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Figure 1: We propose a model composed of neural components and a physics solver, that autonomously discovers the reduced representation
(a) that best fulfills the goal of restoring a fine reference simulation (b, c) from a unique coarse frame. This leads to relative improvements with
respect to the baseline of 91% on average for the Karman vortex street case, 74% for the forced turbulence case and 35% for the smoke plume
case.

Abstract
We explore training deep neural network models in conjunction with physics simulations via partial differential equations (PDEs),
using the simulated degrees of freedom as latent space for a neural network. In contrast to previous work, this paper treats the
degrees of freedom of the simulated space purely as tools to be used by the neural network. We demonstrate this concept for
learning reduced representations, as it is extremely challenging to faithfully preserve correct solutions over long time-spans with
traditional reduced representations, particularly for solutions with large amounts of small scale features. This work focuses
on the use of such physical, reduced latent space for the restoration of fine simulations, by training models that can modify
the content of the reduced physical states as much as needed to best satisfy the learning objective. This autonomy allows the
neural networks to discover alternate dynamics that significantly improve the performance in the given tasks. We demonstrate
this concept for various fluid flows ranging from different turbulence scenarios to rising smoke plumes.

CCS Concepts
• Computing methodologies → Physical simulation; Learning latent representations;

1. Introduction

Realistic simulation of natural phenomena is one of the ultimate
goals of Computer Graphics research. Modeling and recreating such
phenomena typically involves partial differential equations (PDEs)
and thus numerical methods that aim for efficient computation of
their solution. Despite the recent advances in numerical methods
and computing power, many PDE problems of real-world scenar-
ios, such as fluid simulation, require extremely costly calculations

to resolve fine details, which are yet essential in the graphics con-
text. Thus, using traditional numerical methods, which often require
super-linear scaling in computation, remains challenging in prac-
tice. To minimize the costs of the computation, one can consider
resolving the PDE in a reduced space, yet sacrificing the desired fine
degrees of freedom both temporally and spatially. As an attractive
compromise between computation and resolution, data-driven meth-
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ods are becoming popular in many simulation problems [MJKW18;
WKA*20; KSA*21].

In this paper, we present a data-driven simulation technique for
PDE problems with a novel training method that explores using
physical states as latent space for deep learning. In contrast to many
previous studies [MJKW18; KAT*19; MDCL19; SFK*22], our
latent space is not composed of the output or intermediate states
of a neural network, but is rather made of the physical states of a
PDE solver, such as velocity fields. We train a deep neural network
(DNN) to exploit the content of a reduced PDE solver and shape it in
a way that best satisfies the given learning objective, i.e., achieving
solutions that are as accurate as possible at our target high resolution
space. This shaping of the physical latent space gives the neural
network a chance to discover modified dynamics and allows our
model to better restore accurate high resolution solutions from them.
Examples of the reduced and restored solutions are shown in Fig. 1.

Our training method consists of an encoder model transforming
a coarse physical state using the degrees of freedom of a learnable
latent space, a physics solver corresponding to a given PDE followed
by an adjustment DNN, both operating in the reduced space, and
a decoder turning the reduced state into the target high resolution
space. To train our models with a physics solver, we adopt a differ-
entiable simulator approach [HAL*20; HKT20; THM*21]. We let
the encoder model learn the latent space representation without any
other constraint than the restoration of the target solution. There-
fore, an end-to-end training of this pipeline gives the encoder the
complete autonomy to shape the reduced representation.

This paper demonstrates that the autonomy of our training method
leads to a better performance than previous work, especially in terms
of generalization. We apply our method to various complex, non-
linear PDE problems, based on the Navier-Stokes equations, which
are essential in the context of modeling fluid flows. For all the
scenarios, our model produces more accurate high-resolution results
in a longer temporal horizon than conventional and more tightly
constrained models.

2. Related Work

Learning a PDE The study of machine learning (ML) techniques
for PDEs is getting more and more popular [CM87; KGH*03;
BPK16]. A conventional direction when using ML for PDEs is
to aim for the replacement of entire PDE solvers by neural network
models that can efficiently approximate the solutions as accurately
as possible [LKB18; KAT*19; WKM*20; BHKS21]. In this context,
Fourier Neural Operator [LKA*21] and Neural Message Passing
[BWW22] models have been introduced for learning PDEs, aiming
at a better representation of full solvers with neural network models.

Instead of the pure ML-driven approach to solve target PDEs,
an alternative approach exists in the form of hybrid methods that
combine ML with traditional numerical methods. Among many
different PDEs, fluid problems have received great attention due to
their complex nature. For example, a learned model can replace the
most expensive part of an iterative PDE solver for fluids [TSSP17;
XYY18] or supplement inexpensive yet under-resolved simulations
[UHT18; SMF20]. A regression forests model was also proposed for
fast Lagrangian liquid simulations [LJS*15]. For smoke simulations

in particular, efficient DNNs approaches synthesize high-resolution
results from low-resolution versions [CT17; XFCT18; BLDL20]
and convert low frame rate results into high frame rate versions
[OL21].

Differentiable solvers Recently, differentiable components for ML
have been studied extensively, particularly when training neural
network models in recurrent setups for spatio-temporal problems
[AK17; dASA*18; TAST18; CRBD18; SF18; LLK19; WAG20;
UBF*20; KSA*21; ZKB*21]. Consequently, a variety of differen-
tiable programming frameworks have been developed for different
domains [SC19; HAL*20; IEF*19; HKT20]. These differentiable
frameworks allow neural networks to closely interact with PDE
solvers, which provides the model with important feedback about
the temporal evolution of the target problem from the recurrent
evaluations. Targeting similar problems for temporal evolution, we
employ a differentiable framework in our training procedure.

