
EUROGRAPHICS 2003 / J. Flores and P.Cano Interactive Demos & Posters

© The Eurographics Association 2003

Parametric Foveation for Progressive Texture and Model Transmission*

 Irene Cheng, Anup Basu and Yixin Pan

Department of CS, University of Alberta, Edmonton, Canada T6G 2E8

Abstract
Spatially varying sensing (foveation) has been used in many different areas of Computer Vision, such as image compression and
video teleconferencing and in perceptually driven Level of Detail (LOD) representations in graphics. In this work, we show that
foveation is advantageous for interactive mesh and texture transmission in online 3D applications. Unlike traditional mesh
representations where all 3D vertices need to be transmitted, we only need to transmit a collection of points-of-interest (foveae) and
information on only one (rather than three) axis. Thereby, we can achieve a threefold reduction in the amount of data that needs to
be transmitted to represent a new 3D model. Our research differs from level of detail (LOD) based approaches using perceptually
driven simplification in that (i) the mesh and texture resolutions vary smoothly and continuously in our approach compared to
distinct levels of details in adjoining regions in other foveated or multiresolution LOD based methods; and (ii) the approach works
for an integrated foveated texture and mesh representation. The current implementation extends our past research in image and
video compression [1] and is restricted to regular grid mesh representation produced by 3D scanners.

1. Introduction
3D visualization is an expanding area of multimedia research
covering graphics, imaging and network transmission. With
the help of advanced scanning technology, a large volume of
range data can be generated for model construction. The trend
in multimedia applications is to use more polygons in order to
produce more realistic 3D scenes. However, a large number of
polygons impose another challenge to researchers in terms of
storage, processing, rendering and transmission.

Figure 1: Range data captured by the ZoomageTM 3D scanner:
(left) Detailed model with 7200 polygons, (middle,left) mesh
and texture mapped object using 180 polygons (right two).
 For most applications, a dense mesh is not necessary; e.g.,
in Fig.1 when an object is far away a simplified model with
180 polygons (instead of the dense model) is sufficient for
rendering without loosing significant details. Many
simplification approaches have been introduced in the last
decade to reduce unnecessary details [13]. In medical or
inspection application, however, it is important to be able to
look into the highest detail in scanned data to detect defects or
diagnose abnormalities; we address this problem through
interactive local updates. Our work is closely related to
perceptually driven simplification, progressive meshes,
region-of-interest (ROI) processing, selective transmission and
* The support of an Alberta Science & Research Authority (ASRA), IBM and
TelePhotogenics partnership project and a Natural Science and Engineering
Research Council (NSERC) Ph.D. scholarship in making this work possible is
gratefully acknowledged.
user-guided simplification [2,8,11,12,17,20]. Our main

contribution is the introduction of a compact parametric
method allowing the user to control interactively the variable-
resolution (foveated) representation of a photo-realistic
texture-mapped mesh. Synthetic texture or color is commonly
used in algorithms proposed in other research. Semiautomatic
simplifications are discussed in [9,10,14], where simplification
is carefully guided by the user assuming no time constraint
and not view-dependent. Our simplification process is defined
in a mathematical model where time constraint can be
specified and that is view-dependent. The user initiates
updates by a mouse click, and the appropriate LOD is
transmitted. In this paper, we demonstrate an approach based
on foveation [1,16,18] that is user driven with low
computation and bandwidth requirement specifically for
online visualization applications. In these applications, the
LOD transmitted is dictated by the bandwidth available and
the maximum wait time specified by the viewer.
 We use foveation in interactive online 3D visualization
as follows: Initially a default low-resolution mesh is
transmitted from a server to a client. The client maintains a
dense mesh on which depth data is interpolated from the initial
mesh transmitted. An observer at a client workstation can
interactively improve the 3D object displayed by selecting one
or more foveae; when a fovea is selected by a mouse click, a
foveated mesh with corresponding texture is created at the
server and transmitted to the client where the new data is
integrated into the existing model. In addition to updates based
on user ROI, progressive transmission based on viewpoint
during idle periods can also be added to optimize bandwidth
utilization. The mesh representation is similar to Normal
Meshes [7] and swing wrapper in JAVA.

