KFW16] (left) and our brush based visualization
(center and right). The vortex at the bottom of the image is not covered by Kanzler et al. but can be brought out using our brush (right).

Figure 9: On the left, 3 cluster hulls are visualized, which are se-
lected in the cluster tree panel on the right.

a low importance value. Since our approach works in object-space,
3D flow structures are better preserved than the approach using a
screen-space measure to adapt the line density.

The typical overall frame time (22 ms) includes line render-
ing (3 ms), rendering of cluster hulls using raycasting (13 ms),
brushing at the focus region (4 ms), and visibility transport (2 ms)
for a visibility volume of size 2563. In all of our experiments the
frame rate was consistently above 20 frames per second.

In the following, we describe a typical workflow using our
method for the Aneurysm II data set. At first, the user selects a
number of clusters for which the hulls are shown. This provides an
overview of the clusters’s extends and overlaps. Clusters can then
be selected and further split into multiple clusters. A cluster panel
represents the first levels of the cluster tree with its root at the top as
shown in Fig. 9 on the right, and acts as control interface. The user
is able to select and deselect different clusters at different levels,
while the visual representation of the corresponding cluster hulls
is updated immediately. The cluster panel communicates an esti-
mate about the consistency of the cluster by using a mapping to a
color gradient from black to red, i.e., from higher to lower consis-
tency. The measure for consistency in this panel is calculated by
summing up the distances of all lines of the cluster to the centroid
of the cluster. By using this measure, a higher sum of distances
indicates a cluster which might be a candidate for splitting up into
two distinct clusters. After refining the clusters until a desired level,

Figure 10: The brush is used to add details by adding lines. Visibil-
ity values are placed by using primarily accumulated density and
are extended in the direction of higher directional variance.

one can focus on one or two clusters by hiding the other clusters.
To investigate one cluster in detail, the brush is applied as can be
seen in Fig. 10. The vortex cores are now clearly visible while the
hull in combination with auxiliary lines allows an estimate about
the surroundings of the brushed location. By adapting the radius of
the brush, the density of lines is increased in a larger region. By the
automated continuation of the brush volume, additional structures
become visible.

The Aneurysm II data set consists of long lines, resulting in clus-
ter hulls that overlap in many regions. To further study at which
location a cluster shares a feature with a nearby cluster, a sec-
ond cluster can be enabled. The brush can now be applied to both
clusters, revealing information about the underlying clustering. By
transporting visibility values along the mean direction field and to-
wards regions of high directional variance, cohesive structures can
be identified: Fig. 11 shows the boundary between the vortex and
the other cluster. In this example lines were not faded out to include
the continuation of the lines forming the vortex.

Placing visibility values at regions of high directional variance
by increasing parameter pvar and extending the selection along the
lines, vortices embedded in turbulent structures can be revealed as
can be seen in Fig. 12. By increasing λ, the coverage of lines lo-
cated at the background is reduced. Combining this setting with a
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Figure 11: The boundaries of two clusters are inspected by brush-
ing. The vortex core at the bottom is split into two clusters. While
the left part is consisting only of lines of the blue cluster, lines of
the blue cluster are also interweaved in the orange cluster. Bottom
left: All lines of the Aneurysm II data set.

Figure 12: Two clusters of the turbulence data set are inspected. A
vortex structure is revealed by placing visibility values at regions of
high directional variance. Bottom left: All lines of the Turbulence
data set.

Figure 13: Boundaries of two clusters are inspected by enhanc-
ing regions with high accumulated density inside the brush region.
Transport of visibility values is showing the core of the tornado.
Bottom left: All lines of the Tornado data set.

visibility transport along the directional variance gradient, vortices
in front of background lines are still emphasized as can be seen in
Fig. 13 and Fig. 1 (right). The core vortex of the aneurysm is dom-
inated by lines of one cluster while we can see a mixing of clusters
at the core of the tornado.

7. Conclusion

In this paper, we have presented a novel approach to interac-
tively explore clusters of lines via consistency-guided visualiza-
tion techniques on the GPU. We have introduced cluster consis-
tency fields and employed them to apply focus+context visualiza-
tion techniques. We have shown the combination of cluster hulls
with interactive and automatic techniques to select focus regions
and adapt the line density to cluster consistency. This enables an
in-depth comparison of cluster overlap regions and the line consis-
tency of a selected cluster.

In future work, we will compare different clustering methods by
matching similar clusters and simultaneously visualizing matches
between two clustering methods. Specific characteristics of clus-
tering methods can be studied directly on a given data set. We will
further examine time-dependent data sets by finding a transition
between brushed regions at different time steps. The development
and movement of features is of interest in this case. Guiding a brush
by exploiting time-dependent information can further enhance the
understanding of the data set.
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