Latent space representations Effectively utilizing latent spaces
lies at the heart of many ML-based approaches for solving PDEs.
A central role of the latent space is to embed important (often non-
linear) information for the given training task into a set of reduced
degrees of freedom. For example, with an autoencoder network ar-
chitecture, the latent space can be used for discovering interpretable,
low-dimensional dynamical models and their associated coordinates
from high-dimensional data [CLKB19]. Moreover, thanks to their
effectiveness in terms of embedding information and reducing the
degrees of freedom, latent space solvers have been proposed for
different problems such as advection-dominated systems [MLB21]
and fluid flows [WKA*20; FMZF21]. While those studies typically
focus on training equation-free evolution models, we focus on latent
states that result from the interaction with a PDE solver. Neural
network models have also been studied for the integration of a dy-
namical system with an ordinary differential equation (ODE) solver
in the latent space [CRBD18]. This approach targets general neural
network approximations with a simple physical model in the form of
an ODE, whereas we focus on learning tasks for complex non-linear
PDE systems.

Reduced solutions The ability to learn underlying PDEs has al-
lowed neural networks to improve reduced, approximate solutions.
Residual correction models are trained to address numerical er-
rors of PDE solvers [UBF*20]. Details at sub-grid scales are im-
proved via learning discretizations of PDEs [BHHB19] and learning
solvers [KSA*21; SFK*22] from high-resolution solutions. More-
over, multi-scale models with downsampled skip-connections have
been used for super-resolution tasks of turbulent flows [FFT19].
These methods, however, typically employ a constrained solution
manifold for the reduced representation. Indeed, the reduced solu-
tions are produced using coarse-grained simulations with standard
numerical methods, while our work shows the advantages of au-
tonomously exploring the latent space representation through our
joint training methodology.

3. Exploring Physical Latent Spaces

For a given learning objective, our training method explores how
neural network models can leverage the physical states of a PDE
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Figure 2: Architecture of our autonomous training approach for N integrated solver steps. The initial state is encoded into the latent space,
the solver and adjustment models are applied N times, and the adjusted states are decoded into the fine space.

as latent space. Let f ∈ Rd f and r ∈ Rdr denote two discretized
solutions of a PDE, a fine and a coarse version respectively, with
dr ≪d f . We focus on the numerical integration of this target PDE
problem and indicate the temporal evolution of each state as a
subscript. A reference solution trajectory integrated from a given
initial state ft at time t for n steps is represented by the finite set
of states {ft , ft+1, · · · , ft+n}. Each reference state is integrated over
time with a fixed time-step size using a numerical solver P f , i.e.,
ft+1 = P f (ft). Similarly, we integrate a reduced state rt over time
using a corresponding numerical solver Pr at the reduced space,
which we will call reduced solver henceforth, i.e., rt+1 = Pr(rt).
In this paper, we focus on cases where the solver P is the same for
both reduced and fine discretizations.

Our model takes the linear down-sampling of ft , i.e., st = lerp(ft),
as input, and transforms it with the help of an encoder function
E(s|θE) : Rdr → Rdr , thus E(st |θE) = ŝt . Then, we can obtain the
next reduced state rt+1 = P(ŝt). Moreover, in order to keep the
reduced solution consistent with the encoded representation over
time, the output of the reduced solver is transformed by an adjust-
ment function, A(rt+1|θA) = r̂t+1. Thus, each reduced state r̂t+i is
obtained by i recurrent evaluations of the reduced solver and the ad-
justment function. Finally, a decoder function D(r|θD) : Rdr →Rd f

restores a fine solution trajectory {f̂t , f̂t+1, · · · , f̂t+n} from the re-
duced trajectory {r̂t , r̂t+1, · · · , r̂t+n}, thus f̂t+i = D(r̂t+i|θD). We
model the encoder, adjustment, and decoder functions as DNNs in
which trainable weights are denoted by θE , θA, and θD, respectively.

The joint learning objective of the three DNNs is to minimize the
error between the approximate solutions and their corresponding
reference solutions, i.e., ||f̂t+i − ft+i||2. To guide the adjustment
model, we additionally minimize ∥r̂t+i −E(st+i|θE)∥2. Thus, the
final loss of our model is as follows:

L=
N

∑
i=1

λhires ×||f̂t+i − ft+i||2 +λlatent ×||r̂t+i −E(st+i|θE)||2

(1)
where N denotes the number of integrated time-steps for training.
Hence, at each training iteration, the gradients through all N steps
are computed for back-propagation and, consequently, all the models
get jointly updated.

Fig. 2 shows the architecture of our approach. As the encoder does
not receive any explicit constraint and has the complete freedom
to autonomously explore the reduced space to arrive at a suitable
representation, we denote this approach by ATO.

Comparisons and baselines To illustrate the capabilities of our
physical latent space, we compare ATO to two state-of-the-art mod-
els that operate in coarse space [SFK*22; UBF*20]. The former,
denoted by Dil-ResNet in the following, represents a neural network
model that aims at directly predicting solution states in the reduced
space at each time-step. Hence, it does not make use of the reduced
physics solver P . On the other hand, the second variant [UBF*20],
denoted by SOL, consists of a differentiable physics solver and a
trainable corrector model that addresses numerical errors of the
solution states. In both cases, unlike ATO, the models are trained to
make reduced solutions by targeting the linear down-sampling of
the reference.