The advantage of foveation in interactive online 3D
visualization include: (i) The ability to provide reasonable
quality over a network, such as the Internet, with low and
dynamically varying bandwidth; (ii) Fast update of a 3D
model based on viewer interaction; (iii) Compact
representation of the 3D data transmitted reducing bandwidth

http://www.eg.org
http://diglib.eg.org

 I. Cheng et al. / Parametric Foveation

 © The Eurographics Association 2003

utilization; (iv) The ability to adjust the incremental model
created and transmitted by a server based on two parameters,
thereby ensuring that the time to update a 3D object being
displayed does not exceed an acceptable limit. The focus of
this paper is on generating an integrated foveated mesh and
texture. In past research [1,2,4,12,15] viewing image and
video with foveation, foveated meshes and foveated texture
mapping was discussed. However, joint texture-mesh
foveation and extending the original model in [1] to
incorporate cylindrical/spherical foveation was not considered.
Note that the word fovea is “loosely” used in this work as
exact modeling of the human visual system is not used; we use
foveation to mean “variable resolution” or different LODs in a
single object. The main application of our work is in
interactive viewing of 3D medical images, where the highest
detailed scan must be available for a doctor to view if (s)he
wishes. Also, the work is meaningful when the mesh has
resolution comparable to the texture image; if the storage
requirement for a mesh were much smaller than the
corresponding texture then it will obviously be simpler to
transmit the entire mesh first, and then update the texture
progressively.

The remainder of this report is organized as follows:
Foveation transform in 360° scanned mesh models is
described in Section 2 along with some experimental results.
Section 3 describes the data reduction resulting from
transmitting foveated meshes. Extending foveation from a
360° cylindrical to a spherical model is discussed in Section 4.
Future work and conclusion are outlined in Section 5.
2. Foveated transform for mesh
To minimize bandwidth utilization, a coarse uniform mesh
model and a low-resolution texture map is initially transmitted
to the client (Figure 2), while the server stores the original
detailed geometric model and texture. When a user (client)
clicks on a fovea, the fovea coordinates are transmitted back to
the server. Based on the fovea and a look-up table, The server
generates and compresses the foveated mesh and texture. The
foveated mesh and texture image are then clipped using the
following two criteria:
(i) Vertices/texels closer to existing foveae than the new fovea
are discarded.
(ii) New data are transmitted only if they provide higher
resolution of mesh/texture than the coarse model.

Further compression using standard compression algorithms is
applied to the foveated data before sending back to the client.
The client reconstructs the refined mesh and texture by
combining the coarse model and the high-resolution data
(around the fovea) received.

Figure 2: Front view of coarse & detailed models of
Nutcracker toy (Mesh: coarse 20*10, detailed 360*100, and
texture: coarse 256*64, detailed 1024*256).

Implementation details
The foveation transform is defined by two parameters, the
scaling factor (s) and distortion parameter (α), that control the
distortion at the boundaries of a region of interest in an image
or mesh with respect to the fovea. A high α value gives a
sharply defined fovea with a poorly defined periphery; a small
α value makes the fovea and periphery closer in resolution.
Based on this transform, a pixel with polar coordinate (r,θ) is
mapped to (v, θ) and vice versa as:

srv *)1*ln(+= α (1)
α

1)/exp(−= svr (2)

The value s is a scaling factor used to control the overall
compression ratio.

