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Abstract
The problem of 3-dimensional reconstruction from planar cross-sections arises in many fields, such as biomedical image anal-
ysis and geographical information systems. The problem has been studied extensively in the past 40 years. Each cross-section
in the input contains multiple contours, where each contour divides the plane into different material types. The reconstructed
object is a valid volume (surrounded by a closed surface) that interpolates the input slices.
Some previous works utilize prior information about the reconstructed object, such as its topology, for recovering the original
shape of the object. These works assume that the input cross-sections are complete and do not contain areas of missing infor-
mation. In many real-life cases, this assumption does not hold. Other existing works handle such inputs; however, the methods
they suggest do not have topological guarantees for the reconstructed object.
In this work, we provide the first technique that provides topology control for 3-dimensional reconstruction from partial planar
cross-sections. The input to our algorithm consists of an arbitrarily-oriented set of 2-dimensional cross-sections that may
contain areas of missing information (“unknown” regions) and user-specified topology constraints on the reconstructed object.
During the reconstruction process, we explore a set of distinct topologies for relabeling the “unknown” regions. We define a
scoring function for calculating the likelihood of each topology. We then examine a set of representative topologies and choose
the reconstruction that simultaneously satisfies the global topology and optimizes the scoring function.

1. Introduction

Reconstructing a 3-dimensional object from a given set of planar
cross-sections has been widely studied since the pioneering work of
Keppel [Kep75]. The problem arises in many fields, such as med-
ical imaging, in which we try to reconstruct and visualize human
organs using, for example, MRI, CT, or ultrasound scans. The in-
put is preprocessed manually by contouring the organ boundary in
the 2D sections (see Figure 1). These contours separate the “inside”
and “outside” regions in each section. In a more general setting, dif-
ferent labels (or “colors”) are assigned to the different contours, for
characterizing different material types (muscles, bones, blood ves-
sels, etc.). In addition, sections may contain noisy or incomplete
regions; such regions will be classified as “unknown.”

In many cases, we have a considerable amount of prior infor-
mation about the sought object, that can help in the reconstruction
process, such as the topology, which can be described by the num-
ber of connected components and their genus. The topology is a
significant piece of helpful information that can be used for recov-
ering the correct shape of the object. It can reduce the number of
cross-sections needed for recovering accurately the desired object,
and save the specialist’s time in the contouring process.

In this paper, we present a new topology-controlled reconstruc-
tion algorithm which handles the general case of cross-sections
containing multiple contours of multiple colors and areas of miss-

(a) (b)

Figure 1: Input and output visualisation: (a) A set of non-parallel
contours of a developing chicken heart from CT scans; (b) (right)
The reconstructed three-dimensional chicken heart.

ing information, which we call “partial cross sections.” Given a set
of such cross-sections, our algorithm reconstructs a 3-dimensional
object that satisfies topology constraints specified by the user.
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1.1. Three-Dimensional Reconstruction from Cross-Sections

The object-reconstruction problem was studied extensively in the
past few decades. Early works in the field studied a simple version
of the problem, trying to reconstruct a single object from paral-
lel cross-sections while imposing different limitations, such as the
number of contours in each slice, the geometries of the slices, and
containment hierarchies of the contours [Kep75, FKU77, BPC∗81,
GD82,WA86,KdF88,KSdF88,FL99]. Other works addressed even
a more fundamental problem, in which each input slice has a sin-
gle contour [CP94, CS78, EPO91, MSS91, ZJH87]. These works
failed to resolve complex inputs and generated unacceptable so-
lutions with self-intersecting surfaces and gaps between the con-
tours. More recent works tried to handle the more general case,
in which no limitations were imposed on the contours in each
slice [BG92, BCL96, BS96, OPC96, BGLSS04]; some other works
tried to solve more general cases in which the input consisted of
nonparallel cross-sections [BTS04, BM07, LBD∗08]. A few other
works studied the problem of reconstructing a three-dimensional
object from multi-labeled contours [BVG11, BV09], where each
contour was specified with a label that describes its type of mate-
rial, and the goal was to reconstruct simultaneously geometrically-
valid surfaces for all types of materials.

