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Abstract
Interlocking building blocks (such as LEGO®) are well-known toys and allow the creation of physical models of real objects
or the design of imaginative 3D structures. In this paper, we propose a novel approach for digitizing building blocks with
the original LEGO® form factor. We add a microprocessor to each 4 x 2 block, and the blocks communicate with each other
via a two-wire connection provided in every nub. This poses the additional challenge that communication and power supply
must use the same two-wire connection, which is addressed by alternating between the two modes over time. We introduce a
protocol that checks for connections and propagates all connection information through the block network. We can then pass
this information to a connected computer, which reconstructs the structure of the block network. We present several successfully
digitized example configurations and discuss failure cases. Furthermore, two end-user scenarios are demonstrated, which show
the potential of our approach as an intuitive human-computer interface.

1. Introduction

Every child knows how to use and build with building blocks with-
out much explanation. Today’s computer interfaces as well as 3D
design and modeling applications rely primarily on vision and pro-
vide feedback to their users through a monitor screen. However,
learning processes benefit from multisensory stimulation, mean-
ing that tackling and analyzing any subject or task with multiple
senses enhances engagement and therefore improves the outcome,
or as [Cha17] states: “combining information from multiple senses
creates robust perceptions, speeds up responses, enhances learn-
ing, and improves detection, discrimination, and recognition”. In-
terlocking building blocks, such as LEGO®, are an intuitive and
accessible visual-haptic interface to create physical models in a nat-
ural and playful way.

[Gau15] describes the LEGO® system as “a tool for supporting

creative thinking, developing creative cultures, and contributing to
processes which might make a difference in how the world works”.
Also, [BLCCL20] shows that when LEGO® blocks are applied
to a creative design process, divergent thinking indicator scores
significantly increase for both professional and non-professional
users, compared to a pen and paper design process. A study car-
ried out by the LEGO® foundation [PT19] emphasized the impor-
tance of play in education and additional studies show how “chil-
dren can foster cognitive, social, emotional, creative and physical
skills through active engagement in learning that is experienced as
joyful, meaningful, socially interactive, actively engaging and itera-
tive” [PTB22]. Furthermore, LEGO® Mindstorms® and [RMSS96]
have successfully opened up a new way of teaching computer sci-
ence and robotics to students and LEGO® can be considered “More
than Playing a Toy” [CGKC20]. A study carried out by [MI18]
indicates that "tangibles have a greater positive impact on learn-
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ing, situational interest, enjoyment, and programming self-beliefs"
when applied to a collaborative programming task. Consequently,
interlocking building blocks have the potential to act as an intuitive
interface for human-computer interaction if the physical creation
can be digitized reliably.

In this paper, we propose a system that digitizes the structure
of interlocking building blocks and reconstructs their configura-
tion as a 3D model. We present special hardware in the form of
interlocking building blocks with the original LEGO® form fac-
tor that contains a micro-controller, a custom PCB, and electronic
components to power the micro-controller and connect its IO pins
to the building block’s nubs. Additionally, the software for both
the micro-controller and a connected PC to run our digitizing algo-
rithm is described. Existing approaches with LEGO®-sized build-
ing blocks use single-view image-based techniques to reconstruct
block configurations, which is limited because occlusion and ambi-
guities make robust computer vision challenging. Using additional
hardware that can be put inside interlocking building blocks is po-
tentially more reliable for the reconstruction of complex structures
and small, low-power micro-controllers are available at a low cost.
In the next chapter, we will first take a look at similar work on the
topic of the digitization of interlocking building blocks and related
topics. We will then continue to present our approach by introduc-
ing both the hardware and software aspects of constructing a smart
interlocking building block, and our proposed digitizing algorithm.
At the end of this paper, we present our results, and further evaluate
our system by demonstrating two prototypical end-user scenarios.
The paper concludes by discussing the limitations of our approach
and future work.

2. Related Work

Representing and interacting with virtual three-dimensional ob-
jects by using tangible small "claytronic atoms" (or short "catoms")
is a concept envisioned in [GCM05] and further built upon in
[ILBL12]. Both papers focus on the possibilities and implications
of programmable matter: self-assembling miniature robots that can
take any shape to represent virtual objects and make them tangibly
interactive. Implementation-wise, there have been several projects
on the topic of digitization of interlocking building blocks, that
can be put into two main categories: image-based and non-images-
based methods.