We note that these state-of-the-art models output solutions that
stay in the coarse space. As our ATO model aims at restoring high-
resolution solutions using a decoder, a super-resolution model can
transform these models’ reduced solutions into high-resolution ones.
To this end, we feed the reduced states produced by the Dil-ResNet
and SOL models to a super-resolution network specialized for spatio-
temporal turbulence problems [FFT19], resulting in high-resolution
states. Henceforth, these models will be denoted as Dil-ResNet +
SR and SOL + SR.

4. Experiments

For each of the following scenarios, which are represented in 2D,
the reference solution trajectories are generated for 200 steps from
different initial conditions with a fixed time-step size. We focus on
the velocity field for our restoration task and consider a four times
coarser discretization for the reduced representation. More details
about the experimental setups are given in the appendix.
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Karman vortex street Forced turbulenceDecaying turbulence

Figure 3: Example frames from the test data-set of each scenario.

4.1. Karman vortex street

We first consider a complex constrained PDE problem in the form
of the Navier-Stokes equations. This problem is modeled as follows:

∂v/∂t =−(v ·∇)v−∇p/ρ+ν∇2v
subject to ∇·v = 0

where v is the velocity, p is the pressure, ρ is the density and ν is
the viscosity.

In this scenario, shown in Fig. 3 (left), a continuous inflow col-
lides with a fixed circular obstacle. It creates an unsteady wake flow,
which evolves differently depending on the Reynolds number. For
the reference solutions, we use a numerical fluid solver that adopts
the operator splitting scheme, Chorin projection for implicit pres-
sure solve [Cho67], semi-Lagrangian advection [Sta99], and explicit
integration for diffusion. We choose Reynolds numbers between
Re = 90 and Re = 1190 for our training data-set, and Reynolds
numbers from Re = 450 to Re = 1400 for testing. The encoder of
our ATO setup takes the Reynolds number as an additional input
in order to guide the exploration of the reduced space. The Dil-
ResNet and SOL setups also receive the Reynolds number to let the
models learn different physics evolutions. Finally, in order to be
fair in our comparisons, the obstacle mask is applied to each state
output by the Dil-ResNet solver. The domain of all target solutions
is discretized with 128×256 cells and has a staggered layout with
closed boundaries, except for the bottom boundary for the constant
inflow velocity and the top boundary that remains open. Although
this setup targets a periodic evolution, the models are trained on
more than one period in order to see a variety of initial states.

4.2. Decaying and forced turbulence

This scenario is likewise based on the Navier-Stokes equations and is
initialized with vortices randomly placed in the domain. We present
two different sub-cases, one where the vortices are decaying over
time without any external influence, and the other where an ex-
ternal force field g slows down the decaying motion of the vortex
structures, enabling the creation of richer dynamics. The viscosity
ν = 0.1 is used in both training data-sets, and the multiplicity of
initial velocities and force fields enables a great variety of evolutions.
Example frames of the decaying turbulence case are shown in Fig. 3
(middle). In the forced turbulence scenario, shown in Fig. 3 (right),
as an additional degree of freedom for our learnable latent represen-
tation, we let the encoder of the ATO setup infer a latent force field ĝ
that is integrated by the reduced solver. The linearly down-sampled
field lerp(g) is used in the other setups. Each solution’s domain is
discretized with 1282 cells and has a centered layout with periodic

boundary conditions. A different randomized force sequence is gen-
erated for each simulation of the forced turbulence case, and the
test sets are generated using different initial vortices and force fields
than for training.

4.3. Smoke plume

This last scenario serves as a proof-of-concept of our method for
more complex, practical graphics applications. Aiming for com-
plex flow behavior driven by hot smoke plumes, we set up an initial
smoke volume as a marker field with an arbitrary density distribution
in a circular shape. The marker field is then passively advected by
the velocity field and, at the same time, induces a buoyancy force via
the Boussinesq approximation, that is influencing the velocity evo-
lution. Therefore, the marker and velocity fields are tightly coupled.
This scenario considers a more challenging problem of the Navier-
Stokes equations than before, naturally making the fluid flow more
interesting and providing a harder task for our model. The training
and test data-sets are composed of smoke volumes initialized with
random noise, with a fixed radius and position. The passive marker
field is given as an input to our encoder and adjustment models,
but its linearly down-sampled version is used in the reduced solver.
Then, only the velocity field is up-sampled, and the high-resolution
marker field is advected by the predicted velocity. The simulation
domain is discretized with 1282 cells adopting a centered layout for
the marker field, a staggered layout for the velocity field, and open
boundary conditions.

4.4. Network architecture and training procedure

The encoder E(·|θE) is implemented as a simple convolutional neu-
ral network (CNN) and the adjustment model is composed of con-
volutional layers that are interleaved with skip-connections. For the
decoder, we adapt the multi-scale model for turbulent flows [FFT19],
and the separate super-resolution network used in Dil-ResNet + SR
and SOL + SR employs this same model. For all models, every
convolutional layer except for the last one is followed by the Leaky
ReLU activation function, except for Dil-ResNet which uses ReLU
activations. We adopt circular padding for the periodic boundary
condition problems and zero padding for the others. The architec-
tures of the models are detailed in the appendix.

At each training iteration, for a given batch size, we randomly
sample the initial states from the reference solution trajectories and
integrate the approximate solution trajectories for N steps. All our
trainings use an Adam optimizer [KB14] and a decaying learning
rate scheduling.

5. Results

We evaluate the trained models based on relative improvements over
a baseline simulation. To make the baseline solutions, we apply the
reduced solver without interactions with any neural network and
up-sample the reduced states into the reference space with a linear
interpolation. Errors are computed with respect to the reference
solutions, hence an improvement of 100% would mean that the
restored solutions are identical to the reference. We evaluate each
model using the mean absolute error (MAE) and mean squared error
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Figure 4: Reduced frames for the Karman vortex street case (left),
and the forced turbulence case (right). The latent space of ATO
(top) and the linearly down-sampled reference (bottom) are shown.

