
1

A Parallel Implementation of Bidirectional Ray Tracing

on Transputer-based System

Toshiyuki Kawai, Masahiko Kami

Osaka Electro-Communication U niv.

Japan *

Tadamasa Teranishi

Plus One Inc.

Japan t

Jun-ichi Abeki, Hironobu Ohnishi

Mitsubishi Precision Co.,Ltd.

Japan i

Abstract

This paper describes a parallel processing scheme for
bidirectional ray tracing which improves the reality of
the image drastically. It is organized from two stages,
i.e. light ray tracing and viewing ray tracing. In light
ray tracing, pairs of a light source and an element of
objects are distributed to each processor dynamically.
In viewing ray tracing, we use a screen subdivision al­
gorithm. Our system consists of 86 transputers. All
of the scene data are placed on shared memories, and
only the required parts of them can be transferred to
the cache memory on each processor by means of DMA
on-the-Hy. We also show some experimental results.

Introduction

Ray tracing[21] is a simple technique which can generate
realistic 3D image. Various extensions of this method
improving the reality also have been proposed[l, 5, 17,
19, 18, 20, 11]. However, these methods require the
great amount of computation. One of the successful
solution to reduce the computing time is a parallel pre­
cessing. Some parallel architectures and machines have
been proposed[2, 3, 4, 6, 7, 9, 10, 13, 14, 15, 16, 22], but

*l8--S Hatsu,cho, Neyagawa, Osaka. 572 Japan
kawai@kwlab.osalcac.ac.jp

tS·l0-603 Toyotsu-cho, Suita, Osaka. 564 Japan
~345 Uemachiya, Ka.makura, Kanagawa 247 Japan

none of them takes account of those extensions.
We also have developed a multi-transputer CG sys­

tem called MAGG (Mitsubishi Advanced Graphic Gen­
erator) and a parallel ray tracing renderer for this
system[12]. We have devised fast communication be­
tween the large shared memory and the local memory
on each processor by means of DMA transfer instead of
serial link transfer. Our renderer is based on a screen
subdivision algorithm and a simple dynamic load bal­
ancing method.

This time, we have implemented the bidirectional ray
tracing renderer on this system. This renderer has two
major paths. One is light ray tracing, another is viewing
ray tracing. We use these terms rather than backward
and forward ray tracing.

In this paper, at first we show the system overview
and the parallel processing scheme, and then show the
results of the performance evaluation.

2 Hardware Configuration

The CG system MAGG consists of an I/O Pre­
cessing Unit(IOP), five cards of Graphic Processing
Unit(GPU), two cards ofHDTV Frame Buffer(FB) and
Video Input/Output Units. These are connected to two
busses called G-busses as shown in Figure 1. Each
G-bus is 32 bit width and the transfer rate is up to
84MB/sec. Round robin bus arbitration is used. These
two busses are equivalent and every unit is able to use

28

mailto:kawai@kwlab.osalcac.ac.jp
http://www.eg.org
http://diglib.eg.org

rhichever it is unused, so that the occurrence of the bus
onflict will decrease.
lOP consists of 68020/68030, 68882(20MHz), 8MB

)cal memory, and 8MB shared memory which can be
ccessed by FPs described below. It also has two chan­
els of serial link adaptor, RS232C/422 ports, VME,
CSI and floppy disk interfaces. So that it can com­
lUnicate with FPs, VTR, other hosts, hard disks and
ther peripherals.
GPU consists of a Fork Processor(FP) and 16 Node

trocessors(NP). All of them are !NMOS T800-20 trans­
luters. They are connected together with serial links
nd DMA bus which is 64 bit width as shown in Figure
. The FP and the outer 10 NPs are also connected to
'Ps or NPs on other GPUs with serial links as shown
1 Figure 1. Up to 7 GPUs are able to connect to the
j-bus.
Each FP has 256KB local memory and 8MB shared

lemory. All of the FPs and lOP can access the shared
lemories and FB mapped onto the memory space of
hem via G-bus.

Each NP has 512KB local memory. DMA transfer
, available between this local memory"and any shared
lemories or any FBs through DMA bus and G-bus,
rhich is under the control of FPs. In the case of DMA
ransfer or shared memory access by FPs, if the target
hared memory is inside of the GPU, G-bus will not be
.sed.

Host processor(HP) is also T800-20 transputer on the
,oard in a host computer NEC/ruM PC, and has 2MB
f main memory.
Each FB has 2048 x 1280 pixels and the display reso­

lltion is 1920 x 1035. Up to 4 FBs are able to connect to
he G-bus. Stored images in FBs can be recorded frame
'y frame to VTR through Display Bus and Video Out­
,ut Unit.