Image-based block digitizing: [LEG14] and [Osm20] propose an
image-based approach to reconstruct physical block structures in-
side the digital realm, where [LEG14] reconstructs a given con-
figuration of blocks and [Osm20] is using the reconstructed block
configuration to generate simple programs to teach programming
to beginners in a tactile way. Both approaches are only capable
of digitizing a planar configuration of blocks and can not handle
more complex topologies. [MWC∗12] and [GFCC12] both propose
a system that reconstructs the configuration of LEGO® DUPLO®

sized building blocks with the use of a depth-sensor. [GFCC12] re-
constructs the configuration block by block over time and requires
additional user input and camera angles during each step of the
building process. A similar approach by [JB11] uses a depth-sensor
camera to successively scan and add physical building blocks to a

digital structure to build larger three-dimensional models with a
small number of building blocks. In contrast, we propose a non-
image-based approach to reconstruct block configurations that is
independent of camera visibility.

To highlight some of the issues related with camera visibility,
we stress-tested the commercially available LEGO® Fusion Town
Master application [LEG14]. Fig. 1 shows several examples.

(a) Input image (white back-
ground).

(b) Reconstructed geometry.
The white window frames are
missing (circled in red).

(c) Input image (cluttered
background).

(d) Reconstructed geome-
try. Additional blocks are
wrongly added (circled in
red).

(e) Input image (blocks pro-
truding the main plane).

(f) Reconstructed geometry.
The red blocks are missing
(circled in red).

Figure 1: Failure cases of LEGO® Fusion’s image-based recon-
struction method [LEG14].

As we can see, the LEGO® Fusion’s solution has some an-
ticipated disadvantages, due to its image-based approach. Image
quality and background setup can drastically influence the per-
formance of the method and their approach either misses blocks
(Fig. 1(b)) or interprets background object as additional unwanted
blocks (Fig. 1(d)). Also, the LEGO® Fusion algorithm can not deal
with blocks that protrude the one-nub wide main plane on the con-
struction plate (Fig. 1(f)). LEGO® Fusion requires a base plate and
the main door to be present as they are used as calibration mark-
ers. However, the quantity and variety of blocks that can be recon-
structed by LEGO® Fusion is substantial and the manufacturing
costs of individual blocks are relatively low.

Non-image-based block digitizing: [Mer09] uses computerized
tiles that connect and form networks on a two-dimensional plane.
These tiles are equipped with LED screens to run and display
multiple applications that can perform math, play music, and
communicate with their connected neighbors. Similarly, [KIK01,
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SIW∗02, WIA∗04] propose connectable cubes that form digitiz-
able, actuator-enhanced, three-dimensional networks that are able
to run interactive applications. [SG06] propose connectable cubes
to build programmable networks that form small configurable
robots. These hardware approaches are more complex and larger in
size than our blocks, creating an experience similar to a rearrange-
able tablet or smart device. Our method focuses solely on recon-
structing the shape of the block network, so higher-level applica-
tions can run on a host PC and our block hardware can be kept sim-
ple, inexpensive, and small. [AFM∗00] shares this very focus and
proposes a system that reconstructs the shape of micro-controller-
enhanced interlocking building blocks with the dimension of 100 x
50 x 25 mm. However, our goal is to digitize building blocks with
the dimensions of a regular 4 x 2 LEGO® block, which is 31.8
x 15.8 x 15.8 mm. [LRL17] and [GOI98] both implement an inter-
face that digitizes three-dimensional topology, where [LRL17] uses
struts and [GOI98] uses triangles as their atomic building block in
contrast to our LEGO®-shaped blocks. [AIH∗14] propose a sys-
tem that allows users to construct 3D shapes by stacking blocks at
arbitrary positions and angles. This system uses infrared commu-
nication between the blocks to digitize the shape of the block ar-
rangement with blocks of the size 100 x 50 x 25 mm, which is also
much larger than our form factor. [CMRB12] and [LCT∗14] use
differently-shaped magnetic building blocks in combination with
a touch screen tablet to build tactile interfaces and applications.
Their approach is not designed to build larger connected 3D struc-
tures, but to directly interact with applications shown on the touch
screen. [IS18] analyze the magnetic field of magnetized LEGO®

DUPLO® blocks to digitize their block structure. However, their
system consists of larger blocks and is limited by a building height
of three blocks, whereby the accuracy degrades with the distance
to the ground plane.

