
1 

A Parallel Implementation of Bidirectional Ray Tracing 

on Transputer-based System 


Toshiyuki Kawai, Masahiko Kami 

Osaka Electro-Communication U niv. 


Japan * 


Tadamasa Teranishi 

Plus One Inc. 


Japan t 


Jun-ichi Abeki, Hironobu Ohnishi 

Mitsubishi Precision Co.,Ltd. 


Japan i 


Abstract 

This paper describes a parallel processing scheme for 
bidirectional ray tracing which improves the reality of 
the image drastically. It is organized from two stages, 
i.e. light ray tracing and viewing ray tracing. In light 
ray tracing, pairs of a light source and an element of 
objects are distributed to each processor dynamically. 
In viewing ray tracing, we use a screen subdivision al­
gorithm. Our system consists of 86 transputers. All 
of the scene data are placed on shared memories, and 
only the required parts of them can be transferred to 
the cache memory on each processor by means of DMA 
on-the-Hy. We also show some experimental results. 

Introduction 

Ray tracing[21] is a simple technique which can generate 
realistic 3D image. Various extensions of this method 
improving the reality also have been proposed[l, 5, 17, 
19, 18, 20, 11]. However, these methods require the 
great amount of computation. One of the successful 
solution to reduce the computing time is a parallel pre­
cessing. Some parallel architectures and machines have 
been proposed[2, 3, 4, 6, 7, 9, 10, 13, 14, 15, 16, 22], but 
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none of them takes account of those extensions. 
We also have developed a multi-transputer CG sys­

tem called MAGG (Mitsubishi Advanced Graphic Gen­
erator) and a parallel ray tracing renderer for this 
system[12]. We have devised fast communication be­
tween the large shared memory and the local memory 
on each processor by means of DMA transfer instead of 
serial link transfer. Our renderer is based on a screen 
subdivision algorithm and a simple dynamic load bal­
ancing method. 

This time, we have implemented the bidirectional ray 
tracing renderer on this system. This renderer has two 
major paths. One is light ray tracing, another is viewing 
ray tracing. We use these terms rather than backward 
and forward ray tracing. 

In this paper, at first we show the system overview 
and the parallel processing scheme, and then show the 
results of the performance evaluation. 

2 Hardware Configuration 

The CG system MAGG consists of an I/O Pre­
cessing Unit(IOP), five cards of Graphic Processing 
Unit(GPU), two cards ofHDTV Frame Buffer(FB) and 
Video Input/Output Units. These are connected to two 
busses called G-busses as shown in Figure 1. Each 
G-bus is 32 bit width and the transfer rate is up to 
84MB/sec. Round robin bus arbitration is used. These 
two busses are equivalent and every unit is able to use 
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rhichever it is unused, so that the occurrence of the bus 
onflict will decrease. 
lOP consists of 68020/68030, 68882(20MHz), 8MB 

)cal memory, and 8MB shared memory which can be 
ccessed by FPs described below. It also has two chan­
els of serial link adaptor, RS232C/422 ports, VME, 
CSI and floppy disk interfaces. So that it can com­
lUnicate with FPs, VTR, other hosts, hard disks and 
ther peripherals. 
GPU consists of a Fork Processor(FP) and 16 Node 

trocessors(NP). All of them are !NMOS T800-20 trans­
luters. They are connected together with serial links 
nd DMA bus which is 64 bit width as shown in Figure 
. The FP and the outer 10 NPs are also connected to 
'Ps or NPs on other GPUs with serial links as shown 
1 Figure 1. Up to 7 GPUs are able to connect to the 
j-bus. 
Each FP has 256KB local memory and 8MB shared 

lemory. All of the FPs and lOP can access the shared 
lemories and FB mapped onto the memory space of 
hem via G-bus. 

Each NP has 512KB local memory. DMA transfer 
, available between this local memory"and any shared 
lemories or any FBs through DMA bus and G-bus, 
rhich is under the control of FPs. In the case of DMA 
ransfer or shared memory access by FPs, if the target 
hared memory is inside of the GPU, G-bus will not be 
.sed. 

Host processor(HP) is also T800-20 transputer on the 
,oard in a host computer NEC/ruM PC, and has 2MB 
f main memory. 
Each FB has 2048 x 1280 pixels and the display reso­

lltion is 1920 x 1035. Up to 4 FBs are able to connect to 
he G-bus. Stored images in FBs can be recorded frame 
'y frame to VTR through Display Bus and Video Out­
,ut Unit. 

