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Abstract 
Spatially varying sensing (foveation) has been used in many different areas of Computer Vision, such as image compression and 
video teleconferencing and in perceptually driven Level of Detail (LOD) representations in graphics. In this work, we show that 
foveation is advantageous for interactive mesh and texture transmission in online 3D applications. Unlike traditional mesh 
representations where all 3D vertices need to be transmitted, we only need to transmit a collection of points-of-interest (foveae) and 
information on only one (rather than three) axis. Thereby, we can achieve a threefold reduction in the amount of data that needs to 
be transmitted to represent a new 3D model. Our research differs from level of detail (LOD) based approaches using perceptually 
driven simplification in that (i) the mesh and texture resolutions vary smoothly and continuously in our approach compared to 
distinct levels of details in adjoining regions in other foveated or multiresolution LOD based methods; and (ii) the approach works 
for an integrated foveated texture and mesh representation. The current implementation extends our past research in image and 
video compression [1] and is restricted to regular grid mesh representation produced by 3D scanners.  
_________________________________________________________________________________________________________ 
 
1. Introduction 
3D visualization is an expanding area of multimedia research 
covering graphics, imaging and network transmission. With 
the help of advanced scanning technology, a large volume of 
range data can be generated for model construction. The trend 
in multimedia applications is to use more polygons in order to 
produce more realistic 3D scenes. However, a large number of 
polygons impose another challenge to researchers in terms of 
storage, processing, rendering and transmission.  

   
Figure 1: Range data captured by the ZoomageTM 3D scanner: 
(left) Detailed model with 7200 polygons, (middle,left) mesh  
and texture mapped object using 180 polygons (right two). 
       For most applications, a dense mesh is not necessary; e.g., 
in Fig.1 when an object is far away a simplified model with 
180 polygons (instead of the dense model) is sufficient for 
rendering without loosing significant details. Many 
simplification approaches have been introduced in the last 
decade to reduce unnecessary details [13]. In medical or 
inspection application, however, it is important to be able to 
look into the highest detail in scanned data to detect defects or 
diagnose abnormalities; we address this problem through 
interactive local updates. Our work is closely related to 
perceptually driven simplification, progressive meshes, 
region-of-interest (ROI) processing, selective transmission and  
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user-guided simplification [2,8,11,12,17,20]. Our main 

contribution is the introduction of a compact parametric 
method allowing the user to control interactively the variable-
resolution (foveated) representation of a photo-realistic 
texture-mapped mesh. Synthetic texture or color is commonly 
used in algorithms proposed in other research.  Semiautomatic 
simplifications are discussed in [9,10,14], where simplification 
is carefully guided by the user assuming no time constraint 
and not view-dependent. Our simplification process is defined 
in a mathematical model where time constraint can be 
specified and that is view-dependent. The user initiates 
updates by a mouse click, and the appropriate LOD is 
transmitted. In this paper, we demonstrate an approach based 
on foveation [1,16,18] that is user driven with low 
computation and bandwidth requirement specifically for 
online visualization applications. In these applications, the 
LOD transmitted is dictated by the bandwidth available and 
the maximum wait time specified by the viewer. 
         We use foveation in interactive online 3D visualization 
as follows: Initially a default low-resolution mesh is 
transmitted from a server to a client. The client maintains a 
dense mesh on which depth data is interpolated from the initial 
mesh transmitted. An observer at a client workstation can 
interactively improve the 3D object displayed by selecting one 
or more foveae; when a fovea is selected by a mouse click, a 
foveated mesh with corresponding texture is created at the 
server and transmitted to the client where the new data is 
integrated into the existing model. In addition to updates based 
on user ROI, progressive transmission based on viewpoint 
during idle periods can also be added to optimize bandwidth 
utilization. The mesh representation is similar to Normal 
Meshes [7] and swing wrapper in JAVA. 

