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Figure 1: Our method renders an image by rasterizing view-dependent feature points to a high-dimensional feature map that is post-processed
by a rendering network. Given camera-calibrated RGBA images of an object of interest, we initialize and optimize a 3D point model. During
inference, our model synthesizes novel views with improved quality and supports multiple ways of scene editing.

Abstract
This paper presents a point-based, neural rendering approach for complex real-world objects from a set of photographs. Our
method is specifically geared towards representing fine detail and reflective surface characteristics at improved quality over
current state-of-the-art methods. From the photographs, we create a 3D point model based on optimized neural feature points
located on a regular grid. For rendering, we employ view-dependent spherical harmonics shading, differentiable rasterization,
and a deep neural rendering network. By combining a point-based approach and novel regularizers, our method is able to accu-
rately represent local detail such as fine geometry and high-frequency texture while at the same time convincingly interpolating
unseen viewpoints during inference. Our method achieves about 7 frames per second at 800×800 pixel output resolution on
commodity hardware, putting it within reach for real-time rendering applications.

CCS Concepts
• Computing methodologies → Image-based rendering; Point-based models;

1. Introduction

Leveraging the rapidly increasing performance of neural rendering
methods, research on novel view synthesis (NVS) has reached un-
precedented levels of image quality and general performance. NVS
is closely related to image-based rendering and describes the task
of generating images of a scene for unseen viewpoints given only
a few images. Many recent methods enable this by precisely re-
constructing the scene inside a complex model. The reconstructed

scene can then be viewed from arbitrary viewing angles and po-
sitions alleviating the need for expensive manual 3D modeling.
Two main branches of work exist. Firstly, proxy-based approaches
employ discrete estimates of a scene’s geometric structure using
point clouds or triangle meshes. Secondly, neural field approaches
model the scene in a continuous manner through large multi-layer
perceptrons (MLPs) or trilinearly interpolated voxel grids. NeRFs
use large MLPs to represent view-dependent density and color for
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any 3D position and viewing direction [MST∗20]. In conjunction
with volume rendering this implicit representation produces high-
quality images. A core problem of NeRF is the large amount of
MLP queries required to compute the color of a pixel leading to
multiple days of training time and slow inference rendering. Ad-
ditionally, MLPs struggle with learning high-frequency functions
causing NeRF to inaccurately represent fine details in geometry
and texture. Follow-up works such as Plenoxels [FKYT∗22] ex-
plore the possibility of trading memory usage for faster render-
ing through an explicit voxel grid representation. More recently,
Instant-NGP [MESK22] and TensoRF [CXG∗22] employ such
voxel grids to achieve fast optimization, rendering, and unprece-
dented image quality.

On the other side, methods that employ geometric proxies are
also able to avoid the aforementioned problems. Firstly, they can
model fine details in geometry and texture, by allocating more
primitives in regions where high levels of detail are required. Sec-
ondly, they can avoid the expensive volume rendering by simply
replacing it with rasterization. We make use of point clouds in
this work. Existing point-based methods are optimized for large
real-world [RFS22] or forward-facing [ZD23] scenes. As a result,
point-based methods usually lag behind implicit methods in recon-
structing singular objects. Ideally, the entire hemisphere around
an object should be photographed inwards to enable high-quality
digitization. Additionally, the background can be removed before-
hand. Our method extends prior work on point-based models by
focusing on this exact scenario. While neural field approaches al-
ready produce impressive results for these scenes, we show that
point-based models can achieve competitive or even superior vi-
sual quality. A common drawback of point-based models are holes
in the rasterized images due to missing connectivity information.
The density of the point cloud and the image resolution primar-
ily drive the severity of this issue. Inspired by previous work on
point-based NVS [ASK∗20], we use a deep neural rendering net-
work with a customized U-Net architecture [RFB15] to resolve this
problem. Moreover, point-based models require additional regu-
larization compared to neural fields modeled through MLPs. To
address this, we combine an optimization procedure and multiple
regularizers guiding the model to only use points located near ob-
ject surfaces. Furthermore, previous point-based methods require
an initial point cloud, which is usually acquired from multi-view
stereo methods or depth images. In this work, we show a regular
grid within the visual hull of the object is sufficient for obtaining
high-quality results.

In summary, our core contributions are:

• A point-based, end-to-end method capable of state-of-the-art
novel view synthesis for both synthetic and real-world single-
object scenes.

• An optimization procedure for point-based models requiring no
input point cloud but instead refining a high-quality point cloud
from a regular grid.

• Multiple regularizers fine-tuned for the presented model.

Our source code is available at https://graphics.tu-bs.
de/publications/hahlbohm2023plenopticpoints.

2. Related Work

The problem of novel view synthesis (NVS) has been very actively
researched in recent years. The methods can be grouped into those
based on neural fields (implicit and explicit volumetric models) as
well as those based on geometric proxies. For methods based on
geometric proxies, we specifically focus on point-based models.
The recent state-of-the-art report by Tewari et al. contains further
details on neural rendering in general [TTM∗22].

Implicit Volumetric Representations. Early work, such as the
Lumigraph from 1995, focuses on the reconstruction of a light
field [GGSC96]. Local Light Field Fusion (LLFF) by Milden-
hall et al. is a more recent method that leverages neural net-
works [MSOC∗19]. In 2020, Mildenhall et al. published their sem-
inal work on Neural Radiance Field (NeRF) reinvigorating in-
terest in the field [MST∗20]. NeRFs produce high-quality im-
ages using a large multi-layer perceptron (MLP) but have a slow
rendering speed and difficulties reproducing high-frequency de-
tails such as fine geometry and specular effects. Barron et al. im-
prove NeRF to represent fine details by sampling inside the con-
ical frustum of each pixel [BMT∗21]. It was further extended to
work for unbound 360◦ scenes by introducing a non-linear scene
parametrization, online distillation, and a distortion-based regular-
izer [BMV∗22]. Ref-NeRF addresses NeRF’s limitation of accu-
rately representing glossy surfaces by explicitly modeling spatially-
varying scene properties such as surface normals [VHM∗22]. A
plethora of other works improving image quality in various scenar-
ios exist [MBRS∗21, MHMB∗22, TCY∗22], while others address
the large computational requirements of evaluating NeRF mod-
els [GKJ∗21, YLT∗21, HSM∗21, CFHT23]. VaxNeRF reduces the
number of training iterations required to train the model by con-
straining all samples along each pixel ray to be located inside the
visual hull of the scene [KIT∗21]. Our system leverages the visual
hull in a similar manner, as we use it to construct the initial set
of points. Point-NeRF models a neural field using a set of neural
feature points [XXP∗22]. In contrast to our work, Point-NeRF em-
ploys NeRF’s volume rendering to generate images with its main
advantage being faster per-scene training times through efficient
initialization of the used point cloud.