Bidirectional Ray Tracing

lackward ray tracing[l, 20] or bidirectional ray
racing[5, 11] is two-pass algorithm for computing global
.lumination. The first pass computes view-independent
omponents such as diffuse-to-diffuse and specular-to­
.iffuse light transport. Here we call this stage light
ay tracing(LRT). The second path computes view­
.ependent components such as diffuse-to-specular and
pecular-to-specular light transport. This stage is same
s the conventional ray tracing except ambient term
,nd diffuse component in the intensity calculation. The
,iffuse component computed in LRT is used instead of
hem. We call this stage viewing ray tracing(VRT).

This time we modified and simplified the original al­
:orithm for a parallel implementation, so that our al­
:orithm has the following restrictions.

Figure 1: System configuration of MAGG.

.--------------..-----------------~

Figure 2: Hardware configuration of GPU.

• 	Using ideal point light sources only.

• 	Amount of the energy per unit solid angle from a
light source is constant.

• 	Using triangle patches for geometry models.

• 	A triangle patch is subdivided into triangle ele­
ments for energy calculation .

• 	 Omitting computation for diffuse-to-diffuse trans­
port.

We use the space subdivision method[8] for the fast
intersection seeking among rays and patches. We show
our modified algorithm as follows.

3.1 Preprocessing

This stage is preprocessing for LRT and VRT, such as
reading scene database from disks, geometry transfor­
mations and element generation.

29

3.2 	 Light Ray Tracing (LRT)

This stage is for distributing energy from the lights to
the elements. Sampling rays are emitted from a light
source toward an element. We call them primary light
rays, and each ray has same energy. If some of them
have intersections with the other elements, they will
not reach the target element directly. So that the com­
putation concerned with these rays will be discontin­
ued. The other rays reaching the target element give
the energy to it. It will be accumulated on it, and the
secondary light rays will be emitted in the direction of
re:fl.ection or refraction.

The secondary light rays which have no intersection
with elements will be discarded. The others which have
intersections with any elements will give the energy to
them. This process will be repeated recursively.

The emission of primary light rays will be continued
for all combinations of a light source and an element.
Each iteration of this procedure can be executed indi­
vidually. Finally, we can get the diffuse component by
the direct light and the speculaHo-diffuse component
by the indirect light.

3.3 	 Energy Interpolation

This stage is for computing the energy at each vertex
of the elements by interpolating the energy among the
elements which share the vertex.

3.4 	 Viewing Ray Tracing (VRT)

This stage is for finding intersections and computing in­
tensities by emitting rays from the eye toward each pixel
to produce the final image. The diffuse component of
the intensity at the intersection between a ray and an
element is calculated by interpolating the energy at the
vertices of the intersection element. The constant am­
bient term are also added to the intensity because of
omitting the computation for diffuse-to-diffuse trans­
port.

4 Parallel Processing Scheme

4.1 	 Process configuration

Two concurrent processes are running on a processor.
One is the communication process written in OCCAM
for data transfer between the processes on transput­
ers. The other is rendering process written in C, which
has two major stages(LRT,VRT) and two additional
stages described above. The communication process
has higher priority than the rendering process. This
is because NPs have to relay the packet via serial links
and then the communication time affects the efficiency
of parallel processing greatly.

4.2 	 Communications

Processor communications can be done by not only se­
rial link transfer but also DMA transfer between FP's
shared memories and NP's local memory or between
FBs and NP's local memory. These are under the con­
trol of the communication processes.

Serial link transfer is done by exchanging packets
through the FIFO buffer which belongs to each commu­
nication process. The process picks up the packets for
itself, or forwards them to neighbor processors via Be­

rial links. The size of normal packet containing control
header and data is 1KB. The control header contains
communication mode (broadcast or one-to-one), data
size, and processor addresses of sender and receiver.

This time we use DMA transfer from FP to NP only.
DMA transfer requires synchronization between FP and
NP, so that the NP sends a request packet including the
buffer address by serial link transfer to the FP on the
same GPU card, and then waits for the completion of
DMA. Once the FP receives the request packet, it in­
vokes DMA transfer immediately after its preparation.
If the shared memory is outside of the GPU in which
the NP is located, the FP will get G-bus at first.

4.3 	 Preprocessing and Data Manage­
ment

HP reads scene descriptions from the disk and transfers
them to the FP located at (0, -1). Geometric trans­
formations and generating subspaces and elements are
carried out on the FP located at (0, -1).