The advantage of foveation in interactive online 3D 
visualization include: (i) The ability to provide reasonable 
quality over a network, such as the Internet, with low and 
dynamically varying bandwidth; (ii) Fast update of a 3D 
model based on viewer interaction; (iii) Compact 
representation of the 3D data transmitted reducing bandwidth 
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utilization; (iv) The ability to adjust the incremental model 
created and transmitted by a server based on two parameters, 
thereby ensuring that the time to update a 3D object being 
displayed does not exceed an acceptable limit. The focus of 
this paper is on generating an integrated foveated mesh and 
texture. In past research [1,2,4,12,15] viewing image and 
video with foveation, foveated meshes and foveated texture 
mapping was discussed. However, joint texture-mesh 
foveation and extending the original model in [1] to 
incorporate cylindrical/spherical foveation was not considered. 
Note that the word fovea is “loosely” used in this work as 
exact modeling of the human visual system is not used; we use 
foveation to mean “variable resolution” or different LODs in a 
single object. The main application of our work is in 
interactive viewing of 3D medical images, where the highest 
detailed scan must be available for a doctor to view if (s)he 
wishes. Also, the work is meaningful when the mesh has 
resolution comparable to the texture image; if the storage 
requirement for a mesh were much smaller than the 
corresponding texture then it will obviously be simpler to 
transmit the entire mesh first, and then update the texture 
progressively. 

The remainder of this report is organized as follows: 
Foveation transform in 360° scanned mesh models is 
described in Section 2 along with some experimental results. 
Section 3 describes the data reduction resulting from 
transmitting foveated meshes. Extending foveation from a 
360° cylindrical to a spherical model is discussed in Section 4. 
Future work and conclusion are outlined in Section 5. 
2. Foveated transform for mesh 
To minimize bandwidth utilization, a coarse uniform mesh 
model and a low-resolution texture map is initially transmitted 
to the client (Figure 2), while the server stores the original 
detailed geometric model and texture. When a user (client) 
clicks on a fovea, the fovea coordinates are transmitted back to 
the server. Based on the fovea and a look-up table, The server 
generates and compresses the foveated mesh and texture. The 
foveated mesh and texture image are then clipped using the 
following two criteria: 
(i) Vertices/texels closer to existing foveae than the new fovea 
are discarded. 
(ii) New data are transmitted only if they provide higher 
resolution of mesh/texture than the coarse model.  
 
Further compression using standard compression algorithms is 
applied to the foveated data before sending back to the client. 
The client reconstructs the refined mesh and texture by 
combining the coarse model and the high-resolution data 
(around the fovea) received. 

 
Figure 2: Front view of coarse & detailed models of 
Nutcracker toy (Mesh: coarse 20*10, detailed 360*100, and 
texture: coarse 256*64, detailed 1024*256). 

Implementation details 
The foveation transform is defined by two parameters, the 
scaling factor (s) and distortion parameter (α), that control the 
distortion at the boundaries of a region of interest in an image 
or mesh with respect to the fovea. A high α value gives a 
sharply defined fovea with a poorly defined periphery; a small 
α value makes the fovea and periphery closer in resolution. 
Based on this transform, a pixel with polar coordinate  (r,θ) is 
mapped to (v, θ)  and vice versa as:   

srv *)1*ln( += α        (1)    
α

1)/exp( −= svr     (2) 

The value s is a scaling factor used to control the overall 
compression ratio. 
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The data resulting from the transform above is not rectangular; 
to simplify several issues we use a rectangular transform, the 
“Cartesian variable resolution” (CVR) transform [1]. For a 
given image with the fovea located at ),( 00 yx , for every 
pixel ),( yx  in the original image, one can define the distance 
in x and y directions as dx and dy, respectively, using the 
equations: 0xxdx −=   (4)     0yyd y −=     (5) 
Then, ),( yx is mapped to ),( 11 yx where:  

xx Sdxx *)1*ln(01 ++= α (6)
yy Sdyy *)1*ln(01 ++= α  (7) 

In other words, here a pixel is moved from dx and dy to dvx and 
dvy units away from the fovea in the x and y directions: 

xxvx Sdd *)1*ln( += α  (8)  yyvy Sdd *)1*ln( += α   (9) 
 