Explicit Volumetric Representations. In contrast to the im-
plicit MLP-based model of NeRF, multiple follow-up works have
demonstrated that continuous volumetric radiance fields can be
modeled explicitly using voxel grids. Plenoxels show that the com-
bination of a sparse voxel grid, spherical harmonics shading, and
trilinear interpolation can replace NeRF’s MLP [FKYT∗22]. Ef-
ficiently implemented in CUDA, Plenoxels reaches comparable
image quality significantly faster than NeRF. Concurrent work to
Plenoxels uses a similar voxel grid but models view-dependent
color using a small MLP [SSC22]. More recently, Instant-NGP
drastically reduces the computational requirements for both train-
ing and inference by employing a sophisticated hashing strategy
to represent a feature grid inside the scenes volume [MESK22].
Chen et al. show further performance improvements can be
achieved through the application of tensor decomposition meth-
ods [CXG∗22]. As the decomposition of a voxel grid into vectors or
matrices, is a very effective method for implicit regularization, their
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method achieves fast optimization and matches the image qual-
ity of leading implicit volumetric representations. Concurrent work
combines a sparse feature grid with 2D feature planes to obtain a
memory-efficient representation that works well with unbounded
scenes [RSV∗23]. The renderings produced by the aforementioned
methods sometimes contain grid-artifacts in areas with fine details.
The U-Net within our rendering pipeline prevents similar artifacts
often leading to more detailed and smoother renderings of surfaces
with high-frequency textures.

Point-based Representations. Various works from recent years
have used point-based geometric proxies for NVS. Aliev et al.
extract a point cloud from RGB-D images and attach neural de-
scriptors that are rendered by a deep convolutional neural net-
work [ASK∗20]. The method was further extended in 2022 by al-
leviating the need for per-scene optimization and improving the
model’s ability to represent view-dependent effects [RALB22]. In
comparison, our method does not require any depth information as
input and specializes in high-quality per-scene results instead of
cross-scene generalization. In 2021, Lassner and Zollhöfer intro-
duce Pulsar, which combines a sphere-based scene representation
and a differentiable blending function [LZ21]. They show quali-
tatively that Pulsar is able to produce good results in the NVS
setting we focus on in this work. We use the differentiable ras-
terization function presented in Pulsar in our method, but lever-
age only a small subset of Pulsar’s capabilities. Instead, we in-
troduce several additions to the image formation pipeline lead-
ing to visible improvements in image quality. Rückert et al. em-
ploy one-pixel point rasterization to achieve high performance in
terms of both image quality and rendering speed [RFS22]. In con-
trast, our method does not require an input point cloud, no point
normals, and employs view-dependent shading of points. Further-
more, point-based models have been used for NVS via per-view
interpolation of neighboring images [KPLD21], in large driving
scenarios [OLN∗22], and accurate representation of specular ef-
fects in neural rendering [KLR∗22]. A more recent method, pro-
poses a point-based method for NVS that drastically reduces mem-
ory requirements and computational cost during training and infer-
ence [ZBRH22]. Our method makes use of foreground masks in a
similar manner but produces images of higher quality at the cost of
computation time. We achieve this by employing a vastly different
optimization strategy and image formation pipeline. Recent work
proposes another point-based model that uses Pulsar [LZ21] as the
rasterization backbone [ZD23]. They initialize a point cloud us-
ing depth information predicted by a pre-trained multi-view stereo
network and refine it iteratively, while our method only requires
foreground masks. Furthermore, we design our method for 360◦

scenes, e. g. the synthetic scenes used in NeRF [MST∗20], while
their method performs best on forward-facing scenes. Concurrent
work achieves improved results for 360◦ real-world scenes through
splatting of 3D Gaussians [KKLD23].

3. Method

In this section, we introduce all components used for initialization,
optimization and inference.

3.1. Initialization

Similar to any other explicit model, an initialization strategy is re-
quired to produce a model that can be optimized. The point cloud
used by our pipeline is constructed in a multi-step procedure us-
ing the foreground masks of the input RGB images. We first de-
termine a bounding box and its fill factor, i. e. an approximation of
how much space inside the bounding box is occupied by geometry.
To achieve this, we construct a point cloud P on the vertices of a
regular grid with a resolution and size sufficient for accurate esti-
mation of the aforementioned properties. By projecting every point
p ∈ P into each foreground mask m ∈ M using the projection Cm of
the respective camera, we can eliminate points that are part of the
background in any image:

P̂ = {p | p ∈ P∧∀m ∈ M : m(Cm(p))> 0} (1)

Where all remaining points P̂ are located inside the visual
hull [Lau94] of the scene. A visualization of this is depicted in
Figure 2. Note, that the result of this procedure depends on fore-
ground mask quality. For real-world scenes, artifacts may occur due
to the imperfect nature of state-of-the-art foreground segmentation
techniques. To complete the initialization of our model, we then at-
tach an opacity value o ∈ [0,1] and shading features ω ∈ R144 to
each point defined by its position p ∈ R3. Therefore, we represent
a scene consisting of N points as a set S = {(pi,oi,ωi)}N

i . Initially,
we set the opacity value of each point to 1 and all of its shading
features to 0.

a) b) c)

Figure 2: a) We initialize feature points at the vertices of a regular
grid. b) – c) Using segmentation masks we remove points outside
the visual hull of the object (b) single mask, c) multiple masks).
For better readability, we subsample the points and assign random
colors.