Bidirectional Ray Tracing 

lackward ray tracing[l, 20] or bidirectional ray 
racing[5, 11] is two-pass algorithm for computing global 
.lumination. The first pass computes view-independent 
omponents such as diffuse-to-diffuse and specular-to­
.iffuse light transport. Here we call this stage light 
ay tracing(LRT). The second path computes view­
.ependent components such as diffuse-to-specular and 
pecular-to-specular light transport. This stage is same 
s the conventional ray tracing except ambient term 
,nd diffuse component in the intensity calculation. The 
,iffuse component computed in LRT is used instead of 
hem. We call this stage viewing ray tracing(VRT). 

This time we modified and simplified the original al­
:orithm for a parallel implementation, so that our al­
:orithm has the following restrictions. 

Figure 1: System configuration of MAGG. 

.--------------..-----------------~ 

Figure 2: Hardware configuration of GPU. 

• 	Using ideal point light sources only. 

• 	Amount of the energy per unit solid angle from a 
light source is constant. 

• 	Using triangle patches for geometry models. 

• 	A triangle patch is subdivided into triangle ele­
ments for energy calculation . 

• 	 Omitting computation for diffuse-to-diffuse trans­
port. 

We use the space subdivision method[8] for the fast 
intersection seeking among rays and patches. We show 
our modified algorithm as follows. 

3.1 Preprocessing 

This stage is preprocessing for LRT and VRT, such as 
reading scene database from disks, geometry transfor­
mations and element generation. 
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3.2 	 Light Ray Tracing (LRT) 

This stage is for distributing energy from the lights to 
the elements. Sampling rays are emitted from a light 
source toward an element. We call them primary light 
rays, and each ray has same energy. If some of them 
have intersections with the other elements, they will 
not reach the target element directly. So that the com­
putation concerned with these rays will be discontin­
ued. The other rays reaching the target element give 
the energy to it. It will be accumulated on it, and the 
secondary light rays will be emitted in the direction of 
re:fl.ection or refraction. 

The secondary light rays which have no intersection 
with elements will be discarded. The others which have 
intersections with any elements will give the energy to 
them. This process will be repeated recursively. 

The emission of primary light rays will be continued 
for all combinations of a light source and an element. 
Each iteration of this procedure can be executed indi­
vidually. Finally, we can get the diffuse component by 
the direct light and the speculaHo-diffuse component 
by the indirect light. 

3.3 	 Energy Interpolation 

This stage is for computing the energy at each vertex 
of the elements by interpolating the energy among the 
elements which share the vertex. 

3.4 	 Viewing Ray Tracing (VRT) 

This stage is for finding intersections and computing in­
tensities by emitting rays from the eye toward each pixel 
to produce the final image. The diffuse component of 
the intensity at the intersection between a ray and an 
element is calculated by interpolating the energy at the 
vertices of the intersection element. The constant am­
bient term are also added to the intensity because of 
omitting the computation for diffuse-to-diffuse trans­
port. 

4 Parallel Processing Scheme 

4.1 	 Process configuration 

Two concurrent processes are running on a processor. 
One is the communication process written in OCCAM 
for data transfer between the processes on transput­
ers. The other is rendering process written in C, which 
has two major stages(LRT,VRT) and two additional 
stages described above. The communication process 
has higher priority than the rendering process. This 
is because NPs have to relay the packet via serial links 
and then the communication time affects the efficiency 
of parallel processing greatly. 

4.2 	 Communications 

Processor communications can be done by not only se­
rial link transfer but also DMA transfer between FP's 
shared memories and NP's local memory or between 
FBs and NP's local memory. These are under the con­
trol of the communication processes. 

Serial link transfer is done by exchanging packets 
through the FIFO buffer which belongs to each commu­
nication process. The process picks up the packets for 
itself, or forwards them to neighbor processors via Be­

rial links. The size of normal packet containing control 
header and data is 1KB. The control header contains 
communication mode (broadcast or one-to-one), data 
size, and processor addresses of sender and receiver. 

This time we use DMA transfer from FP to NP only. 
DMA transfer requires synchronization between FP and 
NP, so that the NP sends a request packet including the 
buffer address by serial link transfer to the FP on the 
same GPU card, and then waits for the completion of 
DMA. Once the FP receives the request packet, it in­
vokes DMA transfer immediately after its preparation. 
If the shared memory is outside of the GPU in which 
the NP is located, the FP will get G-bus at first. 

4.3 	 Preprocessing and Data Manage­
ment 

HP reads scene descriptions from the disk and transfers 
them to the FP located at (0, -1). Geometric trans­
formations and generating subspaces and elements are 
carried out on the FP located at (0, -1). 