1.2. Reconstruction from Partial Cross-Sections

Most previous works assumed that the slices in the input were
complete, i.e., that no data were missing, and that the slices were
segmented correctly. In fact, this assumption is not feasible in
most real-life cases, since the input might in practice have noisy
areas with incomplete information. Only a few previous works
(e.g., Refs. [BV09, BVG11]) considered partial cross-sections. To
solve the problem, Barequet and Vaxman [BV09] removed the
unknown areas from each cross-section, then computed the ar-
rangement of the partial planes and its three-dimensional straight
skeleton. Finally, they provided an extension to the algorithm of
Liu et al. [LBD∗08] for dealing with nonconvex cells in order to
reconstruct the surface. Bermano et al. [BVG11] took an entirely
different approach. Based on the inside and outside information
given at each cutting plane, they used an indicator function for
defining an implicit function on any cutting plane. This function
was interpolated inside the cells defined by the cross-sections us-
ing mean-value transfinite interpolation. The indicator function was
not continuous at the input slices, which led to ripples in the created
surface. Thus, they had a post-processing step for smoothing their
output. However, none of these works have topological guarantees
for the reconstructed surface.

1.3. Topology-Controlled Reconstructions

Most previous works focused on interpolating a geometrically-
valid object without considering the topological correctness of
the reconstructed surface. These works made many topological
errors, particularly when the cross-sections were not dense. Re-
cent works [ZHCJ15, HZCJ17, LDK∗18] introduced a topology-
controlled reconstruction method in which the interpolated sur-
face matched a user-specified genus in both two-labeled and multi-
labeled scopes.

Given an arrangement of cross-sections that divides the space
into polyhedral volumes (cells), Zou et al. [ZHCJ15] used a
topology-controlled method which employed a divide-and-conquer
strategy for exploring a family of distinct topologies of surfaces
(so-called tilings) within each cell. Their method computed a score
that evaluated the likelihood of each tile, then ran an optimization
step that selected one tile topology per cell, such that 1. The ob-
tained surface had the desired genus; and 2. The cumulative score
of all tiles was maximized.

The scoring function of Zou et al. is based on a scalar indicator
function defined within each cell, so that the level sets of the func-
tion interpolated the contours on the boundary of the cell. Then, us-
ing a bottom-up dynamic-programming technique, they chose one
topology per cell, such that the union of the selected topologies
met the two properties mentioned above. Huang et al. [HZCJ17]
extended this algorithm to support multi-labeled domains.

None of the previous methods can handle partial inputs. Thus,
our goal is to provide an algorithm for topology-controlled object
reconstruction from partial multi-labeled cross-sections.

2. Problem Definition

We are given a set of planar cross-sections, each containing a set
of closed non-intersecting curves. These curves split the cross-
sections into “inside,” “outside,” and “unknown” regions (see Fig-
ure 2), where “Inside” indicates that this area is part of the recon-
structed object; “Outside” indicates the area that does not belong to
the object; and “Unknown” indicates that there is no reliable infor-
mation about whether this area lies inside or outside the object.

The goal is to reconstruct a three-dimensional surface which is
geometrically valid (i.e., free of holes and intersecting loops) and
interpolating the input curves. Furthermore, as mentioned above,
in many cases, we have prior information about the topology of the
original object. Thus, the number of connected components and
genus can also be specified in the input. In such cases, the recon-
structed object should also satisfy the given topology constraints.

Figure 2: Input contours, “Inside” (green), “Outside” (white) and
“Unknown” (pink) through a single point.