Subspace data, patch data, element data and vertex
energy data are stored in FPs' shared memories. Each
kind of data is packed in 2KB blocks interleaving to five
FPs. These blocks will be transferred to NPs by DMA
in the following stages. NPs prepare the specified num­
ber of cache blocks (2KBjblock) in the local memory
for storing these data.. H a NP requires some data, in
case they are not on the cache, the NP will request them
to the FP in the same GPU. If the NP does not have
enough space to store them, it will free the existing data
which has been unused for the longest time.

Then FPs transmit all other data such as light sources
to the NPs in the same GPU by DMA. They are not
expired from the NPs' local memories.

4.4 	 Light Ray Tracing

Each FP manages the element data on its own shared
memory. The number of the elements are sufficiently
greater than the number of NPs in a normal scene.
These are assigned via serial links according to NPs'
requests in order to balance the load of each NP (sim­
ple dynamic load balancing). A NP requests a pair of
a light source and an target element to the FP in the

30

,arne GPU. After receiving it from the FP, the NP will
,race the primary light rays toward the element. If the
~P requires the other data not on cache in this proce­
lure, it will also request them to the FP in the same
:lPU. Finishing all the trace, the NP will request a pair
)f a light and an element again.

In the case of accumulating the energy on an element
luring the light ray tracing, the NP will send a packet
or requesting the accumulation of the computed value
o the FP which manages the element. This prevents
rom two or more FPs might try to update the same
lata at the same time. The energy of the element never
)e used in light ray tracing, so that there is no need to
tpdate the data in the cache.
If some NPs in a GPU have finished their jobs but all

,he pairs of a light and an element on the FP's shared
nemory were already assigned, the FP will request to
,he other FPs which still have unassigned elements to
;et some of them.

lo5 Energy Interpolation

rhe FP located at (0, -1) does this stage.

L6 Viewing Ray Tracing

IP subdivides a screen area into a sufficiently greater
lUmber of subscreens than the number of NPs. These
,ubscreens are assigned via serial links according to
~Ps' requests in order to balance the load of each NP
simple dynamic load balancing).

NPs request a subscreen to the HP individually. Then
~s execute intersection seeking and intensity calcula­
.ion for each pixel in the su bscreen assigned by HP.
Jomputed intensity values in each scan line of the sub­
.creen are packed and also passed to the FP via serial
ink. Then NPs request a su bscreen again.

FPs are ready to accept packets from the NPs. If a
~-p requests a data block, FP will transmit the appli­
:able one to the NP by DMA, or if the packet is the
esult of intensity calculation executed on the NP, then
t will write the intensity values of pixels contained in
he packet into the FB.
I! some NPs have finished but the others have been

till working when all the subscreens were already as­
igned, HP will request to the working NPs to return
orne portion of the remaining area of the assigned sub­
creen (adaptive redivision of subscreens). HP will be
,hIe to redistribute them to idle NPs.

:) Performance Evaluations

>.1 Conditions

Ne have made some experiments to evaluate our sys­
,em. A scene for the experiments consists of 336 sub-

spaces (336 memory blocks, 1block=2KB), 8 patches (1
block), 1664 elements (118 blocks), 1896 vertices (11
blocks) and 1 point light source as shown in Figure 3.
The resolution of the image is 400 x 400.

The experiments are done on condition that reflec­
tion is limited to 1 time for saving the rendering time,
varying the number of NPs and the cache size of the
NPs. We have chosen 6 types of the number of NPs as
5, 10, 20, 40, 60 and 80, 4 sizes of the cache as 20, 40,
60, 80 blocks.

Unfortunately, we have some problems in the logic
for the bus control so that we couldn't use two G-busses
simultaneously.

Figure 3: A scene for the experiments.

5.2 Rendering Time

The relationships between the rendering time of the im­
age and the number of NPs are shown in Figure 4-7.
Processing time of the each stage is also shown.

It can be seen from the results that the processing
time for VRT is relatively longer than for LRT, and es­
pecially longer in the case that the cache is small such
as 20 blocks. The processing time for LRT might be
longer if the number of light sources or elements be­
comes large.

On the other hand, the time for energy interpolation
is negligibly small.

It also can be seen from these figures that the ren­
dering times are almost same when the cache size is
larger than 40 blocks. This is because that the cache

31

--2000
.­
~
~
~IS 1500

E:
~
I:.- 1000

"" ~
I:
~
~ 500

o

c:::::::J View Ray Trace
ImlmD Energy Interpo.
- Light Ray Trace
- Preprocessing

1500

!
~ 1000
IS.­

E-­

::
~

.­
"" ~ 500
::
~

o

c:::::::J View Ray Trace
I!':!DiII Energy Interpo.
-- Light Ray Trace
- Preprocessing

Figure 4: Rendering time (cache: 20 blocks). Figure 6: Rendering time (cache: 60 blocks).