We implement the foveated compression based on a 

lookup table using (6) and (7). Note that for manifolds, 
objects’ texture and mesh are cyclic without a vertical 
boundary. Therefore, fovea in x is computed as if it is always 
located at the center. In other words, (3) and (6) are 
implemented as (10) and (11) (referred to as Cylindrical 
Foveation). 
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Width is the horizontal resolution. The texture and mesh 
generated by (10) and (11) are clipped using (12) to reduce 
unnecessary transmission. 

yiixii RyyRxx ≤−≤− −− || and || 11        (12) 

xR , yR  represent resolutions of initial coarse model in x and 

y direction respectively.  
Note that the difference between texture and mesh cylindrical 
foveation include: 

(i) The computation of Z for each mesh vertex. 
(ii) Usually, much smaller scaling factors (sx and sy) 



                                                                           I. Cheng et al. / Parametric Foveation                                                                            

 
 © The Eurographics Association  2003 
 

 

for mesh compared to texture.  
The (X,Y) points computed using the foveated transform may 
not correspond to any real vertex in the detailed model. Thus 
depth of vertices (Z) in the refined mesh are  computed using 
bi-linear interpolation of the depths of the 4 nearest neighbor 
vertices from the detailed model.  

             

 
      (a)                                      (b)                       (c)  

 
Figure 3: Refined texture with a fovea on the right eye (top 
row) and a fovea on the left arm (middle row) (a) Original 
foveated texture (b) Clipped foveated texture (c) 
decompression of (b). Bottom: Integrated texture. 
 
Integration of multiple foveae 
Multiple foveae integration is based on accumulating details in 
a series of transmissions. For each texel/vertex in the map, the 
ID and distance of the fovea closest to this texel/vertex are 
stored. When a new fovea is chosen, the distance between this 
new fovea and each texel/vertex in the image is calculated and 
compared to the stored distance, if the new distance is shorter, 
the fovea ID and distance will be updated as shown below: 

|)||(||),( iiiyx yyxxMiniID −+−=  (13) 

|)||(|),( iiiyx yyxxMinDis −+−=   (14) 

where ( ix , iy ) is the ith  fovea.  
 
The integration of multiple foveae is shown in Figures 3 and 4, 
where a second fovea is added to the left arm of the toy.  

 
Figure 4: Refined model with a fovea on the right eye and a 
fovea on the left arm, scale=95%, alpha=0.5. Left: texture 
mapped front view; Middle (right): Mesh  front (side) view 
with fovea on right eye (left arm).  

3. Transmission of foveated wireframes 
Through a user interface, the viewer controls the distortion 
parameter (α), which specifies the relative importance of a 
fovea compared to the periphery.  The scaling factor (s) is 
adjusted to regulate the amount of data transmitted. The 
assumption is that in online visualization users want updates 
within a maximum time delay limit T (specified  or default). 
Depending on T and the currently monitored bandwidth (B) 
[21] the compression ratio and distortion factor are adjusted to 
update the model in a desirable manner.  

Compression of 3D meshes has been discussed 
extensively in the literature [6]. The advantage of our 
approach over those proposed in previous research is that 
complete (X,Y,Z) data representing all the vertices does not 
need to be transmitted to recreate a mesh at the viewer (client) 
site during online visualization. We only need to transmit the 
location and parameters of each fovea specified by a user, and 
depth (Z) information at estimated vertex locations; since 
(X,Y) data can be computed at a client from the location and 
parameters of a fovea. Thus, the amount of mesh related data 
that needs to be transmitted can be reduced by a factor of 3, 
compared to a LOD based variable resolution mesh with 
similar details.  

One way of determining the scaling factors for 
creating the foveated representations is as follows: 
Let S denote the scaling factor (possibly two dimensional) for 
texture and S/N denote the mesh scaling factor, assuming the 
maximum texture resolution is N times the maximum mesh 
resolution. Suppose the foveated texture is compressed further 
using JPEG, and let Q denote the quality parameter in JPEG.  
Given a fixed distortion factor, let M(S/N) denote the 
estimated compressed foveated mesh size with scaling factor 
S/N, and TX(S, Q) denote the estimated compressed foveated 
texture size given scaling factor S (possibly a 2D vector) and 
JPEG quality parameter Q. The bandwidth constraint can be 
expressed as:    

M(S/N) + TX(S,Q)  ≤   B        (15) 
In our implementation, we fix M and Q and choose the 
maximum value of S that satisfies (15). The problem of 
optimally choosing S, N, and Q to maximize the perceptual 
quality of the updated view is left to future research. Also, 
incorporating JPEG2000 features [19] will be considered in 
the future. 
 