3. Our Contribution in a Glance

Topology control has been extensively studied in the past years for
both two-labeled and multi-labeled domains. However, all previ-
ous works assume that the input is complete, i.e., the entire cross-
sections are available and segmented correctly. This assumption
does not hold in most practical cases, where the input is noisy and
contains unclassified regions.
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This paper introduces a new topology-guided reconstruction al-
gorithm which handles the more general problem, in which the in-
put cross-sections may have missing information. We are not aware
of any previous topology-constrained reconstruction algorithm that
can handle such inputs. Our primary contribution is the reconstruc-
tion of a three-dimensional volume while effectively handling dif-
ferent forms of information at the boundary of the volume.

4. The Algorithm

The input to the algorithm consists of a set of planar cross-sections,
which might contain areas labeled “unknown,” and a list of topol-
ogy constraints specified by the number of connected components
and the genus of each component that are sought in the output.

The output of the algorithm consists of a three-dimensional ob-
ject, free of holes and intersections (i.e., geometrically valid) with
the user-specified genus, so that the object interpolates the labels
specified at the given cross-sections.

The algorithm proceeds with the following steps:

1. Run a modified version of the multi-label reconstruction algo-
rithm of Huang et al. [HZCJ17], while assigning the “unknown”
material a new label. The output of this step is a 3-dimensional
object which contains “unknown” regions (see Figure 3).

2. Relabel the unknown volumes so as to match the output with
the topology constraints. This is done using a generalized ver-
sion of the algorithm of Zou et al. [ZHCJ15] for handling three-
dimensional inputs. This step consists of two main stages:

a. Topology Exploration. Explore the different topologies in
each cell and score the likelihood of each topology.

b. Topology Selection. Choose one surface for each cell so that
the combined surface meets the user constraints and the cu-
mulative score is maximized.

3. Apply mesh fairing and refinement using the algorithm of
Liu. et al. [LBD∗08].

Our topology-controlled algorithm is the first to handle the case
of multiple cross-sections, each one containing multiple contours of
unrestricted geometries and containment hierarchies, and possibly
with missing information in portions of any of the sections.

4.1. A Sketch of the algorithms of Zou and Huang

Both algorithms of Zou et al. and of Huang et al. are executed in
two main stages: Enumeration and Selection.

The goal of the Enumeration step is to compute a set of
topologically-distinct material interfaces for each cell, so as to in-
terpolate the curve network on the boundary of the cell and to score
the likelihood of each topology.

To accomplish this goal, Zou et al. use the level sets of an in-
dicator function defined within the cell, adopting the random-walk
probability as their indicator function for two-labeled domains. For
multi-labeled domains, Huang et al. extend this idea to a vector
function whose interface sets interpolate the boundary curve net-
works.

(a) (b)

(c) (d)

Figure 3: The output of the first step. (a) An overall view; (b,c) The
reconstructed object without the unknown volume; (d) The recon-
structed unknown volume.

In the Selection step, Zou et al. use a bottom-up dynamic-
programming procedure, so that the final result matches the user-
specified constraints, such that the cumulative score from all cells
is maximized. Huang et al. use the same approach with minor
changes in order to handle multiple materials simultaneously. In
both works, the score is based on the indicator function.

4.2. Random Walk

In order to compute the random-walk function, we follow Zou et al.
and build for each cell in the arrangement of planes an undirected
graph G(V,E) that describes a tetrahedral mesh, computed inside
each cell so that the mesh agrees with the input contours.

We divide the set E into “seed” vertices and “non-seed” vertices.
Vertices on the boundary of the cell are defined as seed vertices, and
they are labeled with 1 if they lie inside the reconstructed object,
and 0 otherwise. Vertices that lie inside the cell are defined as “non-
seed” vertices, and no labels are associated with them.