3.2. View-Dependent Shading

We model view-dependent appearance of the i-th point within its
144 shading features ωi. Each ωi jk ∈ ωi represents a weight for a
basis function defined on the sphere. Spherical harmonics (SH) is a
standard basis for functions defined on the surface of a sphere that
is frequently used in computer graphics due to its flexibility and
computational efficiency. When rendering a point pi from a specific
viewing direction d ∈ R3, we use the first nine SH functions Y j to
convert its view-independent feature vector ωi ∈ R144 to a view-
dependent feature vector ω̂i ∈ R16:

ω̂ik =
8

∑
j=0

ωi(9 j+k) ·Y j(d), k ∈ [0, . . . ,15] (2)

We empirically determine using the first nine SH functions leads to
the best results (see Section 4.3).
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3.3. Differentiable Rasterization

We use a rendering scheme based on rasterization to convert the
view-dependent scene representation Ŝ = {(pi,oi, ω̂i)}N

i to a fea-
ture map F . While traditional rasterization is not differentiable,
several solutions for approximating the respective derivatives have
been proposed. We use an algorithm called Pulsar that represents
points as small spheres [LZ21]. To compute the values for each
pixel, Pulsar employs a differentiable blending function. While Pul-
sar can provide gradients for most camera parameters as well as
sphere positions and radii, we decide against optimizing these prop-
erties to reduce the computational complexity. We detail our con-
figuration in Section 1 of our supplemental material and point the
reader to the original publication by Lassner and Zollhöfer for fur-
ther mathematical and implementation-specific details [LZ21].

3.4. Feature Map Post-Processing

A limitation of point-based models is the fact that rendered images
may contain holes depending on the resolution of the rendered im-
age relative to the number of points. While the uniform distribu-
tion of points induced by our initialization strategy minimizes the
size of these holes, it does not eliminate them. Similar to previous
work [ASK∗20, RFS22, ZD23], we use a convolutional neural net-
work with a U-Net [RFB15] architecture to convert the 16-channel
feature map to the final RGB image. Depending on the resolution of
the rendered image relative to the number of rasterized points, this
rendering network is also responsible to fill any holes within the
feature map. Empirically, we determine that the following mod-
ifications to the original U-Net architecture lead to improved re-
sults: Using three instead of five down-/upsampling layers, omitting
batch-normalization layers, and using average instead of maximum
pooling for downsampling (see Section 1 of our supplemental ma-
terial for details). Similar effects with respect to these modifications
were observed in previous work [RFS22, ZD23]. For a given fea-
ture map F , we obtain the final RGB prediction Î by remapping the
output of the U-Net according to the following equation:

Î =
U(F)+1

2
(3)

This allows the U-Net to operate in [−1,1] while still predicting
valid RGB values in [0,1]. Empirically, we find this remapping
operation produces better results compared to the commonly used
Sigmoid function.

3.5. Losses and Regularization

In each training iteration we use our full model to predict an RGB
image Î for a randomly selected training viewpoint. The base of our
loss function consists of two separate loss terms both computed
using the respective ground truth training image I. We combine
a plain L1 loss with a perceptual loss LV GG based on VGG fea-
tures [SZ15] defined as:

LV GG = FV GG(I, Î) (4)

Where FV GG(I, Î) computes the distance between I and Î given the
network FV GG as proposed by Johnson et al. [JAFF16] Importantly,
this loss term is different from the LPIPS [ZIE∗18] metric we use

for evaluation. Although they use the same pre-trained VGG net-
work, our ablation study indicates improved reconstruction quality,
i. e. we do not just overfit the LPIPS metric through this loss term.
The combination of a per-pixel and a perceptual loss is crucial to
enable accurate representation of surfaces. Solely using a per-pixel
loss causes noisy reconstruction results because for a given pixel
the information of surrounding pixels is not considered. The per-
ceptual loss is a feasible solution to alleviate this problem.

To achieve high image quality, using more points is desirable
as it reduces the frequency and size of holes in the rasterized fea-
ture maps. Because our model’s parameter count scales linearly
with the number of points, this motivates the usage of regulariza-
tion techniques. In contrast to previous work, we delay the learning
rates for higher-frequency SH functions at the start of the optimiza-
tion. This way, the model first learns the diffuse color of each point
and then slowly incorporates the specular color later. We find that
this regularization prevents overfitting leading to improved qual-
ity during inference. Please refer to Section 1 of our supplemen-
tal material for details on how we implement this delay. We intro-
duce a small but effective regularization method we call point posi-
tion noise (PPN), which is comparable to temporal anti-aliasing for
static scenes [YLS20]. During every training iteration, we slightly
offset each point from its actual position in a random direction.
We found PPN to prevent overfitting of the higher-frequency SH
functions. Analogous to dropout layers [SHK∗14], we also ran-
domly exclude 25% of points from the forward pass in each train-
ing iteration. Doing so encourages the model to learn what points
are best suited to approximate the scene’s geometry. Furthermore,
it prevents artifacts during inference when points become visible
which were occluded by other points for every training viewpoint
and thus not optimized. In contrast to a similar approach [ZD23],
our method uses no fixed subsets but a fully random selection in
each training iteration while always using all points during infer-
ence. To encourage learning of spatially consistent opacities o and
features ω, we further employ 3D total variation (TV) regulariza-
tion [RO94]. Our implementation is similar to the one presented by
Yu et al. [FKYT∗22] For efficient indexing, we use the regular grid
on which the points were placed during the initialization. During
an iteration, we randomly select a subset of the regular grid and
separately compute the loss term for point opacities and features
with different weights. We observe computing a TV regularization
loss on the 2D feature maps as done by previous point-based meth-
ods [ZBRH22, ZD23] to be inferior to the aforementioned 3D TV
regularization. During the optimization, the model is supposed to
reduce the opacity of points not located on surfaces as close to zero
as possible. To encourage this, we compute a loss on the opacity
values o ∈ {0,1}n of all n points in the point cloud as follows:

LOPR =
1
n

n

∑
i=1

[oi + c · (log(oi)+ log(1−oi))] (5)

This way the model is encouraged to learn that the sum of all opac-
ity values should be minimized while preferably using opacity val-
ues close to either zero or one [XXP∗22]. We empirically determine
c = 0.1 to be a good value and use it in all experiments. In com-
bination, these regularization techniques enable us to confidently
remove points whose opacity drops below a threshold during the
optimization.
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4. Experiments

We compare qualitative and quantitative performance on synthetic
data as well as real-world data and present an extensive ablation
study composed of multiple sub-experiments.

4.1. Setup

We detail the used datasets and baselines as well as the implementa-
tion of our method. For quantitative comparisons, we use the image
quality metrics PSNR, SSIM [WBSS04], and LPIPS [ZIE∗18].

Datasets. For the experiment on synthetic data, we use the Re-
alistic Synthetic 360◦ dataset [MST∗20]. It contains eight scenes
of objects with fine geometry and high-frequency texture. For ev-
ery scene, 100 training, 100 validation, and 200 test images are
available, each with a resolution of 800×800 pixels. While training
and validation viewpoints are randomly sampled from the hemi-
sphere around each object, the viewpoints for testing are sam-
pled from a continuous path around the object. Being a synthetic
dataset, ground truth camera parameters and foreground segmenta-
tion masks are available.