Other related work: Other interesting projects, such as [Bri21]
are very successful at using image recognition to identify loose
interlocking building blocks to find possible block configurations
and suggest building instructions, but have the same visibility
problem as other image-based methods and aim at a different
use case. [Wes15] propose an approach to find block configu-
rations that can be built with physical blocks, given a digital
3D model. [McS13], [Mic15], and [Yta15] follow the idea of
augmenting interlocking building blocks with micro-controllers
and additional hardware to be able to put more functionality into
the building block world. They show that modern hardware is
small and powerful enough to be able to augment very small toys
with computing capabilities, but their goal is not to reconstruct
the block connections themselves, but rather to augment the
block behavior, which differs from our goal. Also, they do not
provide a solution for a power supply mechanism that is suited
for our use case. The idea of using augmented interlocking
building blocks to create complex modular structures is presented
in [OH18], [Zha19], and [Gon18], who are using precisely printed
interlocking building blocks in the area of microfluids to build
quick prototypes for complex microfluid units. In the educational
field, [MD21] use traditional interlocking building blocks as
modules for general chemistry teaching in the classroom and,
similarly, [MSGD16] use interlocking building blocks to depict
periodic properties of elements such as electron configuration

to blind and visually impaired students in a playful and tactile
way. Also, [Ent17] utilizes interlocking building blocks to explain
the life cycle of plastics from their production from monomers
through the different treatments of end-of-life plastics. Although
these approaches do not use interlocking building blocks digi-
tally, their educational applications demonstrate that interlocking
building blocks can be, and are already successfully used as an
expressive and tactile tool to model complex processes and entities.

In general, our proposed approach differs from the related
work mentioned above by either being much smaller (31.8 x 15.8
x 15.8 mm) or not using computer vision instead of additional
hardware to digitize the true three-dimensional topology and not
only a planar configuration.

3. Design Goals

Our aim is to design, implement, and produce a working prototype
for digitizing interlocking building blocks that incorporates the fol-
lowing goals:

• The electronic components should fit inside a regular 4 x 2
LEGO block with the dimensions of (31.8 x 15.8 x 15.8 mm).

• The block design should eliminate the need for a battery, as we
want to prevent the individual charging of blocks.

• Hardware and block components should be low-cost and should
consist of readily available components.

• The digitizing algorithm and protocol should detect block con-
nections at interactive speed.

• The system should allow the digitization of truly three-
dimensional topology.

• The system should be stateless, meaning any number of blocks
can be removed and added at any time.

• The proposed system should digitize the shape of the network
robustly and accurately, so applications can be built on top.

4. Implementation

4.1. Hardware

One of the biggest problems to solve during the development of
our hardware prototype was the supply of power to each connected
block. We are using the plastic frame from the 4 x 2 blocks from
LIGHT STAX® (Fig. 2, [STA14]) as the housing for our block
hardware. The LIGHT STAX® hardware is intended to power a
LED that illuminates the transparent block, which is why every nub
is equipped with two contacts (VCC and ground). In the worst-case
scenario, this results in only two connections between two blocks
(Fig. 3). Because the plastic molding of submillimeter structures
for a custom housing is very expensive during the design stage and
off-the-shelf 3D printing does not have the required accuracy, our
prototype had to rely on the existing LIGHT STAX® frame and
two-wire connection per nub.

Our approach does not use batteries inside the building blocks,
because constantly replacing or recharging batteries in many blocks
might be a dissatisfying user experience. Therefore, our approach
uses one contact for ground and the other one is used for both data-
transfer and power supply, alternating in time. Modulating the data
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(a) top (b) bottom (c) bottom lid

Figure 2: Plastic frame of the LIGHT STAX® block. There are only
two wire contacts per nub.

Figure 3: Two blocks connected by a single nub, connecting both
ground (black) and power supply/communication wires (red).