Each edge ei, j ∈ E, connecting vertices i, j ∈ V , is associated
with a positive weight wi, j that represents the bias of the walker,
when it stands at vertex i, to proceed to vetrex j, among all neigh-
bors of i. Zou et al. and Huang et al. defined wi, j to be constant for
all edges, thereby making the choice of the next step to be random
without any preference for any specific label. However, different
weights can be assigned to edges in order to reflect a bias towards
some direction. We review our weight function in the next section.

When the walker stands at vertex i, the probability that it will
advance to a neighboring vertex j is set to wi, j/∑k∈N(i) wi,k,
where N(i) denotes the set of vertices that are neighbors of vertex i.

Finally, the random-walk function provides the probability xi of
a random walker, when it stands at a non-seed vertex i, to perform
a walk that ends in a seed vertex labeled 1. As in Ref. [ZHCJ15,
p. 128 (left), Eq. (1)], we set this probability to be the solution
(for xi) of the system of linear equations xi −

∑ j∈N(i) wi, jx j

∑ j∈N(i) wi, j
= 0. The

level sets of the random-walk function define different tiles with
various topologies for each cell.
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4.3. Reconstructing the Unknown Volume

In contrast with the algorithms of Zou et al. and of Huang et al., we
handle the unknown volume the next step. Thus, given a cell with
unknown areas in the cross-sections, we wish to prefer the unknown
label upon other labels in order to control better the topology of
the final object reconstructed in this step. To this aim, we define
different weights for the edges of the graph in order to get a biased
random walker. The weight of an edge ei, j is defined as

wi, j =
1

min(d(i),d( j))+2
, (1)

where d(i) represents the distance from a vertex i to the unknown
areas in the cross-sections.

4.3.1. Scoring function

In addition, we want to affect the topology in which the algorithm
labels the unknown volume. Thus, we prefer solutions in which
the reconstructed unknown volumes connect a large number of la-
bels in order to allow better control over the topology of the re-
constructed object. To achieve that, we modify the scoring function
accordingly. The function we used for scoring the likelihood of a
tiling topology T is

ST =
∣∣{ℓ |∃v ∈UT : eu,v ∈ G and ℓT (u) = ℓ}

∣∣, (2)

where UT is the unknown volumes in T , and ℓT (x) is the label
at x as determined by T . This scoring function might result in less
reasonable solutions, in which the unknown volume is connected
to other pieces of material through a single point (see Figure 4).
Therefore, we require that a vertex v have at least four neighbors of
label ℓ in order to be considered in the set defined in Equation (2).

Figure 4: An unknown volume (pink) which is connected to another
piece of material (gray) through a single point.

4.4. Labeling the Unknown Volume

We now describe the relabeling of the unknown volumes. Unlike
previous methods, in which the input consists of only the sections,
in our case it also contains three-dimensional unknown volumes
(Figure 3d). The cross-sections partition the space into convex cells
that include the unknown volumes. Our goal is to relabel these
volumes so that the final reconstructed object will be geometri-
cally valid and will satisfy the specified topology constraints (Fig-
ure 5). First, in the exploration step, we consider a family of distinct
topologies by generating multiple tilings with different topologies
within each cell of the unknown volumes. Then, in the selection
step, we choose one tiling per cell, so that the combined surface
meets the topology constraints and agrees with both input sections
and the boundaries of the unknown volumes.

(a) (b)

Figure 5: The output of the algorithm, applied to the example
shown in Figure 3 from different viewpoints: (a) (left column) With
a genus-0 constraint; (b) (right column) With a genus-1 constraint.

4.4.1. Topology exploration

The indicator function of Zou et al. handles cases in which the
“known” values lie on the cross-sections only, and does not aim
to deal with cases in which they lie between cross-sections. In our
case, the values on the boundary of the unknown volume are calcu-
lated during the reconstruction of the unknown volumes. Thus, we
extend the indicator function to handle bounded volumes in which
the “known” values lie inside cells.