We evaluate our method on real-world data using a small sub-
set of the Common Objects in 3D (CO3D) dataset [RSH∗21]. The
dataset contains sequences captured with a smartphone by non-
professionals walking on a circular path around an object of in-
terest. The dataset authors extracted 202 frames from each video
sequence and added annotations, e. g. , camera parameters and fore-
ground segmentation masks. We select four scenes that have good
image and segmentation mask quality, contain fine geometry or
high-frequency texture, and have few frames where parts of the ob-
ject are outside the image. Details can be found in Section 2 of
our supplemental material. As proposed by the authors, we split
the available images into sets of five and hold back every second
set for testing. Consequently, each scene consists of 102 images for
training and 100 images for testing, each with roughly a full HD
resolution. We downscale the images by a factor of 0.5 to approx-
imately match the dimensions of the synthetic scenes described
above. Furthermore, we use the segmentation masks to remove the
background in each scene and rescale the camera poses to lie inside
a cube [−2,2]3.

Baselines. We compare against a selection of computationally ef-
ficient, high quality, state-of-the-art NVS methods. Firstly, we com-
pare against NeRF [MST∗20], more specifically its JAX implemen-
tation JaxNeRF [DBS20]. Next, we select Plenoxels [FKYT∗22]
and TensoRF [CXG∗22] to evaluate against leading approaches
using voxel grids. For the synthetic experiment, we use results
provided by the authors for the three aforementioned baselines.
Furthermore, we compare against Instant-NGP [MESK22] where
we evaluate images on white background opposed to the black
background used by the authors. While our approach uses Pul-
sar [LZ21], we are unable to directly compare against the approach
described by the authors as its implementation is not fully specified
in the paper. For the sake of completeness, we provide a more ex-
tensive overview including results of multiple point-based methods
in Section 2 of our supplemental material.

Implementation. We implement our method in Python using the
PyTorch framework and use the Pulsar [LZ21] implementation pro-
vided by PyTorch3D [JRR∗20]. For every scene, we compute the
bounding box and visual hull of the object using the foreground
masks and start the optimization with approximately four million
points. We optimize for 20,000 iterations using the ADAM opti-
mizer [KB15] with betas set to 0.9 and 0.95 respectively. The learn-
ing rates for the opacity and U-Net parameters are set to 1e-1 and
1e-4 and exponentially decayed to 1e-2 and 5e-5 respectively. As
introduced in Section 3.5, the SH-based shading features ω are op-
timized on a per-degree basis. We detail this in Section 1 of our sup-
plemental material. In every training iteration we use our model to
generate the full image for a randomly selected training viewpoint
and compute the loss as described in Section 3.5. We set λV GG,
λTVo , λTVω

, and λOPR to 1e-3, 1e-3, 1e-5, and 1e-5 respectively.
TV regularization of the shading features and opacities is disabled
after 500 and 5,000 iterations respectively to allow modeling of fine
details. After 500 iterations, we remove all points with an opacity
value less than τ = 0.05 and repeat this every 100 iterations there-
after. We use a single NVIDIA GeForce RTX 3090 with 24 GB
VRAM for all experiments.

4.2. Results

Synthetic Scenes. We report quantitative results for the Realis-
tic Synthetic 360◦ dataset in Table 1. As indicated by the PSNR
metric, our method produces images with a higher per-pixel er-
ror compared to Instant-NGP and TensoRF. However, our method
outperforms all baselines with respect to perceptual image met-
rics, especially LPIPS. Through qualitative evaluation on result im-
ages (see Figure 3), we confirm the results of the aforementioned
quantitative analysis. We observe significantly improved represen-
tation of high-frequency texture and reflective surface characteris-
tics, especially noticeable in the Drums and Materials scenes. In
contrast to the smooth reflections produced by our method, JaxN-
eRF produces blurry reflections while Plenoxels, Instant-NGP, and
TensoRF produce noisy reflections with many visible artifacts. Op-
posed to other methods, PlenopticPoints’ U-Net is capable of 2D
generalization, which is a major reason for the aforementioned im-
provements. In Table 1, we also include average optimization time,
resulting model size, and rendering speed at inference time. While
our method does not optimize as fast as TensoRF, Instant-NGP, and
Plenoxels, it outperforms JaxNeRF in terms of optimization time by
a large margin. During inference our method achieves frame rates
of 7 FPS, which is two orders of magnitude faster than JaxNeRF
and about as fast as TensoRF and Plenoxels. Of the compared meth-
ods, only Instant-NGP is able to achieve real-time rendering frame
rates. Lastly, we observe our explicit, point-based representation
has a similar model size as Plenoxels. The U-Net’s hole-filling ca-
pabilities enables PlenopticPoints’ rendering pipeline to work with
a more sparse point cloud. Thus, we can match the memory foot-
print of Plenoxels even though we store 144 appearance features
per point instead of the 27 used by a Plenoxel [FKYT∗22].

Real-World Scenes. We compare real-world performance on 4
selected scenes from the CO3D dataset [RSH∗21]. As we remove
the background using the foreground segmentation masks provided
with the scenes, each baseline’s ability to deal with imperfections
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Realistic Synthetic 360◦ [MST∗20] CO3D [RSH∗21]
Method Opt. Time ↓ Model Size ↓ FPS ↑ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
JaxNeRF [DBS20] >24 hrs 14.3 MB 0.05 31.68 0.954 0.068 32.83 0.965 0.057
Plenoxels [FKYT∗22] 11.4 min 778.1 MB 15 31.70 0.958 0.050 29.12 0.944 0.093
Instant-NGP [MESK22] 5.0 min 66.4 MB >60 32.88 0.965 0.046 30.16 0.949 0.110
TensoRF [CXG∗22] 17.4 min 71.8 MB 1 33.08 0.964 0.051 31.94 0.960 0.066
Ours 2.0 hrs 862.5 MB 7 32.07 0.965 0.038 32.85 0.970 0.035

Table 1: Average image quality metrics for the Realistic Synthetic 360◦ dataset [MST∗20] and the CO3D dataset [RSH∗21]. For the synthetic
dataset, we also include average optimization time, resulting model size, and FPS during inference.