on top of the voltage supply would require additional hardware,
which could not be produced in a form factor that fits into a 4 x 2
block with the technology readily available for us. Therefore, our
approach relies on the micro-controller software to alternate one
contact per nub between data transfer and power supply, which will
be outlined in more detail in chapter 4.2.
The proposed hardware consists of:
1. A micro-controller driving a communication protocol and logic.
The ATMega328P is chosen, because of its low cost, low power
consumption, small size (TQFP), and a sufficient number of IO
pins.
2. A custom PCB, connecting the IO pins and the ground to the
outer nubs of the interlocking building block and providing a mount
to connect a small capacitor (see Appendix Fig. 14) to the chip.
3. A 0.047F capacitor to provide enough power for the AT-
Mega328P to run for approx. 10 seconds without an external power
supply.
4. A plastic housing of the components in the form factor of inter-
locking building blocks (by LIGHT STAX®).
5. Insulated copper wires.
The schematics of our building block hardware are shown in the
Appendix Fig. 13. Furthermore, one block is required that we call
"root block", which only differs from the other blocks by having
a direct power supply and a connection of one of the IO pins to a
serial port to communicate with a PC. This root block acts as our
main interface with the PC reconstruction software and all other
blocks need to have a direct or indirect connection to the root block
to be recognized by the block network.

4.2. Software / Protocol

There are protocols, such as "1-Wire", that share our goal of
combining communication and power supply over a 2-wire
connection, but we realized that those were not satisfying all of
our requirements. For example, "1-Wire" devices are all connected

to a shared bus system, making it possible to communicate with
each other, but impossible to retrieve their physical connection
topology. Furthermore, the way "1-Wire" discovers connected
device addresses (instead of dynamically assigning them). This led
us to the conclusion that a more fitted and custom-tailored solution
is needed, which is described in the following.
Our software running on the micro-controller in each block
consists of two main phases, that can be outlined as:
1. Power supply phase: The root block provides power to all
connected blocks over their IO pins. All directly or indirectly
connected blocks output power to all pins that are not currently
receiving power. Consequently, power is distributed through the
block network. During this phase, each block’s capacitor is charged
to provide enough power for the upcoming communication phase.
2. Communication phase: Starting from the root block, commu-
nication requests are sent to all connected blocks in a depth-first
search manner and connection information is propagated back
to the root block. At the end of the communication phase, all
connection information is received by the root block and can be
sent via its serial port to the connected PC. During communication,
information about which pins are directed towards the root block
and which are directed away from it in the connectivity graph are
gathered and kept for the next power supply phase to prevent cyclic
connections in the graph.

These two phases alternate and a complete connectivity graph can
be reconstructed after each communication phase. In some cases,
connections, which happen ill-timed to the alternating protocol,
can prevent the recognition of blocks in the current cycle. These
blocks are recognized in the next cycle. We can visualize each
block’s behavior as a flowchart, shown in Fig. 4.

Fig. 5 illustrates the behavior of the block network. We simplify
the example by assuming only one connection between two blocks
exists, but the principle works the same for multiple connections.
Fig. 5(a) shows the transfer of "connection request" packages (blue
numbers) and "full connection" packages (red numbers) in the log-
ical order in which they are sent. Keep in mind that in actuality,
the packages do not have to be sequentially sent in the displayed
order. For example, when sending the request package 6, the block
does not have to wait until an answering connection package is
completely propagated back to the root block via 7, 8, and 9 be-
fore package 10 is sent. It only has to wait for a little longer than
the transmission time of one package. This makes the process a
lot faster because communication is happening in parallel, but the
block network is still traversed in the same deterministic depth-first
manner. Fig. 5(b) shows the broadcast of a "reset" package, com-
municating to every block that the communication phase has ended
and the power supply phase is starting. When broadcasting a pack-
age, race conditions can occur, as in Fig. 5(b) two "reset" packages
are sent to the topmost block almost simultaneously (package 3).
This is not a problem, as every "reset" package is identical and it
does not matter which one reaches the block first.

We can also express the communication of our block network
in a sequence diagram. Fig. 6 shows the cascading package ex-
change inside the block network starting at the root block. "Con-
nection request" packages are sent to connected blocks, which will
answer with a "full connection" package containing the IDs of the
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Yes

No
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No

Set all pins to distribute power
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port

Broadcast “reset” package

Package is 
“handshake”

?
Set all pins receiving handshake to 0

No

Yes

Handshake/Scan for connections

Send “full connection” packages 
towards root

Figure 4: Behavior of a single block sending, receiving and react-
ing to packages.

involved blocks and pin numbers of the IO pins that are connected.
Afterward, the requested block starts sending "connection request"
packages to its connected neighbor blocks and forwards all received
connections to the root block. This will cascade until all connec-
tions are traversed and the full network can be reconstructed (sim-
ilar to a depth-first search). During one communication cycle, ev-
ery block keeps track of which pins go towards the root block and
which go away from it, by tagging the pins of its first received con-
nection request as "towards root" and every other pin that answers
to a connection request as "away from root". This implicitly forms
an acyclic-directed tree graph with the root block being the root
node and all paths pointing away from it. Since the whole com-
munication process is sequential, we can dynamically assign block
IDs by encoding the next free block ID as an 8-bit integer inside the
"connection request" packages and increasing its value by 1 every
time a new connection is communicated.