To achieve this goal, we modify the set of seed vertices in each
cell to contain both the vertices on the cross-sections and the ver-
tices of the unknown volume boundary (see Figure 6). We calculate
the probability of a random walker that starts at a vertex v inside the
unknown volume to end at a seed vertex, either at the cross-sections
or the volume boundaries. Labels on the sections are assumed to be
correct, i.e., more reliable than labels inside the cell which were
determined in the reconstruction of the unknown volume. For pre-
ferring labels on the sections, the weights of the biased random
walker are as in Equation (1), however this time d(i) is the distance
from vertex i to the sections.

Similarly to Zou et al., we use the level sets of the indicator
function to define different tilings. However, unlike in their method,
in which the level sets induce a partitioning of only the interiors of
the cells and all tilings interpolate the fixed labels on the cross-
sections, in our case, the level sets induce different partitions of
the sections too. This makes the problem more challenging since
neighboring cells might define different (contradicting) labeling for
the same vertices (see Figure 7), which we need to avoid.
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Figure 6: The boundary of the unknown volume.

In order to overcome this obstacle, we calculate the random-walk
probabilities incrementally. First calculate in a random cell the val-
ues of the random-walk function. Then, we propagate the values on
the cross-sections (that contain unknown regions) to the neighbor-
ing cells. For each neighboring cell c, we calculate the values of
the random-walk and propagate the newly-calculated values on the
cross-sections to the neighboring cells of c, and so on.

Figure 7: Neighboring cells with different labels of the vertices of
the cross-sections. The upper cell defines the outer circle as “out-
side,” while the lower cell defines the inner circle as “outside.”

4.4.2. Scoring

We use the same function as Zou et al. and Huang et al. for scoring
a tiling set. Our function is based on the random-walk probabilities.
Given a tile T and the random-walk probabilities for each point x
inside the cell, we denote by ℓT the label at x as determined by the
tile T . The likelihood of the tile T at x is equal to

hT (x) =

{
log( f (x)) ℓT (x) is labeled “inside”;
log(1− f (x)) ℓT (x) is labeled “outside”.

Since the likelihood of each point is defined using the logarithm
function, the joint likelihood of all the points inside the cell can
be calculated by summation, and the likelihood over the entire cell

space Ω is equal to hT (x) =
∫

Ω

hT (x)dx.

4.4.3. Topology selection

In this step, our goal is to choose, for each cell that consists of “un-
known” material, one tiling topology from those computed in the
exploration step, so that the union of the cells classified as “un-
known” with the other cells, computed in the step of reconstructing
the unknown volume, will satisfy the user-specified genus and will
have the maximum cumulative score among all possible choices.

Zou et al. and Huang et al. used a bottom-up dynamic-
programming (DP) procedure for finding the optimal solution.
Their solution might contain neighboring cells with a different level

set, which fits their settings, in which the values on the cross-
sections are fixed, and, thus, the level sets inside the cells are in-
dependent. However, in our case, the cross-sections might contain
“unknown” areas, that must be relabeled. That is, the values on the
cross-sections are not fixed, and different level sets might define
different values on the cross-sections (see Figure 8).

To solve the problem, we first divide the unknown cells into dis-
joint connected components of unknown cells. We mark the num-
ber of these components by m, and refer to these components as
C1,C2, ...,Cm. For each connected component Ci, we define the set
of suggested level sets, LCi , to be LCi =

⋃
c∈Ci

L(c), where L(c) is
the set of level sets generated by the cell c in the exploration step.

(a) (b)

Figure 8: Different level sets of one cell (from different viewpoints):
(a) With one loop on the cross-section; (b) With two loops on the
cross-section.

Second, for each level set ℓ ∈ LCi , we build the level set of the
entire connected component Ci. The values of the border cross-
sections of any connected component Ci do not contain unknown
regions. Thus, they are not affected by the level sets. We merge
the subsurface of Ci defined by the level set ℓ with the previously-
calculated cells that do not contain unknown volumes and the other
unknown volumes regardless of their level sets. For each level set,
in each unknown connected component, we compute the score as
mentioned above, and apply a dynamic-programming procedure to
the unknown connected components for choosing the tiling that
maximizes the score among all the tilings that satisfy the given
topology constraints.