JaxNeRF Plenoxels Instant-NGP TensoRF Ours Reference

Figure 3: Qualitative results for the Realistic Synthetic 360◦ dataset [MST∗20]. We select two scenes and render a viewpoint from the
respective test set with each method. Note the significantly improved drum heads as well as the less blurry reflections on the metal ball
reconstructed by our method. Please see our supplemental material for the remaining scenes.

within these masks is tested. This way, we analyze how applica-
ble each method is in terms of reconstructing an object of inter-
est from a set of casually captured images. The quantitative results
(see Table 1) show that the performance of Plenoxels and Instant-
NGP suffers due to the aforementioned imperfections in camera pa-
rameters and foreground segmentation masks. JaxNeRF performs
comparatively well in this experiment. Our method outperforms all
baselines in terms of image quality metrics. This is also visible in
Figure 4, where we show images generated by each method. In
comparison, our method is the only one that is able to achieve satis-
factory reconstruction of the specular effects within the Car scene.
Especially Plenoxels and TensoRF struggle to accurately represent
the object’s boundaries which causes severe artifacts in the Plant
scene.

4.3. Ablation Experiments

Regularization. We identify key components of our pipeline by
conducting ablation experiments (see Table 2). According to our
tests, the easiest and most effective way of improving image quality
is increasing the number of initial points leading to higher VRAM
requirements and computation times. We present experiments with
one 1 million (M), 2M, and 4M initial points (experiments A, C,
and K). While even the model using 1M points generates high-
quality images (see quality metrics), we maximize the used VRAM
and choose 4M for our final model to demonstrate that the combi-
nation of differentiable rasterization and point-based models can

Initial
Experiment

Remaining
PSNR↑ SSIM↑ LPIPS↓

Points Points
1M A) Fewer Points 151,980 31.18 0.958 0.048

2M
B) 50% Dropout 310,645 31.68 0.961 0.043
C) 25% Dropout 308,561 31.70 0.962 0.043
D) No Dropout 572,572 31.81 0.962 0.042

4M

E) No LL1 3,841,027 29.90 0.949 0.038
F) No Position Noise 1,431,219 31.49 0.962 0.040
G) No LTVo , LTVω

937,958 31.85 0.963 0.039
H) No LV GG 1,409,952 32.02 0.965 0.043
I) No LOPR 1,535,794 32.02 0.965 0.038
J) No SH Delay 1,907,305 31.80 0.964 0.038
K) Complete Model 1,381,877 32.07 0.965 0.038

Table 2: Ablation study with respect to number of initial points,
random point dropouts, losses, and regularization. We report
average image quality metrics on the Realistic Synthetic 360◦

dataset [MST∗20].

be used to achieve leading image quality. Random point dropouts
enable us to use more initial points as less data is used for each for-
ward and backward pass of our model. Due to VRAM constraints,
we are unable to evaluate without random dropouts when using 4M
initial points. Therefore, we show results for different dropout rates
when initializing with 2M points (experiments B, C, and D) and
observe that using a 25% dropout rate compared 0% leads to no
significant loss in image quality but significantly smaller final point
clouds. This indicates doing random dropouts teaches our model to

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

58



Hahlbohm et al. / PlenopticPoints

JaxNeRF Plenoxels Instant-NGP TensoRF Ours Reference

Figure 4: Qualitative results for the CO3D dataset [RSH∗21]. We select two scenes and render a viewpoint from the respective test set with
each method. Note the cleaner object boundaries of the plant as well as the less blurry reflections on the car. Please see our supplemental
material for the remaining scenes.

work with fewer points, a desirable property as less points lead to
faster rendering, but observe no benefit of further increasing the
dropout rate to 50% and therefore choose 25% as the default con-
figuration. E) confirms LL1 is the most important loss for the opti-
mization. F) and G) show that optimizing with point position noise
and 3D TV regularization results in higher image quality. We find
resulting point clouds model the object of interest more accurately
when using TV regularization. In H), we observe LV GG improves
the LPIPS metric without overfitting it as the PSNR also increases.
Lastly, I) shows opacity regularization reduces the number of re-
maining points while barely impacting image quality. To confirm
the effectiveness of using customized learning rates for each SH
degree, we disable it in J) and observe both reduced image quality
as well as point cloud quality.

Shading Features. We determine the number of shading features
attached to each point using two parameters. These are the num-
ber of channels in the rasterized feature map (CH) as well as the
number of spherical harmonics (SH) functions used for the view-
dependent shading. We show the influence of different values for
these parameters in Table 3. For the number of feature channels, we
choose relevant powers of two (8 and 16). The number of SH func-
tions originates from the use of spherical harmonics functions up to
a certain degree ℓ. Using functions up to degree ℓ means using a to-
tal amount of (ℓ+1)2 functions. Note that the higher the degree of
a SH function, the higher the frequencies it can represent. As indi-
cated by the results of the 8 CH experiments in Table 3, using more
than the first nine spherical harmonics functions provides little ben-
efit. This is in line with the findings of prior work, e. g. [YLT∗21].
Further increasing either of the two aforementioned parameters is
possible, but requires more than 24 GB of VRAM during the opti-
mization. On top of that, the configurations with such high numbers
of parameters are more likely to overfit. We therefore avoid those
and choose 16 feature channels and use the first nine SH functions
as they lead to the best results (see Table 3).

Highly-Reflective Scenes. Ref-NeRF addresses NeRF’s limita-
tions regarding the accurate representation of glossy surfaces by ex-
plicitly modeling spatially-varying scene properties such as surface
normals [VHM∗22]. Compared to our method, Ref-NeRF is signif-
icantly more expensive both in terms of optimization time (roughly
20× slower) and rendering speed during inference (roughly 100×

Configuration PSNR↑ SSIM↑ LPIPS↓
8 CH, 4 SH 31.46 0.959 0.047
8 CH, 9 SH 31.93 0.963 0.042
8 CH, 16 SH 31.94 0.964 0.040
16 CH, 1 SH 29.80 0.947 0.066
16 CH, 4 SH 31.70 0.962 0.043
16 CH, 9 SH (default) 32.07 0.965 0.038

Table 3: Average image quality metrics for the Realistic Synthetic
360◦ dataset [MST∗20] when using different amounts of feature
channels (CH) and spherical harmonics functions (SH).

slower). We think it is relevant to compare our method to Ref-
NeRF, as we do not explicitly model properties such as surface
normals, diffuse colors, and surface roughness and thus need to rely
on an implicit representation for reflections. Its authors propose the
synthetic Shiny Blender dataset, which consists of six highly spec-
ular scenes with simple geometry. In Table 4, we show results pre-
sented by the authors of Ref-NeRF [VHM∗22] and results obtained
using our method. The results show that our method performs on
par with Mip-NeRF [BMT∗21], the approach Ref-NeRF is built
upon, but worse compared to Ref-NeRF for these highly specu-
lar scenes. Given that Ref-NeRF explicitly models scene properties
that are key to compute accurate reflections, these results are to be
expected. However, we think that future work could incorporate the
integrated directional encoding used in Ref-NeRF [VHM∗22] into
the view-dependent shading of our rendering pipeline to achieve
improved results on these scenes.