)1*ln(max

max

+
=

αr
v

s (3)

The data resulting from the transform above is not rectangular;
to simplify several issues we use a rectangular transform, the
“Cartesian variable resolution” (CVR) transform [1]. For a
given image with the fovea located at),(00 yx , for every
pixel),(yx in the original image, one can define the distance
in x and y directions as dx and dy, respectively, using the
equations: 0xxdx −= (4) 0yyd y −= (5)
Then,),(yx is mapped to),(11 yx where:

xx Sdxx *)1*ln(01 ++= α (6)
yy Sdyy *)1*ln(01 ++= α (7)

In other words, here a pixel is moved from dx and dy to dvx and
dvy units away from the fovea in the x and y directions:

xxvx Sdd *)1*ln(+= α (8) yyvy Sdd *)1*ln(+= α (9)

We implement the foveated compression based on a

lookup table using (6) and (7). Note that for manifolds,
objects’ texture and mesh are cyclic without a vertical
boundary. Therefore, fovea in x is computed as if it is always
located at the center. In other words, (3) and (6) are
implemented as (10) and (11) (referred to as Cylindrical
Foveation).

)1*ln(
2/

max +
=

αr
widthSx (10)

widthSdxx xx mod]*)1*ln([01 ++= α (11)

Width is the horizontal resolution. The texture and mesh
generated by (10) and (11) are clipped using (12) to reduce
unnecessary transmission.

yiixii RyyRxx ≤−≤− −− || and || 11 (12)

xR , yR represent resolutions of initial coarse model in x and

y direction respectively.
Note that the difference between texture and mesh cylindrical
foveation include:

(i) The computation of Z for each mesh vertex.
(ii) Usually, much smaller scaling factors (sx and sy)

 I. Cheng et al. / Parametric Foveation

 © The Eurographics Association 2003

for mesh compared to texture.
The (X,Y) points computed using the foveated transform may
not correspond to any real vertex in the detailed model. Thus
depth of vertices (Z) in the refined mesh are computed using
bi-linear interpolation of the depths of the 4 nearest neighbor
vertices from the detailed model.

 (a) (b) (c)

Figure 3: Refined texture with a fovea on the right eye (top
row) and a fovea on the left arm (middle row) (a) Original
foveated texture (b) Clipped foveated texture (c)
decompression of (b). Bottom: Integrated texture.

Integration of multiple foveae
Multiple foveae integration is based on accumulating details in
a series of transmissions. For each texel/vertex in the map, the
ID and distance of the fovea closest to this texel/vertex are
stored. When a new fovea is chosen, the distance between this
new fovea and each texel/vertex in the image is calculated and
compared to the stored distance, if the new distance is shorter,
the fovea ID and distance will be updated as shown below:

|)||(||),(iiiyx yyxxMiniID −+−= (13)

|)||(|),(iiiyx yyxxMinDis −+−= (14)

where (ix , iy) is the ith fovea.

The integration of multiple foveae is shown in Figures 3 and 4,
where a second fovea is added to the left arm of the toy.

Figure 4: Refined model with a fovea on the right eye and a
fovea on the left arm, scale=95%, alpha=0.5. Left: texture
mapped front view; Middle (right): Mesh front (side) view
with fovea on right eye (left arm).

3. Transmission of foveated wireframes
Through a user interface, the viewer controls the distortion
parameter (α), which specifies the relative importance of a
fovea compared to the periphery. The scaling factor (s) is
adjusted to regulate the amount of data transmitted. The
assumption is that in online visualization users want updates
within a maximum time delay limit T (specified or default).
Depending on T and the currently monitored bandwidth (B)
[21] the compression ratio and distortion factor are adjusted to
update the model in a desirable manner.

Compression of 3D meshes has been discussed
extensively in the literature [6]. The advantage of our
approach over those proposed in previous research is that
complete (X,Y,Z) data representing all the vertices does not
need to be transmitted to recreate a mesh at the viewer (client)
site during online visualization. We only need to transmit the
location and parameters of each fovea specified by a user, and
depth (Z) information at estimated vertex locations; since
(X,Y) data can be computed at a client from the location and
parameters of a fovea. Thus, the amount of mesh related data
that needs to be transmitted can be reduced by a factor of 3,
compared to a LOD based variable resolution mesh with
similar details.