4.4.4. Reducing the number of level sets

Our DP procedure considers entire “unknown” connected compo-
nents, a fact which reduces the number of considered topologies to
at most half of those in the algorithm of Zou et al. and of Huang
et al. (who consider individual cells). Still, in our implementation,
the step of building the entire surface and calculating its genus is
computationally expensive. In addition, the number of suggested
level sets grows significantly with the number of cells in each un-
known connected component since, unlike with Huang et al., we
allow the cells to contain surfaces with holes. Thus, we add more
constraints in order to reduce the number of level sets.
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First, we adopt their strategy of removing tilings that already
have more connected components or a higher genus than the spec-
ified constraints. Second, for each unknown connected component,
we calculate the Euler characteristics of the different level sets
in LCi , and keep, for each value, only the tiling with the maximum
score. Third, since we assume that the input contours cross each
component inside the object at least once, we remove tilings that
contain disconnected components inside the cell (see Figure 9).

Figure 9: A disconnected component inside a cell (from two differ-
ent viewpoints).

4.5. Smoothing

Like Zou et al. and Huang et al., we post-process the final shape us-
ing the method of Liu et al. [LBD∗08], obtaining an overall smooth
shape that interpolates the input curves (see Figure 10).

(a) (b)

Figure 10: The output of the algorithm: (a) Before applying the
smoothing procedure; (b) After applying the smoothing procedure.

5. Results

In fact, there are no other algorithms that combine object recon-
struction from partial sections with topology constraints imposed
on the output. Therefore, we cannot compare our algorithm directly
to any previous algorithm. Nevertheless, we provide the results of
some of the comprehensive experiments that we conducted.

We experimented with our algorithm on a few synthetic exam-
ples as well as on several nontrivial real examples, e.g., a chicken
heart and a hip bone. The input files were generated using the ex-
amples of Zou et al., where in some cases we changed the mate-
rials of the input contours to be unknown, and in other cases, we
added new contours with unknown materials. The outputs of our
algorithm depended on the results we obtained by invoking the al-
gorithm of Huang et al. Thus, we ran the algorithm of Huang et al.
several times with different parameters.

5.1. Chicken Heart

In the chicken-heart case, we show three different examples. In the
first two examples, we have two neighboring cross-sections with
unknown regions (Figures 11 and 12), while in the third one, the
two cross-sections are not neighbors (Figure 13).

(a) (b) (c)

(d) (e)

Figure 11: Applying the algorithm to a developing chicken heart
with unknown regions. (a) The input to the algorithm contained two
cells with unknown regions (pink); (b) The reconstructed object,
using the algorithm of Huang et al. without the unknown material
with a genus-1 constraint; (c) The reconstructed unknown mate-
rial; (d) The output of our algorithm with a genus-1 constraint;
(e) The output of our algorithm with a genus-0 constraint.

Figure 11a shows the input cross-sections in the first example.
We ran the algorithm of Huang et al. with a genus-1 constraint.
Figure 11b shows the reconstructed object without the unknown
material, while Figure 11c shows the reconstructed unknown ma-
terial. We ran our algorithm with both 1-genus (Figure 11d) and
0-genus (Figure 11e) constraints. The obtained results matched the
specified constraints. In the 1-genus case, the algorithm relabeled
the unknown region so that the reconstructed object contained one
hole (Figure 11d), while in the 0-genus case, the algorithm recon-
structed an object containing no holes (Figure 11e).

In the second example (Figure 12), both runs (of Huang et al. and
our algorithm) were with a genus-0 constraint. Figure 12b shows
the object reconstructed by the algorithm of Huang et al. without
the unknown material, while Figure 12c shows the reconstructed
unknown material. Figure 12d shows the result of our algorithm,
which matched the user-specified genus (that is, no holes).