4. Spherical foveated mesh 
The discussion so far concentrated on foveated transmission of  
cylindrical texture and corresponding meshes. For arbitrary 3D 
objects, say the Nutcracker toy with bottom and top added, the 
transformation in Section 2 is insufficient to model foveation; 
e.g., if a viewer clicks on the top of the head all sides of the 
face should get the same amount of refinement. To extend the 
model to handle arbitrary convex 3D surfaces, we introduce 
two angles θV  & θH to represent the mesh vertices in the 
vertical and horizontal directions respectively. One way of 
representing a default low resolution mesh for a 3D object is 
as follows: (i) A center point within the object is chosen as the 
origin; (ii) θV is varied so that we have an even number of 
equally spaced angles (Figure 5, left), with the top and bottom 
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directions (0 and Π angles) for θV included; (iii) θH is varied so 
that we again have an even number of equal angles in a 
horizontal plane (Figure 5, right), with the purpose of 
connecting pairs of θV on opposite sides except for the top and 
bottom directions. For example, the points A and B on Figure 
5 (left) along a vertical plane correspond to opposite directions 
on the horizontal plane Figure 5 (right). The top and bottom 
directions are used to create two vertices to close the top and 
bottom of the mesh . Each direction pair (θV, θH) is extended 
away from the origin until it intersects the 3D object surface, 
thereby defining a 3D vertex. Note that the spherical 
representation makes the update more complicated if a fovea 
is selected near the poles; an issue we will discuss in detail in 
future research. 

 
Figure 5: Creating default mesh for spherical foveation. 
 

Figure 6 shows two default meshes constructed using 
the approaches described above. After constructing the default 
object we need to define a strategy for incrementally updating 
the model through foveation. Foveated mesh update can be 
made as follows: 
(i) Let (FθV, FθH) represent the spherical direction 

corresponding to a fovea clicked on an object by a 
viewer. 

(ii) Create a set of directions of the form: 
{(FθV, FθH) , (FθV +/- f(i, s1, α1), FθH+/- f(j, s2, α2))| 
i=1 … m, j = 1, …n}, where f() is similar to the 
function in (2) with f(m,s1, α1) ≤  Π radians & f(n,s2, 
α2) ≤ Π radians. 

(iii) Create an incremental set of foveated vertices by 
computing (X,Y,Z) on object surface intersecting 
rays away from origin (object center) in the directions 
computed in (ii). 

(iv) For transmitting a set of incremental vertices, only 
the Z components in (iii) along with s1, s2, α1, α2, m, 
n, and  (FθV, FθH) need to be sent to the client site. 

 
Figure 6: Default meshes for spherical foveation. Left half: 
(θV, θH) = (L*Π/8,K*Π/6); right half: (θV, θH) = 
(L*Π/12,K*Π/8); L, K = 0, 1, 2, … . 
 
5. Conclusion and future work 
In this paper we discussed and demonstrated some methods 
for generating foveated mesh and texture based on interactive 
specifications of points of interest by a user, through online 
3D browsing software. The main advantages of our approach 
is a fast and simple parametric representation and joint 
texture-mesh compression based on user-defined ROI. 

In the near future we plan to demonstrate the software for 
online viewing of 3D dermatological scans. A high-resolution 
3D skin scanner will be used in this application. 

Further investigation can be performed in several 
areas, including: (i) Qualitative assessment [3, 12] of updated 
models for varying distortion factors; (ii) A strategy for model 
update during idle times, when the currently available 
bandwidth is not being utilized to service user requests; (iii) 
Determining the optimal relative weighting of mesh vs. 
texture; and (iv) Relating the system parameters to 
simplification envelopes [5] to measure quality of the viewed 
model. 
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