(MSE) metrics, which we measure in both velocity and vorticity. We
present the results of the models trained with the highest number of
integrated steps for each scenario, as they show better performance
in general.

5.1. Reduced representations

The images of Fig. 4 show visual examples of the reduced represen-
tations for the Karman vortex street and forced turbulence scenarios,
for different time-steps. The graphs of Fig. 5 show the quantified dif-
ferences between the reduced states produced by the different trained
models and the conventionally down-sampled reference states. We
observe that our training procedure leads the latent representation to
have vortex structures that are very similar to conventional down-
sampling, while being considerably different quantitatively. Thus,
we believe that the reduced representation of the ATO model stays
physically meaningful for the numerical solver yet adds signals for
accurately decoding high resolution states. We note that different
training initializations of the same scenario produce latent represen-
tations that stay close to each other, which indicates that there exists
a manifold of latent solutions that our ATO model converges to in
order to get the best performance.

5.2. Karman vortex street

This example considers different vortex shedding behaviors depend-
ing on the Reynolds number of each simulation. We evaluate the
models trained with 16 integrated steps on six test simulations with
Reynolds numbers ranging from 450 to 1400, consisting of 2000
time-steps each. In this scenario, we test the extrapolation ability of
the models both physically and temporally, with higher Reynolds
number thus more turbulent simulations than for training, and ten
times longer sequences.

Table 1 shows that ATO outperforms the other models, with a
relative improvement of 91% (and 88%) in terms of velocity MAE
(and vorticity), while SOL + SR improves the baseline by 84%
(and 83%). On the other hand, the Dil-ResNet + SR model fails
to retrieve the target simulation for more than 200 time-steps, and
thus is incapable of generalization in this scenario. The temporal
metrics shown in the appendix demonstrate the capability of ATO
to correctly restore a solution for longer time ranges than the other
models. More specifically, the distance between the reduced states
and lerp(ref) show that the ATO model is the only one to have a
consistent latent representation over time, which proves its better
temporal extrapolation capabilities.
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Figure 5: Distance between each model’s reduced space and the
down-sampled reference. The error bars indicate the standard devi-
ation over the test runs.

Fig. 6 (left) shows examples of high-resolution frames produced
by each model along with the spatial distribution of the absolute
error in velocity, for Re = 1400. Although the visual quality of
the different results seems equivalent at first sight, one can notice
that the position of the vortices is more accurate in ATO’s outputs
than SOL+SR’s. These results show that our ATO model, thanks
to its latent space content, has learned to approximate the physical
dynamics of the simulation more accurately.

Karman vortex street Decaying turbulence Forced turbulence
(128×256) (128×128) (128×128)

MAE MSE runtime MAE MSE runtime MAE MSE runtime

Reference N/A N/A 28.2 N/A N/A 14.1 N/A N/A 17.9

Baseline 0.214 0.096 11.1 0.069 0.024 7.7 0.504 0.426 9.6

Dil-ResNet+SR 3580 1407 9.2 0.033 0.023 3.8 0.272 0.167 5.3

SOL+SR 0.035 0.005 20.0 0.013 0.005 12.8 0.256 0.137 14.2

ATO (ours) 0.020 0.002 20.4 0.012 0.005 11.5 0.133 0.040 12.4

Table 1: Summary of the MAE and MSE metrics, along with the
runtime for one simulation of 100 frames (averaged over ten runs,
in seconds).

5.3. Decaying turbulence

In this example, we consider initially chaotic turbulent flows that
slowly decay over time. We evaluate the models trained with 16
integrated steps, on five random initializations, lasting 200 steps
each.

Table. 1 shows that the ATO model yields greatly improved results
with a relative improvement of 83% (and 80%) in terms of velocity
MAE (and vorticity). However, in this more simple case, the SOL +
SR model also improves the baseline significantly with 82% (and
78%) of relative improvement. Dil-ResNet + SR, however, only
yields 53% (and 6%) of improvement. Examples frames for this
scenario are shown in the appendix.

5.4. Forced turbulence

This complex fluid flow scenario considers the same experimental
setup as in the previous case but with external forces, which leads to
highly chaotic turbulent flows. We evaluate the models trained with
16 integrated steps, on five random initializations both in velocity
and forcing, for 200 steps.
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Table 1 shows that the ATO model significantly improves the
baseline with a relative improvement of 74% (and 69%) in terms of
velocity MAE (and vorticity). In comparison, SOL + SR improves
by only 49% (and 43%) and Dil-ResNet + SR by 46% (and 38%).
Therefore, in this complex case with external forcing and more
turbulent flows, the ATO model particularly stands out. Fig. 6 (right)
shows examples of high-resolution frames produced by each model
along with the spatial distribution of the absolute error in velocity.

5.5. Smoke plume

In this last example, we consider complex flow behaviors created
by hot smoke plumes that evolve from random circular densities.
We evaluate our model trained with 32 integrated steps on five
test simulations with different initial marker fields from which we
perform a "warm-up" of 50 time-steps, in order to get interesting
plume shapes.

Fig. 7 shows that, despite the increased difficulty of this challeng-
ing scenario, our ATO model succeeds at reconstructing a complex
high-resolution plume of good quality. Indeed, our method presents
an improvement of 35% on average over the baseline for 100 steps.

5.6. Ablation study

In order to see the effects of each of its components, we evaluate our
ATO model with differently ablated training setups for the forced
turbulence scenario. Our ablation study includes the following mod-
els:

• No latent loss: we remove the second term of the loss in Eq. 1;
consequently, our training does not constrain the adjusted states
to match the encoder-induced latent space.