1500
c:::::::J View Ray Trace
- Energy Interpo.

. ­ -- Light Ray Trace
!
~

- Preprocessing
~ 1000
IS
E:
~

.-I:
~ "" "'C 500
I:

~

o
10 20 40 60

Number of NPs

Figure 5: Rendering time (cache: 40 blocks).

hit ratio is nearly 100% in each case (see Figure 8). In
other words, the rendering time and the performance
described below must be mainly affected by the trans­
fer time for subspace data. Whenever a ray enters a
new subspace, in our algorithm, the data for the new
subspace should be required.

5.3 Parallel Processing Performance

The relationships between the parallel processing per­
formance and the number of NPs are shown in Figure
9-11. This performa.nce is defined by T(5)jT(n), here
T(n) is the rendering time of a whole image with n NPs.

1500

. ­

!
y

~ 1000

IS
E:
~
I:.-r..
~

"'C 500
I:

~

o

c:::::::J View Ray Trace
~ Energy Interpo.
-- Light Ray Trace
- Preprocessing

Number ofNPs

Figure 7: Rendering time (cache: 80 blocks).

It can be seen from the results that the total perfor­
mance is not so good though the performance of VRT is
linearly increasing when the cache size is larger than 40
blocks. This is because that the preprocessing time for
generating subspaces and elements is relatively long. So
that it should be improved. Now only 1 FP dose this,
but 5 FPs should be used.

The performance for LRT is also saturated. This is
because that each FP is sa.turated due to frequent re­
quests from NPs and due to 'problems on bus control.

32

--

••

o ___ .~ _____~~_~~~~~81.0
~==--;~~-----~~------O

" ..a-­ ,
0"

, :l

=
I

I
I

I
I

....

.. ,I.. ,
I=0.5 I1.1

I.... I
:.i Cl -0-' Subspace Data
.)=

- <>-. Patch Data
- <>-. Element Data
--:6-. Vertex Data

0.0....1--,----..,.----..,.....---...... ­
20 40 60 80

Number of Cache Blocks

Figure 8: Cache hit ratio with 80 NPs.

15 - 0- 20 Blocks

-<>- 40 Blocks

- -¢- 60 Blocks

- -6- 80 Blocks

-.. ~ ..-= ..
:. .e--••S~
:: 5 ,.Lt:.
:II "'"".I.e

",{j.. ___ - -0 - - - - - 0- - - ---0
". ...

)l

o 20 40 60 80

Number ofNPs

Figure 9: Parallel processing performance (total).

15 - a-. 20 Blocks
- <>-·40 Blocks

C --¢-·60 Blocks-~-­ -06-' 80 Blocks
~
Eo- 10

o 20 40 60 80

Number of NPs

Figure 10: Parallel processing performance (light ray
tracing only).

15 -0-' 20 Blocks
l~- <>- .40 Blocks--c - -¢- .60 Blocks ,,.,.-i':-­ -06-' 80 Blocks

,,tf ~ ,Eo- 10 ,
,,"

tf

" "
"

,I

I " "

,,'..0_----"ll
0 ------0------0 a.... ,

o 20 40 60 80

Number of NPs

Figure 11: Parallel processing performance (viewing ray
tracing only). .

33

6 Conclusion

We have modified the bidirectional ray tracing and im­
plemented on the transputer-based parallel CG system
MAGG. We have some valuable results from the exper­
iments described here:

• 	 Preprocessing should be executed in parallel.

• 	 Processing time for VRT should be improved.

• 	 Transfer time or number of transfer for subspace
data should be reduced.

• 	 Problems on bus control should be fixed.

And based on these results, now we are making exten­
sions and more experiments to improve the efficiency of
the parallel processing.

Another problem is removing the restrictions of
our method, such as accounting diffuse-to-diffuse light
transport or various light sources. We are adding an­
other path for diffuse-to-diffuse component, and mak­
ing extensions on the emission of sampling rays from
the lights.

References

[1] 	 ARVO, J., AND KIRK, D. Backward ray tracing.
In ACM SIGGRAPH'86 course notes (Aug. 1986),
vo!' 12.

[2] 	 ATAMENIA, A., MERIAUX, M., LEPRETRE, E.,
DEGRANDE, S., AND VIDAL, B. A cellular archi­
tecture for ray tracing. In 5th Eurographics work­
shop on graphics hardware (1990), pp. 85-9l.