One way of determining the scaling factors for
creating the foveated representations is as follows:
Let S denote the scaling factor (possibly two dimensional) for
texture and S/N denote the mesh scaling factor, assuming the
maximum texture resolution is N times the maximum mesh
resolution. Suppose the foveated texture is compressed further
using JPEG, and let Q denote the quality parameter in JPEG.
Given a fixed distortion factor, let M(S/N) denote the
estimated compressed foveated mesh size with scaling factor
S/N, and TX(S, Q) denote the estimated compressed foveated
texture size given scaling factor S (possibly a 2D vector) and
JPEG quality parameter Q. The bandwidth constraint can be
expressed as:

M(S/N) + TX(S,Q) ≤ B (15)
In our implementation, we fix M and Q and choose the
maximum value of S that satisfies (15). The problem of
optimally choosing S, N, and Q to maximize the perceptual
quality of the updated view is left to future research. Also,
incorporating JPEG2000 features [19] will be considered in
the future.

4. Spherical foveated mesh
The discussion so far concentrated on foveated transmission of
cylindrical texture and corresponding meshes. For arbitrary 3D
objects, say the Nutcracker toy with bottom and top added, the
transformation in Section 2 is insufficient to model foveation;
e.g., if a viewer clicks on the top of the head all sides of the
face should get the same amount of refinement. To extend the
model to handle arbitrary convex 3D surfaces, we introduce
two angles θV & θH to represent the mesh vertices in the
vertical and horizontal directions respectively. One way of
representing a default low resolution mesh for a 3D object is
as follows: (i) A center point within the object is chosen as the
origin; (ii) θV is varied so that we have an even number of
equally spaced angles (Figure 5, left), with the top and bottom

 I. Cheng et al. / Parametric Foveation

 © The Eurographics Association 2003

directions (0 and Π angles) for θV included; (iii) θH is varied so
that we again have an even number of equal angles in a
horizontal plane (Figure 5, right), with the purpose of
connecting pairs of θV on opposite sides except for the top and
bottom directions. For example, the points A and B on Figure
5 (left) along a vertical plane correspond to opposite directions
on the horizontal plane Figure 5 (right). The top and bottom
directions are used to create two vertices to close the top and
bottom of the mesh . Each direction pair (θV, θH) is extended
away from the origin until it intersects the 3D object surface,
thereby defining a 3D vertex. Note that the spherical
representation makes the update more complicated if a fovea
is selected near the poles; an issue we will discuss in detail in
future research.

Figure 5: Creating default mesh for spherical foveation.

Figure 6 shows two default meshes constructed using
the approaches described above. After constructing the default
object we need to define a strategy for incrementally updating
the model through foveation. Foveated mesh update can be
made as follows:
(i) Let (FθV, FθH) represent the spherical direction

corresponding to a fovea clicked on an object by a
viewer.

(ii) Create a set of directions of the form:
{(FθV, FθH) , (FθV +/- f(i, s1, α1), FθH+/- f(j, s2, α2))|
i=1 … m, j = 1, …n}, where f() is similar to the
function in (2) with f(m,s1, α1) ≤ Π radians & f(n,s2,
α2) ≤ Π radians.

(iii) Create an incremental set of foveated vertices by
computing (X,Y,Z) on object surface intersecting
rays away from origin (object center) in the directions
computed in (ii).

(iv) For transmitting a set of incremental vertices, only
the Z components in (iii) along with s1, s2, α1, α2, m,
n, and (FθV, FθH) need to be sent to the client site.

Figure 6: Default meshes for spherical foveation. Left half:
(θV, θH) = (L*Π/8,K*Π/6); right half: (θV, θH) =
(L*Π/12,K*Π/8); L, K = 0, 1, 2, … .