• No encoder: we omit the encoder such that the latent representa-
tion is constrained to be conventional linear down-sampling.

• No encoder & no latent loss: since the previous model’s reduced
space is constrained to linear down-sampling, we test the same
setup without the encoder and with no latent constraint.

• No solver: we replace the solver + adjustment part of our ATO
model with the Dil-ResNet NN-solver in order to study the effect
of a non-physical latent space.

• No adjustment: we evaluate a setup where the reduced simulation
evolves without being adjusted.

• lerp(forces): we input a simple linear down-sampling of the force
fields to the reduced solver, instead of their encoded representa-
tion.

Table 2 shows that the encoder, physics solver, and adjustment
components of our ATO model are essential for its good performance.
Firstly, the no encoder and no encoder & no latent loss experiments
confirm that, with lerp(ref) as initial reduced representation and
without our encoder, the adjustment network was not able to find
a latent representation that would lead to an optimal performance.
Furthermore, the no latent loss ablation shows that the latent loss
guiding the adjustment model via the encoder results in a better per-
formance. Note that the performance of ATO significantly decreased
when the encoder was absent, whereas the performance drop due to
omitting the latent loss was relatively less significant. Secondly, the
no solver and no adjustment experiments show that using a reduced

Velocity Vorticity Latent space

MAE MSE MAE MSE MAE lerp(ref)

ATO (ours) 0.133 0.040 0.084 0.015 0.743

no latent loss 0.156 0.057 0.097 0.020 0.488

no encoder 0.259 0.146 0.156 0.48 0.253

no enc. & no lat. loss 0.284 0.174 0.167 0.055 0.322

no solver 0.737 1.073 0.578 0.651 0.713

no adjustment 0.409 0.339 0.212 0.085 0.568

lerp(forces) 0.944 1.725 0.429 0.325 0.682

Table 2: Results of the ablation study: we present the MAE and MSE
in velocity and vorticity for each model, along with the distance
between its reduced space and the down-sampled reference.

physics solver in conjunction with an adjustment model is crucial
for the good performance of our ATO model. Finally, the lerp(forces)
experiment indicates that our encoder model failed to find a latent
representation for the velocity that was compatible with an external
factor conditioned to lerp.

All of the models tested in this ablation study gave comparable
standard deviation values within the test set; thus, we did not include
them in the table.

5.7. Runtime performance

For each scenario, we compare the runtime performance of the
trained models with the reference’s, measuring timing for one simu-
lation of 100 frames, averaged over ten different runs. For ATO, the
computations start with the initial velocity inference by the encoder
model and stop when all 100 frames are output by the decoder. All
timings were computed using a single GeForce RTX 2080 Ti with
11GiB of VRAM.

Table 1 shows the summary of computational timings for the
reference, baseline (reduced solver without any DNN model), and
trained models. For all four cases, our ATO model yields improve-
ment in runtime compared to the reference. For the Karman vortex
street scenario, our ATO model speeds up the computations by 28%,
against 29% for SOL+SR. Yet, as shown in Sec 5.2, ATO shows an
improvement of the baseline MAE that is 7% better than SOL+SR.
Similarly, for the forced turbulence case, the ATO model speeds up
the computations by 18%, against 9% for SOL+SR, and improves
the baseline MAE of 25% more than SOL+SR. For the smoke plume
scenario, our ATO model speeds up the reference by 20% compared
to 28% for the baseline, while improving the baseline MAE by 35%.
We note that the Dil-ResNet + SR model often has the best runtime
performance because it does not contain any numerical solver, but
it has errors at least 50% higher than ATO and shows very poor
temporal extrapolation capabilities.

Training our ATO model takes between one and three days de-
pending on the physical scenario, on a Tesla V100 with 16GiB of
VRAM.
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Figure 6: Example frames for all models along with the absolute error in velocity are shown for the Karman vortex street case with Re = 1400
(left) and for the forced turbulence case (right).
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Figure 7: Example frames of the smoke plume scenario for two
different initializations, for the ATO model.

6. Limitations and Future Work

These results show that our training method using the states of
physics simulations as latent space of DNNs can facilitate the learn-
ing task for complex simulations. This provides a starting point for
the exploration of physical latent spaces in many different problems.
However, we note that our ATO model is not particularly standing
out in a simple scenario like the decaying turbulence. Therefore, we
can presume that the benefits of its unconventional reduced space
are truly visible only when the PDE system is complex enough. In
addition to the distance metric, more thorough analysis of latent
space contents via, e.g., perceptual metrics, also remains our future
work.

Moreover, our method has proven its capabilities in scenarios
where force fields were inferred by our networks besides the velocity
fields. In the forced turbulence case, the forces were external factors
that were independent from the velocity data, thus our ATO model
had no difficulty finding a latent representation that led to a superior
performance. In Sec. 5.5, we showed that our model gave promising
results in a scenario where the forces were internal, i.e. created
by a marker field that was dependent of the latent velocity. That
case opens interesting future work, such as finding the best reduced
representations for the coupled marker and velocity fields.

Although we evaluated our model on various scenarios, its gener-
alization for broader applications still remains a challenge. As our
model allows for the efficient production of high-resolution simu-
lations with a reduced solver, it is potentially attractive for editing

physics simulations within the learned reduced space in real-time.
Indeed, once a coarse initial frame is transformed into ATO’s latent
space, it is easy to tweak the physical properties of the reduced
solver (e.g., viscosity) or to add external factors, such that it can
produce high-resolution simulations in a more interactive way. Ac-
cordingly, the adaptation of our ATO setup for three-dimensional
problems is a promising topic for future work.