Method PSNR↑ SSIM↑ LPIPS↓
Mip-NeRF [BMT∗21] 29.76 0.942 0.092
Ref-NeRF [VHM∗22] 35.96 0.967 0.058
Ours 29.87 0.946 0.107

Table 4: Average image quality metrics of Mip-NeRF, Ref-NeRF,
and our method on the Shiny Blender dataset [VHM∗22]. Results
for Mip-NeRF and Ref-NeRF taken from the Ref-NeRF publica-
tion [VHM∗22].
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5. Discussion

Geometry Representation. We use a point cloud to represent a
scene’s geometry whereas other methods use either a large multi-
layer perceptron (MLP), a voxel grid, or both. It is difficult to iden-
tify differences in quantitative and qualitative performance with re-
spect to fine geometry for the synthetic scenes. For the real-world
scenes however, our method represents fine details of the scene ge-
ometry at the object boundaries at much higher quality compared
to other approaches. The results of the conducted experiments fur-
thermore indicate that our point-based model can more accurately
capture reflective surface characteristics. However, we mostly at-
tribute this to the U-Net’s ability to remove noise caused by imper-
fections of the geometric proxy, i. e. the point cloud. We explicitly
analyze the shape of the point clouds produced by PlenopticPoints
in Section 3 of our supplemental material.

Computational Requirements. While PlenopticPoints’ average
frame rate of 7 frames per second puts it within reach for real-
time rendering applications, it is still slower compared to, e. g. ,
Instant-NGP. We measure a forward pass of our U-Net with an
input shape of 16×800×800 requires about 75 milliseconds. Pul-
sar [LZ21] requires between 35 and 135 milliseconds per execu-
tion, depending on the number of points. Previous work has al-
ready shown that the sphere-based scene representation of Pulsar
is much slower compared to one-pixel point rasterization [RFS22].
However, the sphere-based representation allows for a better ap-
proximation of gradients during the optimization. Speeding up the
rendering pipeline translates to faster inference and optimization.
This is more significant compared to most previous approaches, as
we use a full image during each training iteration whereas others,
e. g. TensoRF and Instant-NGP, only use a small batch of rays.

Scene Editing. An advantage of our method in comparison to
existing NVS approaches is the possibility for fine-grained scene
editing without any changes to the implementation. The underly-
ing point cloud can be modified freely, e. g. , by using arbitrary
software capable of 3D point cloud modeling. While other models
could be edited similarly, such editing would come with additional
overhead. In Figure 5, we show examples of point clouds modi-
fied using Blender. Additionally, we can exclusively render specific
SH frequencies, e. g. the zeroth SH degree for a view-independent
color. However, we find the U-Net tries to recover view-dependent
shading for some pixels as it recognizes the corresponding image
region from remaining features, which limits this kind of editing.

Figure 5: We show three examples for directly modifying the opti-
mized point cloud. We chop off the ficus, stack the material balls,
and the remove lego bulldozers’s base plate.

6. Conclusion

We presented PlenopticPoints, a point-based method for novel view
synthesis given camera-calibrated input images. Instead of a re-
quiring a complete point cloud as input, our model utilizes fore-
ground segmentation masks to set up a regular grid of points.
After optimization, a PlenopticPoints model can generate novel
views of state-of-the-art quality, especially for scenes with fine ge-
ometry and specular reflections. Due to the underlying geometric
proxy, i. e. the learned point cloud, the presented model supports
scene-editing and integrates well with traditional rendering frame-
works based on rasterization. While PlenopticPoints already pro-
duces high-quality images, some steps of its pipeline leave head-
room for optimization. Future work could explore view-dependent
shading techniques with better generalization capabilities as well
as more efficient rasterization and hole-filling algorithms. Overall,
our work shows that coarse-to-fine optimization as well as proper
regularization allows point-based novel view synthesis methods to
achieve highly-competitive results compared to neural field-based
methods.

Acknowledgements

We would like to thank Peter Kramer for his help in preparing the
supplemental video. The authors gratefully acknowledge funding
by the German Science Foundation (DFG MA2555/15-1 “Immer-
sive Digital Reality”) and the L3S Research Center, Hanover, Ger-
many.

References

[ASK∗20] ALIEV K.-A., SEVASTOPOLSKY A., KOLOS M., ULYANOV
D., LEMPITSKY V.: Neural point-based graphics. In ECCV (2020).
doi:10.1007/978-3-030-58542-6_42. 2, 3, 4

[BMT∗21] BARRON J. T., MILDENHALL B., TANCIK M., HEDMAN P.,
MARTIN-BRUALLA R., SRINIVASAN P. P.: Mip-nerf: A multiscale
representation for anti-aliasing neural radiance fields. ICCV (2021).
doi:10.1109/ICCV48922.2021.00580. 2, 7

[BMV∗22] BARRON J. T., MILDENHALL B., VERBIN D., SRINIVASAN
P. P., HEDMAN P.: Mip-nerf 360: Unbounded anti-aliased neural ra-
diance fields. CVPR (2022). doi:10.1109/CVPR52688.2022.
00539. 2

[CFHT23] CHEN Z., FUNKHOUSER T., HEDMAN P., TAGLIASACCHI
A.: Mobilenerf: Exploiting the polygon rasterization pipeline for effi-
cient neural field rendering on mobile architectures. In CVPR (2023).
doi:10.1109/CVPR52729.2023.01590. 2

[CXG∗22] CHEN A., XU Z., GEIGER A., YU J., SU H.: Ten-
soRF: Tensorial radiance fields. In ECCV (2022). doi:10.1007/
978-3-031-19824-3_20. 2, 5, 6

[DBS20] DENG B., BARRON J. T., SRINIVASAN P. P.: JaxNeRF:
an efficient JAX implementation of NeRF, 2020. URL: https:
//github.com/google-research/google-research/
tree/master/jaxnerf. 5, 6

[FKYT∗22] FRIDOVICH-KEIL S., YU A., TANCIK M., CHEN Q.,
RECHT B., KANAZAWA A.: Plenoxels: Radiance fields without neu-
ral networks. In CVPR (2022). doi:10.1109/CVPR52688.2022.
00542. 2, 4, 5, 6