Each arrow displayed in Fig. 6 represents an information ex-
change via a binary encoded package. Each package consists of 32
bits, transferred via asynchronous two-wire serial communication.
The first 4 bits being the package header used for synchronization
and the next 3 bits notating the package type. The rest of the 32
bits are used depending on the package type, which - in case of a
"full communication" package - are used to store the IDs of both
connected blocks and the pin numbers of the pins the connection
is established with. For most other package types, the package is
just filled with trailing zeros. Our full package definition is shown
in Fig. 8.

The "reset" packages are always broadcasted to all blocks, mean-

1

2, 5, 9, 14, 17

3

4, 8, 13

6

7,1
2

11

10

15

16

(a) "connection request"
(blue) and "full connection"
packages (red)

1

2

3 3

2

(b) broadcast of "reset" pack-
ages

Figure 5: Block network package propagation over time. The blue
and red numbers denote the order in which packages are send. The
root block is depicted in red.

ing the root block is sending a "reset" package to all pins simultane-
ously and every block receiving a "reset" package sends a "reset" to
all pins going away from the root block, communicating the start of
the charging phase, without waiting for a response. After receiving
and broadcasting a "reset" package, every block goes into the power
supply phase for a defined amount of time, after which it wakes up
and transitions into the communication phase. The "handshake" is
also sent on all pins simultaneously and immediately checked for a
response to quickly receive information about which of the block’s
pins are connected to other blocks. This is helpful because the block
has to send "connection request" packages to only those pins in
the next step. When a handshake is completed or an "end of scan"
package is received, blocks send and forward an "alive" package
towards the root to keep the communication chain from timing out.
Whenever a "connection request" is received, a "full connection"
package is generated and sent back. The "full connection" packages
are always forwarded towards the root block. Whenever a block has
sent a "connection request" to each of its connected pins (end re-
ceived connection packages from each of them), it sends an "end of
scan" package towards the root. If the root block has received the
"end of scan" from its last connected block, all blocks of the block
network have been traversed, and the communication phase ends.
All received connections are communicated via the serial port to
the connected PC and the next "reset" packages are broadcasted to
initiate the next power supply phase.

4.3. Reconstruction

After each communication phase, all communication packages are
communicated to a connected PC via a serial port, where a host ap-
plication fetches the information for digital reconstruction. Given a
digital representation of a single block that fits its physical counter-
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Root Block Block

send 0 on all pins 

write back 0 on 
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(handshake)
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Block

Figure 6: Communication cascade of connected blocks, starting at
the root block.

part and by the use of the received connection list, we can digitize
all involved blocks and calculate their placement and orientation
in 3D. To reconstruct the full block structure, we first take a look
at all connections and create a virtual block for each unique block
ID found in the connection list. Iterating over the connection list
again, we can then calculate every block’s placement and rotation,
relative to the root block, given that the connection list is in depth-
first order, starting with root block connections and continuing with
connections going away from the root block. Knowing that every
connection consists of two blocks, where the first one is nearer to
the root block, it is sufficient to always calculate the placement of
the second block stated in each connection. This will also make
sure that we do not accidentally re-position a block that is already
placed correctly. To find the right placement of one block, we can
then separate its placement into three steps, visualized in Fig. 7.
Our reconstruction algorithm (Alg. 1) consists of three steps that
are being executed for each unaligned block of each connection:
1. Orientation Rotate the unaligned block such that its connected
nub faces towards the nub of the aligned block. The axis that goes
through the pivot point and results in the shortest rotation angle is
used as a rotational axis. Initially, each block starts with its center
as its pivot point.
2. Placement Translate the unaligned block such that the connected
nub’s position is equivalent to the position of the nub of the aligned
block. Set the new pivot point to this position.
3. Alignment Rotate the unaligned block using its new pivot point

(a) Initial configura-
tion
(two connections).

(b) Orientation step
(first connection).

(c) Placement step
(first connection).

(d) Alignment step
(first connection).