7. Conclusion

We have presented ATO, a model that leverages interactions between
neural networks and a differentiable physics solver to autonomously
explore reduced representations for high-resolution fluid restoration
purposes. Our results show that deep neural networks can learn to
develop new dynamics for specific learning objectives by using the
simulated degrees of freedom as latent space. Our approach opens
the path to the exploration of physical latent spaces for other PDEs,
as well as different learning tasks than the restoration of details of
fluid simulations.

8. Acknowledgments

This project has been funded by the Futur & Ruptures PhD program
of the Fondation Mines-Telecom.

References
[AK17] AMOS, BRANDON and KOLTER, J. ZICO. “OptNet: Differentiable

Optimization as a Layer in Neural Networks”. Proceedings of the 34th
International Conference on Machine Learning - Volume 70. ICML’17.
Sydney, NSW, Australia: JMLR.org, 2017, 136–145 2.

[BHHB19] BAR-SINAI, YOHAI, HOYER, STEPHAN, HICKEY, JASON, and
BRENNER, MICHAEL P. “Learning data-driven discretizations for partial
differential equations”. Proceedings of the National Academy of Sciences
116.31 (2019), 15344–15349 2.

[BHKS21] BHATTACHARYA, KAUSHIK, HOSSEINI, BAMDAD, KO-
VACHKI, NIKOLA B., and STUART, ANDREW M. “Model Reduction
and Neural Networks for Parametric PDEs”. The SMAI journal of com-
putational mathematics 7 (2021), 121–157. DOI: 10.5802/smai-
jcm.74 2.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

205

https://doi.org/10.5802/smai-jcm.74
https://doi.org/10.5802/smai-jcm.74


C. Paliard et al. / Exploring Physical Latent Spaces for High-Resolution Flow Restoration

[BLDL20] BAI, KAI, LI, WEI, DESBRUN, MATHIEU, and LIU, XIAOPEI.
“Dynamic Upsampling of Smoke through Dictionary-Based Learning”.
ACM Transactions on Graphics 40.1 (Sept. 2020), 4:1–4:19. ISSN: 0730-
0301. DOI: 10.1145/3412360 2.

[BPK16] BRUNTON, STEVEN L, PROCTOR, JOSHUA L, and KUTZ, J
NATHAN. “Discovering governing equations from data by sparse identi-
fication of nonlinear dynamical systems”. Proceedings of the National
Academy of Sciences 113.15 (2016), 3932–3937 2.

[BWW22] BRANDSTETTER, JOHANNES, WORRALL, DANIEL E., and
WELLING, MAX. “Message Passing Neural PDE Solvers”. Interna-
tional Conference on Learning Representations. 2022. URL: https:
//openreview.net/forum?id=vSix3HPYKSU 2.

[Cho67] CHORIN, ALEXANDRE JOEL. “The numerical solution of the
Navier-Stokes equations for an incompressible fluid”. Bulletin of the
American Mathematical Society 73.6 (1967), 928–931 4.

[CLKB19] CHAMPION, KATHLEEN, LUSCH, BETHANY, KUTZ,
J. NATHAN, and BRUNTON, STEVEN L. “Data-Driven Discovery of
Coordinates and Governing Equations”. Proceedings of the National
Academy of Sciences 116.45 (Nov. 2019), 22445–22451. ISSN:
0027-8424, 1091-6490. DOI: 10.1073/pnas.1906995116 2.

[CM87] CRUTCHFIELD, JAMES P and MCNAMARA, BRUCE S. “Equations
of motion from a data series”. Complex systems 1.417-452 (1987), 121 2.

[CRBD18] CHEN, TIAN QI, RUBANOVA, YULIA, BETTENCOURT, JESSE,
and DUVENAUD, DAVID K. “Neural ordinary differential equations”.
Advances in neural information processing systems. 2018, 6571–6583 2.

[CT17] CHU, MENGYU and THUEREY, NILS. “Data-Driven Synthesis
of Smoke Flows with CNN-Based Feature Descriptors”. ACM Trans.
Graph. 36.4 (July 2017), 69:1–69:14. ISSN: 0730-0301. DOI: 10.1145/
3072959.3073643 2.

[dASA*18] De AVILA BELBUTE-PERES, FILIPE, SMITH, KEVIN, ALLEN,
KELSEY, et al. “End-to-End Differentiable Physics for Learning
and Control”. Advances in Neural Information Processing Sys-
tems. Ed. by BENGIO, S., WALLACH, H., LAROCHELLE, H., et
al. Vol. 31. Curran Associates, Inc., 2018. URL: https : / /
proceedings . neurips . cc / paper / 2018 / file /
842424a1d0595b76ec4fa03c46e8d755-Paper.pdf 2.

[FFT19] FUKAMI, KAI, FUKAGATA, KOJI, and TAIRA, KUNIHIKO. “Super-
resolution reconstruction of turbulent flows with machine learning”. Jour-
nal of Fluid Mechanics 870 (2019), 106–120 2–4, 11.

[FMZF21] FUKAMI, KAI, MURATA, TAKAAKI, ZHANG, KAI, and FUK-
AGATA, KOJI. “Sparse Identification of Nonlinear Dynamics with Low-
Dimensionalized Flow Representations”. Journal of Fluid Mechanics 926
(Nov. 2021). ISSN: 0022-1120, 1469-7645. DOI: 10.1017/jfm.2021.
697 2.

[HAL*20] HU, YUANMING, ANDERSON, LUKE, LI, TZU-MAO, et al.
“DiffTaichi: Differentiable Programming for Physical Simulation”. Inter-
national Conference on Learning Representations (ICLR) (2020) 2.