[GGSC96] GORTLER S. J., GRZESZCZUK R., SZELISKI R., COHEN
M. F.: The Lumigraph. In CGIT (1996). doi:10.1145/237170.
237200. 2

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

60

https://doi.org/10.1007/978-3-030-58542-6_42
https://doi.org/10.1109/ICCV48922.2021.00580
https://doi.org/10.1109/CVPR52688.2022.00539
https://doi.org/10.1109/CVPR52688.2022.00539
https://doi.org/10.1109/CVPR52729.2023.01590
https://doi.org/10.1007/978-3-031-19824-3_20
https://doi.org/10.1007/978-3-031-19824-3_20
https://github.com/google-research/google-research/tree/master/jaxnerf
https://github.com/google-research/google-research/tree/master/jaxnerf
https://github.com/google-research/google-research/tree/master/jaxnerf
https://doi.org/10.1109/CVPR52688.2022.00542
https://doi.org/10.1109/CVPR52688.2022.00542
https://doi.org/10.1145/237170.237200
https://doi.org/10.1145/237170.237200


Hahlbohm et al. / PlenopticPoints

[GKJ∗21] GARBIN S. J., KOWALSKI M., JOHNSON M., SHOTTON J.,
VALENTIN J.: FastNeRF: High-fidelity neural rendering at 200fps. In
ICCV (2021). doi:10.1109/ICCV48922.2021.01408. 2

[HSM∗21] HEDMAN P., SRINIVASAN P. P., MILDENHALL B., BARRON
J. T., DEBEVEC P.: Baking neural radiance fields for real-time view syn-
thesis. ICCV (2021). doi:10.1109/ICCV48922.2021.00582. 2

[JAFF16] JOHNSON J., ALAHI A., FEI-FEI L.: Perceptual losses for
real-time style transfer and super-resolution. In ECCV (2016). doi:
10.1007/978-3-319-46475-6_43. 4

[JRR∗20] JOHNSON J., RAVI N., REIZENSTEIN J., NOVOTNY D., TUL-
SIANI S., LASSNER C., BRANSON S.: Accelerating 3d deep learn-
ing with pytorch3d. In SIGGRAPH Asia (2020). doi:10.1145/
3415263.3419160. 5

[KB15] KINGMA D. P., BA J.: Adam: A method for stochastic optimiza-
tion. In ICLR (2015). doi:10.48550/arXiv.1412.6980. 5

[KIT∗21] KONDO N., IKEDA Y., TAGLIASACCHI A., MATSUO Y.,
OCHIAI Y., GU S. S.: Vaxnerf: Revisiting the classic for voxel-
accelerated neural radiance field. doi:10.48550/arXiv.2111.
13112. 2

[KKLD23] KERBL B., KOPANAS G., LEIMKÜHLER T., DRETTAKIS G.:
3d gaussian splatting for real-time radiance field rendering. ACM TOG
(2023). doi:10.1145/3592433. 3

[KLR∗22] KOPANAS G., LEIMKÜHLER T., RAINER G., JAMBON C.,
DRETTAKIS G.: Neural point catacaustics for novel-view synthesis of
reflections. ACM TOG (2022). doi:10.1145/3550454.3555497.
3

[KPLD21] KOPANAS G., PHILIP J., LEIMKÜHLER T., DRETTAKIS G.:
Point-based neural rendering with per-view optimization. CGF (2021).
doi:10.1111/cgf.14339. 3

[Lau94] LAURENTINI A.: The visual hull concept for silhouette-based
image understanding. ITPIDJ (1994). doi:10.1109/34.273735.
3

[LZ21] LASSNER C., ZOLLHOFER M.: Pulsar: Efficient sphere-based
neural rendering. In CVPR (2021). doi:10.1109/CVPR46437.
2021.00149. 3, 4, 5, 8

[MBRS∗21] MARTIN-BRUALLA R., RADWAN N., SAJJADI M. S. M.,
BARRON J. T., DOSOVITSKIY A., DUCKWORTH D.: NeRF in the Wild:
Neural radiance fields for unconstrained photo collections. In CVPR
(2021). doi:10.1109/CVPR46437.2021.00713. 2

[MESK22] MÜLLER T., EVANS A., SCHIED C., KELLER A.: Instant
neural graphics primitives with a multiresolution hash encoding. ACM
TOG (2022). doi:10.1145/3528223.3530127. 2, 5, 6

[MHMB∗22] MILDENHALL B., HEDMAN P., MARTIN-BRUALLA R.,
SRINIVASAN P. P., BARRON J. T.: NeRF in the dark: High dynamic
range view synthesis from noisy raw images. CVPR (2022). doi:10.
1109/CVPR52688.2022.01571. 2

[MSOC∗19] MILDENHALL B., SRINIVASAN P. P., ORTIZ-CAYON R.,
KALANTARI N. K., RAMAMOORTHI R., NG R., KAR A.: Local light
field fusion: Practical view synthesis with prescriptive sampling guide-
lines. ACM TOG (2019). doi:10.1145/3306346.3322980. 2

[MST∗20] MILDENHALL B., SRINIVASAN P. P., TANCIK M., BARRON
J. T., RAMAMOORTHI R., NG R.: NeRF: Representing scenes as neural
radiance fields for view synthesis. In ECCV (2020). doi:10.1145/
3503250. 2, 3, 5, 6, 7

[OLN∗22] OST J., LARADJI I., NEWELL A., BAHAT Y., HEIDE F.:
Neural point light fields. CVPR (2022). doi:10.1109/CVPR52688.
2022.01787. 3

[RALB22] RAKHIMOV R., ARDELEAN A.-T., LEMPITSKY V., BUR-
NAEV E.: NPBG++: Accelerating neural point-based graphics. In
CVPR (2022). doi:10.1109/CVPR52688.2022.01550. 3

[RFB15] RONNEBERGER O., FISCHER P., BROX T.: U-net: Convolu-
tional networks for biomedical image segmentation. In MICCAI (2015).
doi:10.1007/978-3-319-24574-4_28. 2, 4

[RFS22] RÜCKERT D., FRANKE L., STAMMINGER M.: Adop: Ap-
proximate differentiable one-pixel point rendering. ACM TOG (2022).
doi:10.1145/3528223.3530122. 2, 3, 4, 8

[RO94] RUDIN L., OSHER S.: Total variation based image restoration
with free local constraints. In ICIP (1994). doi:10.1109/ICIP.
1994.413269. 4