(e) Initial configura-
tion
(second connection).

(f) Orientation step
(second connection).

Figure 7: Block placement algorithm. The two nubs involved in the
connection and their up-orientations are displayed in green. The
red dot indicates the current pivot at each step. The placement and
alignment step for the second connection is not displayed as it does
not change the block’s 3D configuration anymore.

Bit 0-4: always set to 0001 (synchronization bits)
Bit 5-7: package type, where

000: connection request
001: full connection
010: end of scan
011: alive
100: reset
111: handshake

For a "connection request", the package is defined as:
0001000AAAAAAAAPPPPBBBBBBBB
where

A: ID of the block the package is send from
P: pin the packages is send from
B: next free block ID

And a "full connection" package:
0001001AAAAAAAAPPPPBBBBBBBBKKKK
where

A: block A ID (closer to root)
P: block A pin
B: block B ID (farther from root)
K: block B pin

Figure 8: Binary package definition.

and a rotation axis perpendicular to both up-vectors such that the
up-vector of both blocks coincide.
It is important that these steps are executed for each connection in
the order they occur in the retrieved connection list, as we consider
the order of the connection list to successively go away from the
root block.
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ALGORITHM 1: Block structure reconstruction algorithm

/* Create a block for each block id */
Set blocks = ∅
foreach Connection c in connectionList do

if blocks.NotContains(c.blockId0) then
Block b = CreateBlock(c.blockId0)
blocks.Add(b)

end
if blocks.NotContains(c.blockId1) then

Block b = CreateBlock(c.blockId1)
blocks.Add(b)

end
end

/* Block rotation and positioning */
foreach Connection c in connectionList do

Block b0 = blocks.Get(c.blockId0)
Block b1 = blocks.Get(c.blockId1)
Nub n0 = b0.nubs[c.pin0]
Nub n1 = b1.nubs[c.pin1]

/* orientation */
Vector3 a = n0.position - b1.pivot
Vector3 b = n1.position - b1.pivot
Vector3 axis = a.Cross(b)
float angle = SignedAngle(a, b, axis)
b1.Rotate(b1.pivot, axis, -angle)

/* placement */
Vector3 d = n0.position - n1.position
b1.Translate(d)

/* alignment */
b1.pivot = n1.position
axis = n0.up.Cross(n1.up)
angle = SignedAngle(n0.up, n1.up, axis)
b1.Rotate(b1.pivot, axis, -angle)

end

5. Results and Discussion

Fig. 9 and Fig. 10 show the results of our prototype. They show var-
ious digitized block configurations, whereby Fig. 9 shows success-
ful digitizations and Fig. 10 shows failure cases. Our implemented
system meets the design goals stated in Section 3, as it digitizes true
three-dimensional topology with low-cost, battery-free hardware.
As shown in our supplemental video, our implementation runs at
interactive speed and is stateless, allowing for the removal or at-
tachment of multiple blocks at once.

As we can see in Fig. 9, various 3D block configurations can
be reconstructed without problems. We can see an issue with indi-
vidual connections not being closed at 10(b), indicated by missing
green nubs where physical connections do take place. This issue
rarely appears and does not matter for the proper reconstruction
in most cases as not all connections are needed to reconstruct the
shape of the block network without ambiguity. We can also see
in 10(d) that having two blocks connected via a single nub can in-
troduce ambiguities, which our algorithm is not able to solve prop-
erly. However, this is an unusual building technique as it is also

Figure 9: Examples of successful digitization of our approach. In-
put configuration on the left and reconstruction on the right.

physically fragile. In contrast to image-based methods, our method
is not prone to image-based errors and is therefore not dependent
on camera visibility, clear backgrounds, or good lighting.

5.1. End-user scenarios

To illustrate the purpose and possibilities of our system, we
implemented two proof-of-concept applications. Both applications
are also presented in the supplemental video.

Digital assisted building instructions: The goal of this end-user
scenario is to guide the user through a sequence of assembly steps
by giving a visual representation of the current state of the block
configuration in addition to a visual hint on where to place the next
block. The next block in the building instructions is displayed in
green and animated with a pulsing animation. Whenever the user
places a correct block, auditive feedback in form of an assuring
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(a) Input block configuration. (b) Reconstructed geometry.
One connection (circled in
red) is not closed properly,
but our reconstruction suc-
ceeds nevertheless.