[HKT20] HOLL, PHILIPP, KOLTUN, VLADLEN, and THUEREY, NILS.
“Learning to Control PDEs with Differentiable Physics”. International
Conference on Learning Representations (ICLR) (2020) 2.

[IEF*19] INNES, MIKE, EDELMAN, ALAN, FISCHER, KENO, et al. “A dif-
ferentiable programming system to bridge machine learning and scientific
computing”. arXiv 1907.07587 (2019) 2.

[KAT*19] KIM, BYUNGSOO, AZEVEDO, VINICIUS C., THUEREY, NILS,
et al. “Deep Fluids: A Generative Network for Parameterized Fluid Sim-
ulations”. Computer Graphics Forum (2019). ISSN: 1467-8659. DOI:
10.1111/cgf.13619 2.

[KB14] KINGMA, DIEDERIK and BA, JIMMY. “Adam: A Method for
Stochastic Optimization”. arXiv:1412.6980 [cs] (Dec. 2014). arXiv:
1412.6980 [cs] 4.

[KGH*03] KEVREKIDIS, IOANNIS G, GEAR, C WILLIAM, HYMAN,
JAMES M, et al. “Equation-free, coarse-grained multiscale computation:
Enabling mocroscopic simulators to perform system-level analysis”. Com-
munications in Mathematical Sciences 1.4 (2003), 715–762 2.

[KSA*21] KOCHKOV, DMITRII, SMITH, JAMIE A., ALIEVA, AYYA, et
al. “Machine Learning–Accelerated Computational Fluid Dynamics”.
Proceedings of the National Academy of Sciences 118.21 (May 2021).
ISSN: 0027-8424, 1091-6490. DOI: 10.1073/pnas.2101784118 2.

[LJS*15] LADICKÝ, LUBOR, JEONG, SOHYEON, SOLENTHALER, BAR-
BARA, et al. “Data-Driven Fluid Simulations Using Regression Forests”.
ACM Trans. Graph. 34.6 (Oct. 2015), 199:1–199:9. ISSN: 0730-0301.
DOI: 10.1145/2816795.2818129 2.

[LKA*21] LI, ZONGYI, KOVACHKI, NIKOLA BORISLAVOV, AZIZZADE-
NESHELI, KAMYAR, et al. “Fourier Neural Operator for Parametric Partial
Differential Equations”. International Conference on Learning Repre-
sentations. 2021. URL: https://openreview.net/forum?id=
c8P9NQVtmnO 2.

[LKB18] LUSCH, BETHANY, KUTZ, J. NATHAN, and BRUNTON, STEVEN
L. “Deep Learning for Universal Linear Embeddings of Nonlinear Dy-
namics”. Nature Communications 9.1 (Nov. 2018), 4950. ISSN: 2041-
1723. DOI: 10.1038/s41467-018-07210-0 2.

[LLK19] LIANG, JUNBANG, LIN, MING, and KOLTUN, VLADLEN. “Dif-
ferentiable Cloth Simulation for Inverse Problems”. Advances in Neural
Information Processing Systems. 2019, 771–780 2.

[MDCL19] MOHAN, ARVIND, DANIEL, DON, CHERTKOV, MICHAEL,
and LIVESCU, DANIEL. “Compressed Convolutional LSTM: An Effi-
cient Deep Learning framework to Model High Fidelity 3D Turbulence”.
arXiv:1903.00033 (2019) 2.

[MJKW18] MORTON, JEREMY, JAMESON, ANTONY, KOCHENDERFER,
MYKEL J, and WITHERDEN, FREDDIE. “Deep dynamical modeling
and control of unsteady fluid flows”. Advances in Neural Information
Processing Systems. 2018 2.

[MLB21] MAULIK, ROMIT, LUSCH, BETHANY, and BALAPRAKASH,
PRASANNA. “Reduced-order modeling of advection-dominated systems
with recurrent neural networks and convolutional autoencoders”. Physics
of Fluids 33.3 (Mar. 2021), 037106. ISSN: 1070-6631. DOI: 10.1063/
5.0039986 2.

[OL21] OH, YOUNG JIN and LEE, IN-KWON. “Two-step Temporal Inter-
polation Network Using Forward Advection for Efficient Smoke Sim-
ulation”. Computer Graphics Forum 40.2 (May 2021), 355–365. ISSN:
0167-7055, 1467-8659. DOI: 10.1111/cgf.142638 2.

[SC19] SCHOENHOLZ, SAMUEL S and CUBUK, EKIN D. “JAX, MD: End-
to-End Differentiable, Hardware Accelerated, Molecular Dynamics in
Pure Python”. arXiv:1912.04232 (2019) 2.

[SF18] SCHENCK, CONNOR and FOX, DIETER. “SPNets: Differentiable
Fluid Dynamics for Deep Neural Networks”. Conference on Robot Learn-
ing. 2018, 317–335 2.

[SFK*22] STACHENFELD, KIM, FIELDING, DRUMMOND BUSCHMAN,
KOCHKOV, DMITRII, et al. “Learned Simulators for Turbulence”. Inter-
national Conference on Learning Representations. 2022. URL: https:
//openreview.net/forum?id=msRBojTz-Nh 2, 3, 11.

[SMF20] SIRIGNANO, JUSTIN, MACART, JONATHAN F., and FREUND,
JONATHAN B. “DPM: A Deep Learning PDE Augmentation Method
with Application to Large-Eddy Simulation”. Journal of Computational
Physics 423 (Dec. 2020), 109811. ISSN: 0021-9991. DOI: 10.1016/j.
jcp.2020.109811 2.