[RSH∗21] REIZENSTEIN J., SHAPOVALOV R., HENZLER P., SBOR-
DONE L., LABATUT P., NOVOTNY D.: Common objects in 3d: Large-
scale learning and evaluation of real-life 3d category reconstruction. In
ICCV (2021). doi:10.1109/ICCV48922.2021.01072. 5, 6, 7

[RSV∗23] REISER C., SZELISKI R., VERBIN D., SRINIVASAN P. P.,
MILDENHALL B., GEIGER A., BARRON J. T., HEDMAN P.: Merf:
Memory-efficient radiance fields for real-time view synthesis in un-
bounded scenes. SIGGRAPH (2023). doi:10.1145/3592426. 3

[SHK∗14] SRIVASTAVA N., HINTON G., KRIZHEVSKY A.,
SUTSKEVER I., SALAKHUTDINOV R.: Dropout: a simple way
to prevent neural networks from overfitting. JMLR (2014).
doi:10.5555/2627435.2670313. 4

[SSC22] SUN C., SUN M., CHEN H.: Direct voxel grid optimization:
Super-fast convergence for radiance fields reconstruction. In CVPR
(2022). doi:10.1109/CVPR52688.2022.00538. 2

[SZ15] SIMONYAN K., ZISSERMAN A.: Very deep convolutional net-
works for large-scale image recognition. In ICLR (2015). doi:10.
48550/arXiv.1409.1556. 4

[TCY∗22] TANCIK M., CASSER V., YAN X., PRADHAN S., MILDEN-
HALL B. P., SRINIVASAN P., BARRON J. T., KRETZSCHMAR H.:
Block-nerf: Scalable large scene neural view synthesis. In CVPR (2022).
doi:10.1109/CVPR52688.2022.00807. 2

[TTM∗22] TEWARI A., THIES J., MILDENHALL B., SRINIVASAN P.,
TRETSCHK E., YIFAN W., LASSNER C., SITZMANN V., MARTIN-
BRUALLA R., LOMBARDI S., SIMON T., THEOBALT C., NIESSNER
M., BARRON J. T., WETZSTEIN G., ZOLLHÖFER M., GOLYANIK V.:
Advances in Neural Rendering. EG STAR (2022). doi:10.1111/
cgf.14507. 2

[VHM∗22] VERBIN D., HEDMAN P., MILDENHALL B., ZICKLER T.,
BARRON J. T., SRINIVASAN P. P.: Ref-NeRF: Structured view-
dependent appearance for neural radiance fields. CVPR (2022). doi:
10.1109/CVPR52688.2022.00541. 2, 7

[WBSS04] WANG Z., BOVIK A. C., SHEIKH H. R., SIMONCELLI E. P.:
Image quality assessment: from error visibility to structural similarity.
IEEE TIP (2004). doi:10.1109/TIP.2003.819861. 5

[XXP∗22] XU Q., XU Z., PHILIP J., BI S., SHU Z., SUNKAVALLI K.,
NEUMANN U.: Point-nerf: Point-based neural radiance fields. In CVPR
(2022). doi:10.1109/CVPR52688.2022.00536. 2, 4

[YLS20] YANG L., LIU S., SALVI M.: A survey of temporal antialiasing
techniques. In CGF (2020). doi:10.1111/cgf.14018. 4

[YLT∗21] YU A., LI R., TANCIK M., LI H., NG R., KANAZAWA A.:
PlenOctrees for real-time rendering of neural radiance fields. In ICCV
(2021). doi:10.1109/ICCV48922.2021.00570. 2, 7

[ZBRH22] ZHANG Q., BAEK S.-H., RUSINKIEWICZ S., HEIDE F.: Dif-
ferentiable point-based radiance fields for efficient view synthesis. SIG-
GRAPH Asia (2022). doi:10.1145/3550469.3555413. 3, 4

[ZD23] ZUO Y., DENG J.: View synthesis with sculpted neural points.
In ICLR (2023). doi:10.48550/arXiv.2205.05869. 2, 3, 4

[ZIE∗18] ZHANG R., ISOLA P., EFROS A. A., SHECHTMAN E., WANG
O.: The unreasonable effectiveness of deep features as a perceptual met-
ric. In CVPR (2018). doi:10.1109/CVPR.2018.00068. 4, 5

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

61

https://doi.org/10.1109/ICCV48922.2021.01408
https://doi.org/10.1109/ICCV48922.2021.00582
https://doi.org/10.1007/978-3-319-46475-6_43
https://doi.org/10.1007/978-3-319-46475-6_43
https://doi.org/10.1145/3415263.3419160
https://doi.org/10.1145/3415263.3419160
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.2111.13112
https://doi.org/10.48550/arXiv.2111.13112
https://doi.org/10.1145/3592433
https://doi.org/10.1145/3550454.3555497
https://doi.org/10.1111/cgf.14339
https://doi.org/10.1109/34.273735
https://doi.org/10.1109/CVPR46437.2021.00149
https://doi.org/10.1109/CVPR46437.2021.00149
https://doi.org/10.1109/CVPR46437.2021.00713
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1109/CVPR52688.2022.01571
https://doi.org/10.1109/CVPR52688.2022.01571
https://doi.org/10.1145/3306346.3322980
https://doi.org/10.1145/3503250
https://doi.org/10.1145/3503250
https://doi.org/10.1109/CVPR52688.2022.01787
https://doi.org/10.1109/CVPR52688.2022.01787
https://doi.org/10.1109/CVPR52688.2022.01550
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1145/3528223.3530122
https://doi.org/10.1109/ICIP.1994.413269
https://doi.org/10.1109/ICIP.1994.413269
https://doi.org/10.1109/ICCV48922.2021.01072
https://doi.org/10.1145/3592426
https://doi.org/10.5555/2627435.2670313
https://doi.org/10.1109/CVPR52688.2022.00538
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1109/CVPR52688.2022.00807
https://doi.org/10.1111/cgf.14507
https://doi.org/10.1111/cgf.14507
https://doi.org/10.1109/CVPR52688.2022.00541
https://doi.org/10.1109/CVPR52688.2022.00541
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/CVPR52688.2022.00536
https://doi.org/10.1111/cgf.14018
https://doi.org/10.1109/ICCV48922.2021.00570
https://doi.org/10.1145/3550469.3555413
https://doi.org/10.48550/arXiv.2205.05869
https://doi.org/10.1109/CVPR.2018.00068