[3] 	 BADOUEL, D., BOUATOUCH, K., AND PRIOL, T.
Ray tracing on distributed memory parallel com­
puters: strategies for distributing computations
and data. In ACM SIGGRAPH'90 Course 28
(Aug. 1990), pp. 185-198.

[4] 	 BADOUEL, D., AND PRIOL, T. An efficient parallel
ray tracing scheme for highly parallel architectures.
In 5th Eurographics workshop on graphics hardware
(1990), pp. 93-106.

[5] 	 CHATTOPADHYAY, S., AND FUJIMOTO, A. Bi­
directional ray tracing. In Proc. of CG Interna­
tional '87 (May 1987), pp. 335-343.

[6] 	 CLEARY, J., WYVILL, B., BIRTWISTLE, G., AND
VATTI, R. Multiprocessor ray tracing. Research
report 83/128/17, University of Calgary, Oct. 1983.

[7J 	 DEGUCHI, H., NISHIMURA, H., YOSHIMURA, H.,
KAWATA, T., SHIRAKAWA, I., AND OMURA, K.
A parallel processing scheme for three-dimensional

image generation. In IEEE ISCAS'84 (May 1984),
vol. 3, pp. 1285-1288.

[8] 	 FUJIMOTO, A., TANAKA, T., AND IWATA, K.
Arts: Accelerated ray-tracing system. IEEE Com­
puter Graphics and Applications 6, 4 (Apr!. 1986),
16-26.

[9] 	 GREEN, S., AND PADDON, D. Exploiting coher­
ence for multiprocessor ray tracing. IEEE Com­
puter Graphics and Applications 9, 6 (Nov. 1989),
12-26.

[10] 	 HEBERT, M.-P., McNEILL, M., SHAH, B.,
GRIMSDALE, R., AND LISTER, P. Marti-a mul­
tiprocessor architecture for ray tracing images. In
5th Eurographics workshop on graphics hardware
(1990), pp. 69-83.

[11J HECKBERT, P. Adaptive radiosity textures for
bidirectional ray tracing. Computer Graphics 24,
4 (Aug. 1990), 145-154.

[12] 	 KAWAI, T., OHNISHI, M., ABEKI, J., AND
OHNISHI, H. Transputer-based parallel ray trac­
ing system using demand data transfer. In 7th EtJ.­
rographics workshop on graphics hardware (1992),
pp.95-105.

[13] 	 KOBAYASHI, H., KUBOTA, H., HORIGUCHI, S.,
AND NAKAMURA, T. Effective parallel processing
for synthesizing continuous images. In Proc. of CG
International '89 (June 1989), pp.343-352.

[14] 	 NISHIMURA, H., OHNO, H., KAWATA, T., SHI­
RAKAWA, I., AND OMURA, K. Links-I: A paral­
lel pipelined multimicrocomputer system for image
generation. In 10th Ann. Int. Symp. on Computer
Architecture (June 1983), pp. 387-394.

115] 	 SATO, H., ISHII, M., SATO, K., IKESAKA, M.,
ISHIHARA, H., KAKIMOTO, M., HIROTA, K., AND
INOUE, K. Fast image generation of construc­
tive solid geometry using a cellular array processor.
Computer Graphics 19, 3 (July 1985), 95-102.

[16] 	 TAKAHASHI, T., YOSHIDA, M., AND NARUSE,
T. Architecture and performance evaluation
of the dedicated graphics computer: Sight.
In IEEE MONTECH'87 (COMPINT'87) (Nov.
1987), pp. 153-160.

[17] 	 WALLACE, J., COHEN, M., AND GREENBERG,
D. A two-pass solution to the rendering equation:
A synthesis of ray tracing and radiosity methods.
Computer Graphics 21, 4 (July 1987), 311-324.

[18] 	 WALLACE, J., ELMQUIST, K., AND HAINES, E.
A ray tracing algorithm for progressive radiosity.
Computer Graphics 29, 3 (July 1987), 315-324.

34

19] 	 WARD, G., RUBINSTEIN, P., AND CLEAR, R.

A ray tracing solution for diffuse interrefiection.
Computer Graphics 22, 4 (Aug. 1988), 85-92.

20] 	 WATT, M. Light-wa.ter interaction using backward
bea.m tracing. Computer Graphics 24, 4 (Aug.
1990), 377-385.

21] 	 WHITTED, T. An improved illumination model for
shaded display. Communications of the ACM 23,
6 (June 1980), 343-349.

:22] 	 YOSHIDA, M., AND NARUSE, T. Trend ofthe com­
puter graphics hardware. Information Processing
Society of Japan 29,10 (Oct. 1988), 1109-1115. In
Japanese.

35