[Sta99] STAM, JOS. “Stable Fluids”. SIGGRAPH ’99. ACM, 1999, 121–
128. ISBN: 0-201-48560-5. DOI: 10.1145/311535.311548 4.

[TAST18] TOUSSAINT, MARC, ALLEN, KELSEY, SMITH, KEVIN, and
TENENBAUM, JOSHUA B. “Differentiable physics and stable modes for
tool-use and manipulation planning”. Robotics: Science and Systems.
2018 2.

[THM*21] THUEREY, NILS, HOLL, PHILIPP, MUELLER, MAXIMILIAN,
et al. “Physics-based Deep Learning”. arXiv:2109.05237 [physics] (Sept.
2021). arXiv: 2109.05237 [physics] 2.

[TSSP17] TOMPSON, JONATHAN, SCHLACHTER, KRISTOFER, SPRECH-
MANN, PABLO, and PERLIN, KEN. “Accelerating Eulerian Fluid Simula-
tion With Convolutional Networks”. Proceedings of Machine Learning
Research. 2017, 3424–3433 2.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

206

https://doi.org/10.1145/3412360
https://openreview.net/forum?id=vSix3HPYKSU
https://openreview.net/forum?id=vSix3HPYKSU
https://doi.org/10.1073/pnas.1906995116
https://doi.org/10.1145/3072959.3073643
https://doi.org/10.1145/3072959.3073643
https://proceedings.neurips.cc/paper/2018/file/842424a1d0595b76ec4fa03c46e8d755-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/842424a1d0595b76ec4fa03c46e8d755-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/842424a1d0595b76ec4fa03c46e8d755-Paper.pdf
https://doi.org/10.1017/jfm.2021.697
https://doi.org/10.1017/jfm.2021.697
https://doi.org/10.1111/cgf.13619
https://arxiv.org/abs/1412.6980
https://doi.org/10.1073/pnas.2101784118
https://doi.org/10.1145/2816795.2818129
https://openreview.net/forum?id=c8P9NQVtmnO
https://openreview.net/forum?id=c8P9NQVtmnO
https://doi.org/10.1038/s41467-018-07210-0
https://doi.org/10.1063/5.0039986
https://doi.org/10.1063/5.0039986
https://doi.org/10.1111/cgf.142638
https://openreview.net/forum?id=msRBojTz-Nh
https://openreview.net/forum?id=msRBojTz-Nh
https://doi.org/10.1016/j.jcp.2020.109811
https://doi.org/10.1016/j.jcp.2020.109811
https://doi.org/10.1145/311535.311548
https://arxiv.org/abs/2109.05237


C. Paliard et al. / Exploring Physical Latent Spaces for High-Resolution Flow Restoration

[UBF*20] UM, KIWON, BRAND, ROBERT, FEI, YUN (RAYMOND), et
al. “Solver-in-the-loop: learning from differentiable physics to interact
with iterative PDE-solvers”. Advances in Neural Information Processing
Systems 33 (2020). arXiv: 2007.00016 2, 3, 11.

[UHT18] UM, KIWON, HU, XIANGYU, and THUEREY, NILS. “Liquid
Splash Modeling with Neural Networks”. Computer Graphics Forum
37.8 (Dec. 2018), 171–182. ISSN: 1467-8659. DOI: 10.1111/cgf.
13522 2.

[WAG20] WANG, WUJIE, AXELROD, SIMON, and GÓMEZ-BOMBARELLI,
RAFAEL. “Differentiable Molecular Simulations for Control and Learn-
ing”. arXiv:2003.00868 (2020) 2.

[WKA*20] WIEWEL, S., KIM, B., AZEVEDO, V. C., et al. “Latent Space
Subdivision: Stable and Controllable Time Predictions for Fluid Flow”.
Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation. SCA ’20. Goslar, DEU: Eurographics Association, Oct.
2020, 1–11. DOI: 10.1111/cgf.14097 2.

[WKM*20] WANG, RUI, KASHINATH, KARTHIK, MUSTAFA, MUSTAFA,
et al. “Towards Physics-Informed Deep Learning for Turbulent Flow
Prediction”. Proceedings of the 26th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining. KDD ’20. New York,
NY, USA: Association for Computing Machinery, Aug. 2020, 1457–1466.
ISBN: 978-1-4503-7998-4. DOI: 10.1145/3394486.3403198 2.

[XFCT18] XIE, YOU, FRANZ, ERIK, CHU, MENGYU, and THUEREY,
NILS. “tempogan: A temporally coherent, volumetric gan for super-
resolution fluid flow”. ACM Transactions on Graphics (TOG) 37.4
(2018), 1–15 2.

[XYY18] XIAO, XIANGYUN, YANG, CHENG, and YANG, XUBO. “Adap-
tive Learning-Based Projection Method for Smoke Simulation”. Com-
puter Animation and Virtual Worlds 29.3-4 (May 2018), e1837. ISSN:
1546-427X. DOI: 10.1002/cav.1837 2.

[ZKB*21] ZHUANG, JIAWEI, KOCHKOV, DMITRII, BAR-SINAI, YOHAI,
et al. “Learned Discretizations for Passive Scalar Advection in a
Two-Dimensional Turbulent Flow”. Physical Review Fluids 6.6 (June
2021), 064605. DOI: 10.1103/PhysRevFluids.6.064605 2.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

207

https://arxiv.org/abs/2007.00016
https://doi.org/10.1111/cgf.13522
https://doi.org/10.1111/cgf.13522
https://doi.org/10.1111/cgf.14097
https://doi.org/10.1145/3394486.3403198
https://doi.org/10.1002/cav.1837
https://doi.org/10.1103/PhysRevFluids.6.064605