5. Conclusion and future work
In this paper we discussed and demonstrated some methods
for generating foveated mesh and texture based on interactive
specifications of points of interest by a user, through online
3D browsing software. The main advantages of our approach
is a fast and simple parametric representation and joint
texture-mesh compression based on user-defined ROI.

In the near future we plan to demonstrate the software for
online viewing of 3D dermatological scans. A high-resolution
3D skin scanner will be used in this application.

Further investigation can be performed in several
areas, including: (i) Qualitative assessment [3, 12] of updated
models for varying distortion factors; (ii) A strategy for model
update during idle times, when the currently available
bandwidth is not being utilized to service user requests; (iii)
Determining the optimal relative weighting of mesh vs.
texture; and (iv) Relating the system parameters to
simplification envelopes [5] to measure quality of the viewed
model.

6. References
[1] A. Basu, A. Sullivan, and K.J. Wiebe, Variable resolution
teleconferencing. IEEE SMC Conference, 170-175, 1993 [Extensions
in ICPR 1994, and IEEE Transactions on SMC, 1998.]
[2] F.W. Blanke et al. Foveated Rendering of Large Datastreams
using a Multi-display, Multi-resolution Parallel Image Compositing
System, Tech Report, UT at Austin, 2002.
[3] M. R. Bolin and G. W. Meyer. A Perceptually Based Adaptive
Sampling Algorithm,” SIGGRAPH, 299-309, 1998.
[4] I. Cheng and A. Basu. Efficient visualization of super high
resolution 3D images. IEEE 3D PVT Conference Proceedings, Italy,
2002.
[5] J. Cohen, A. Varshney, et al. “Simplification envelopes,” ACM
SIGGRAPH, 119–128, 1996.
[6] P. Gandoin and O. Devillers. Progressive lossless compression of
arbitrary simplicial complexes. SIGGRAPH 2002, 372-379.
[7] I. Guskov et al., Normal Meshes, SIGGRAPH 2000.
[8] Hoppe, H., View-Dependent Refinement of Progressive Meshes.
SIGGRAPH , 1997.
[9] Y. Kho and Michael Garland, User-guided simplification, Proc.
ACM I3D, 2003.
[10] G.Li and B. Watson (2001). Semiautomatic simplification
Proceedings ACM I3D, 2001.
[11] D. Leubke and C. Erikson, View-Dependent Simplification Of
Arbitrary Polygonal Environments, SIGGRAPH'97.
[12] D. Luebke and B. Hallen. Perceptually Driven Simplification for
Interactive Rendering. In Rendering Techniques, Springer-Verlag,
2001.
[13] D. Luebke et al., "Level of Detail for 3D Graphics", Morgan
Kaufmann Publishers, 1st ed., 2002.
[14] E. Pojar and D. Schmalstieg, User-Controlled Creation of
Multiresolution Meshes, Proc. ACM I3D, 2003.
[15] T.H. Reeves and J.A. Robinson. Adaptive Foveation of MPEG
video. ACM Multimedia Conference, 231-241, 1996.
[16] G.Sandini and M. Tistarelli. Vision and space-variant sensing.
In ECCV-94 Workshop, 398-425, 1994.
[17] D. Schmalstieg and M. Gervautz. Demand-Driven Geometry
Transmission for Distributed Virtual Environments. In Proceedings
of Eurographics , 421-432, 1996.
[18] E.L. Schwartz. Computational anatomy and functional
architecture of striate cortex. Vision Research, 20:645-669, 1980.
[19] D. S. Taubman and M. W. Marcellin. JPEG2000: Image
compression fundamentals, standards, and practice. Kluwer, 2001.
[20] S. P. To, W. H. Lau and M. Green, A method for progressive
and selective transmission of multi-resolution models VRST'99.
[21] Y. Yu, I. Cheng and A. Basu. Optimal adaptive bandwidth
monitoring. IEEE Transactions on Multimedia, Sep., 2003.

	p51: 51
	p53: 53
	p52: 52
	p54: 54