(c) Input block configuration. (d) Reconstructed geometry.
Only one connected nub per
block-pair is not sufficient to
reconstruct the shape of the
block network accurately.

Figure 10: Failure cases of our digitization approach.

sound is played and the newly placed block is visually animated
right before the next step is displayed. Misplaced blocks, as dis-
played in Fig. 11(k) are highlighted in red to indicate that the user
should remove the misplaced block. In addition to the visual feed-
back, an error sound is played whenever a block is misplaced. If
the whole assembly is completed, another assuring sound is played
and the digitized block structure is visually highlighted (Fig. 11(l)).

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 11: Digital-assisted building instructions. The Subfigures
(a)-(f) show the block configuration in each building step and the
Subfigures (g)-(l) the visual feedback for the next step during the
assembly. Green blocks always indicate the next block to be placed
and red blocks indicate misplaced blocks.

Tangible world building for video games: In another prototyp-
ical application, we apply our interlocking building block system
to build interactive game worlds. The digitized block configura-
tion (Fig. 12(b)) is used to generate the terrain (Fig. 12(d)) of the
game world. The terrain generation step produces a smoothed, pro-
cedurally enhanced mesh with natural terrain features that fit our
game’s aesthetic. The different terrain ’blobs’ produced by each

building block are smoothly connected similar to the metaballs al-
gorithm described by [Bou97]. In addition, the produced terrain
mesh is automatically populated with flowers, grass, and plants to
produce a richer game world. During world-building, the user can
freely move the camera through the generated game world. We call
this state of the application "build mode". By pressing the "F5" key,
the user can take control of the player character and start walking,
climbing, and jumping on the generated terrain (Fig. 12(e)). This
state of the application is called "play mode". Another press on the
"F5" key brings the user back to the "build mode". While in "build
mode", the underlying interlocking building blocks are displayed
as a semi-transparent overlay on top of the generated terrain and
faded out when switching to "play mode". The main purpose of the
toggling of the two modes is to enable the user to quickly iterate on
their design by tangibly working on their world layout and testing
it in-game.

(a) Physical block
configuration.

(b) Digitized block
configuration.

(c) Generated game
world (with overlay).

(d) Generated game world
(without overlay).

(e) Playable game world.

Figure 12: Different steps of the tangible world-building process
from the physical block configuration (a) to the playable game
world (e).

6. Limitations and Future Work

One potential problem of our approach is that the wire connections
between two interlocked blocks are not closing robustly. However,
we found that this happens rarely and in most cases did not matter,
because the remaining closed connections were sufficient to com-
pletely reconstruct the building block structure without ambigui-
ties. In most practical use cases, blocks are connected over several
nubs directly and indirectly, which allowed for an unambiguous re-
construction even with some of the connections getting lost.
Due to a small voltage drop over an internal diode of the AT-
Mega328P, the number of building blocks that can be chained to-
gether is not limitless. For very large networks, additional hardware
for voltage management would be required.
The proposed system aims to be intuitive and easy to use and, due
to its toy-like nature, could be employed for a variety of applica-
tions. Besides the two end-user scenarios shown in Section 5.1,
our system could be used for educational applications, or even as a
modeling tool for the blind, because it does not necessarily require
vision and provides haptic feedback. In the future, we would like
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to develop such applications and software solutions to be used with
our interlocking building block system.

7. Conclusion

In this paper, we propose a system for digitizing interlocking build-
ing blocks to create a reliable, easy-to-use, three-dimensional, tac-
tile, human-computer interface. The proposed system does not use
image-based techniques and constructs the true 3D topology of its
block network. Our low-cost hardware fits into a 4 x 2 interlock-
ing LEGO®-sized building block and consists of only a micro-
controller and a single capacitor. Our proposed host application
and micro-controller code allow to obtain the digitized shape of the
connected interlocking block network for complex topologies (and
not only planar configurations as provided by LEGO® Fusion). As
we rely on the existing LIGHT STAX® housing and its two-wire
connection, power supply and communication must alternate over
time.
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Figure 13: Schematics of our building block hardware. The hard-
ware only consists of the ATMega328P micro-controller and a
0.047F capacitor. The lower part of the figure the connections from
the IO pins to the nubs’ two-wire connections are shown.

(a) top (b) bottom

Figure 14: Our PCB design. The top (a) shows a mount for the
micro-controller and capacitor with all required wire traces. The
bottom (b) shows the bottom pads and all connecting wire traces.
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