In the third example (Figure 13), the two cells that contained
unknown regions were not neighbors. Thus, we obtained two un-
known regions by running the algorithm of Huang et al. (Fig-
ure 13c). We ran our algorithm with both a 1-genus (Figure 13d)
and a 0-genus (Figure 13e) constraint, and in both cases, our algo-
rithm relabeled the unknown regions to match precisely the topol-
ogy constraints. In the first case, we obtained one hole in the object,
while in the second one, the object had no holes.
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(a) (b) (c)

(d)

Figure 12: Applying the algorithm to a developing chicken heart
with unknown regions. (a) The input to the algorithm contained two
cells with unknown regions (pink); (b) The reconstructed object,
using the algorithm of Huang et al. without the unknown material
with a genus-0 constraint; (c) The reconstructed unknown mate-
rial; (d) The output of our algorithm with a genus-0 constraint.

5.2. Hip Bone

In the case of the hip bone, we also present three examples. The first
example contains one cross-section with an unknown region (Fig-
ure 14), while the two other examples contain two cross-sections
with non-neighboring unknown materials (Figures 15 and 16).

Figure 14a shows the input of the first example. We ran the algo-
rithm of Huang et al. with a genus-3 constraint. Figure 14b shows
the reconstructed object without the unknown material, while the
reconstructed unknown material is shown in Figure 14c. We ran
our algorithm with a genus-2 constraint (Figure 14d) and a genus-3
constraint (Figure 14e). In the first case, the reconstructed object
contained two holes. In the second one, it contained three holes;
both results matched the user-specified constraints.

Figure 15 presents the second example. Figure 15a shows the in-
put cross-sections with the unknown material. We ran the algorithm
of Huang et al., where the constraints were two connected compo-
nents with a genus-0 constraint for one component, and a genus-1
constraint for the other component. Figure 15b shows the recon-
structed objects without the unknown material, while Figure 15c
shows the reconstructed unknown material. We ran our algorithm
with two different constraints. In the first case, one connected com-
ponent had a genus-2 constraint (Figure 15d), and in the other
case, one connected component had a genus-1 constraint (Fig-
ure 15e). Both outputs of the algorithm matched the user-specified
constraints. In the first case, the reconstructed object contained two
holes, while it contained one hole in the other case.

(a) (b) (c)

(d) (e)

Figure 13: Applying the algorithm to a developing chicken heart
with two unknown regions. (a) The input to the algorithm contained
two cells with unknown regions (pink); (b) The reconstructed ob-
ject, using the algorithm of Huang et al. without the unknown mate-
rial with a genus-1 constraint; (c) The reconstructed unknown ma-
terial; (d) The output of our algorithm with a genus-1 constraint;
(e) The output of our algorithm with a genus-0 constraint.

The third example (Figure 16) shows how our algorithm satis-
fies topology constraints with multiple connected components. The
input cross-sections are shown in Figure 16a. We ran both algo-
rithms (the algorithm of Huang et al. and our algorithm) with the
constraints of two connected components with a genus-0 constraint
for one component, and a genus-1 constraint for the other compo-
nent. Figure 16b shows the object reconstructed by the algorithm of
Huang et al. without the unknown material, while Figure 16c shows
the reconstructed unknown material. We obtained two components,
one with no holes and the other with one hole (Figure 16d), which
matched the topology constraints.

6. Implementation and Performance

We implemented our algorithm in C++ and tested its performance
on a 4-core 2.4GHz PC with 8GB of main memory. The typical
running time of our algorithm was affected mainly by the num-
ber of input sections and the numbers of vertices and tetrahedra. In
addition, the running time was highly affected by the number of un-
known components. Table 2 summarizes the running times on the
examples discussed in Section 5. The running time was dominated
by two steps: Minimizing the number of level sets, and selecting the
topology. We noticed that the minimization of the number of level
sets was very effective. The number of the level sets before and
after this step for each unknown component are shown in Table 1.
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(a) (b) (c)

(d) (e)

Figure 14: Running the algorithm on a hip. (a) The input contains
one cell with unknown regions (pink); (b) The reconstructed object,
using the algorithm of Huang et al. without the unknown material
with a genus-3 constraint; (c) The reconstructed unknown mate-
rial; (d) The output of our algorithm with a genus-2 constraint;
(e) The output of our algorithm with a genus-3 constraint.

(a) (b) (c)

(d) (e)

Figure 15: Running the algorithm on a hip. (a) The input contains
two cells with unknown regions (pink); (b) The reconstructed ob-
ject, using the algorithm of Huang et al. without the unknown ma-
terial with two connected components, one with a genus-0 and the
other with a genus-1 constraint; (c) The reconstructed unknown
material; (d) The output of our algorithm with a genus-2 con-
straint; (e) The output of our algorithm with a genus-1 constraint.

7. Limitations of the Algorithm

Even though our algorithm reconstructs successfully complex real-
life examples, it still has some limitations. First, it highly depends
on the output of the algorithm of Huang et al., and in some cases,
our algorithm might fail in finding a solution with the user-specified
topology constraints due to an inappropriate reconstruction of the
unknown volume. To handle this problem, we tried to use different
constraints in case the reconstruction process fails. However, in the
future, we would like to seek a more efficient way.

Second, non-intuitive holes are sometimes the only possible way
to satisfy the topology constraints. Figure 17 shows an example in
which the algorithm reconstructed such a hole inside the unknown

(a) (b) (c)

(d)

Figure 16: Running the algorithm on a hip. (a) The input con-
tains two cells with unknown regions (pink); (b) The reconstructed
object, using the algorithm of Huang et al. without the unknown
material and with two connected components, one with a genus-
0 and the other with a genus-1 constraint; (c) The reconstructed
unknown material; (d) The output of our algorithm with two con-
nected components, one with a genus-0 and the other with a genus-
1 constraint.

volume. Usually, such an artificial hole is very small, unlike “real”
holes that are reconstructed reasonably size.

Figure 17: A small hole produced in inside the unknown volume.

8. Conclusion and Future Work

To the best of our knowledge, we present the first algorithm that
provides topology control for three-dimensional object reconstruc-
tion from partial cross-sections. In its first step, our algorithm re-
constructs the object while considering the unknown material as a
special type of material. In the second step, our algorithm relabels
the unknown regions so that the reconstructed object is topologi-
cally valid and it satisfies the user-specified topology constraints.

Since our algorithm uses the same approach as Huang et al.,
which handles multi-labeled inputs, our algorithm can be general-
ized easily to handle multi-labeled inputs in which all labels inside
the unknown volume appear on the unknown volume boundary.

In addition, as in Huang’s method, we can allow the user to steer
the reconstruction process by choosing inside the unknown volume
one topology per cell out of the list computed by our algorithm.
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Table 1: A comparison of the number of level sets in each unknown
component before and after running the minimization step.

Reducing the number of level sets
Example Figure Unknown

compo-
nents

Initial
no. of
level
sets

Minimized
no. of level
sets

Chicken
Heart

11d
1 44 611e

12d
13d

2
21 7

13e 16 8

Hip
Bone

14d
1 5 2

14e
15d

2
5 2

15e 2 2

16d 2
1 1
5 2

Table 2: Running times of the algorithm.

Running Time
Example Figure Tetrahedra Vertices Running

Time
(sec.)

Chicken
Heart

11d
75,096 12,723

29.56
11e 28.91
12d 30.56
13d

78,417 13,226
50.05

13e 50.21

Hip
Bone

14d
21,481 3,904

3.57
14e 3.52
15d

21,217 3,862
3.55

15e 3.49
16d 3.35
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