Subspace data, patch data, element data and vertex 
energy data are stored in FPs' shared memories. Each 
kind of data is packed in 2KB blocks interleaving to five 
FPs. These blocks will be transferred to NPs by DMA 
in the following stages. NPs prepare the specified num­
ber of cache blocks (2KBjblock) in the local memory 
for storing these data.. H a NP requires some data, in 
case they are not on the cache, the NP will request them 
to the FP in the same GPU. If the NP does not have 
enough space to store them, it will free the existing data 
which has been unused for the longest time. 

Then FPs transmit all other data such as light sources 
to the NPs in the same GPU by DMA. They are not 
expired from the NPs' local memories. 

4.4 	 Light Ray Tracing 

Each FP manages the element data on its own shared 
memory. The number of the elements are sufficiently 
greater than the number of NPs in a normal scene. 
These are assigned via serial links according to NPs' 
requests in order to balance the load of each NP (sim­
ple dynamic load balancing). A NP requests a pair of 
a light source and an target element to the FP in the 
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,arne GPU. After receiving it from the FP, the NP will 
,race the primary light rays toward the element. If the 
~P requires the other data not on cache in this proce­
lure, it will also request them to the FP in the same 
:lPU. Finishing all the trace, the NP will request a pair 
)f a light and an element again. 

In the case of accumulating the energy on an element 
luring the light ray tracing, the NP will send a packet 
or requesting the accumulation of the computed value 
o the FP which manages the element. This prevents 
rom two or more FPs might try to update the same 
lata at the same time. The energy of the element never 
)e used in light ray tracing, so that there is no need to 
tpdate the data in the cache. 
If some NPs in a GPU have finished their jobs but all 

,he pairs of a light and an element on the FP's shared 
nemory were already assigned, the FP will request to 
,he other FPs which still have unassigned elements to 
;et some of them. 

lo5 Energy Interpolation 

rhe FP located at (0, -1) does this stage. 

L6 Viewing Ray Tracing 

IP subdivides a screen area into a sufficiently greater 
lUmber of subscreens than the number of NPs. These 
,ubscreens are assigned via serial links according to 
~Ps' requests in order to balance the load of each NP 
simple dynamic load balancing). 

NPs request a subscreen to the HP individually. Then 
~s execute intersection seeking and intensity calcula­
.ion for each pixel in the su bscreen assigned by HP. 
Jomputed intensity values in each scan line of the sub­
.creen are packed and also passed to the FP via serial 
ink. Then NPs request a su bscreen again. 

FPs are ready to accept packets from the NPs. If a 
~-p requests a data block, FP will transmit the appli­
:able one to the NP by DMA, or if the packet is the 
esult of intensity calculation executed on the NP, then 
t will write the intensity values of pixels contained in 
he packet into the FB. 
I! some NPs have finished but the others have been 

till working when all the subscreens were already as­
igned, HP will request to the working NPs to return 
orne portion of the remaining area of the assigned sub­
creen (adaptive redivision of subscreens). HP will be 
,hIe to redistribute them to idle NPs. 

:) Performance Evaluations 

>.1 Conditions 

Ne have made some experiments to evaluate our sys­
,em. A scene for the experiments consists of 336 sub-

spaces (336 memory blocks, 1block=2KB), 8 patches (1 
block), 1664 elements (118 blocks), 1896 vertices (11 
blocks) and 1 point light source as shown in Figure 3. 
The resolution of the image is 400 x 400. 

The experiments are done on condition that reflec­
tion is limited to 1 time for saving the rendering time, 
varying the number of NPs and the cache size of the 
NPs. We have chosen 6 types of the number of NPs as 
5, 10, 20, 40, 60 and 80, 4 sizes of the cache as 20, 40, 
60, 80 blocks. 

Unfortunately, we have some problems in the logic 
for the bus control so that we couldn't use two G-busses 
simultaneously. 

Figure 3: A scene for the experiments. 

5.2 Rendering Time 

The relationships between the rendering time of the im­
age and the number of NPs are shown in Figure 4-7. 
Processing time of the each stage is also shown. 

It can be seen from the results that the processing 
time for VRT is relatively longer than for LRT, and es­
pecially longer in the case that the cache is small such 
as 20 blocks. The processing time for LRT might be 
longer if the number of light sources or elements be­
comes large. 

On the other hand, the time for energy interpolation 
is negligibly small. 

It also can be seen from these figures that the ren­
dering times are almost same when the cache size is 
larger than 40 blocks. This is because that the cache 

31 




--2000 
.­
~ 
~ 
~IS 1500 

E: 
~ 
I:.- 1000 

"" ~ 
I: 
~ 
~ 500 

o 

c:::::::J View Ray Trace 
ImlmD Energy Interpo. 
- Light Ray Trace 
- Preprocessing 

1500 

! 
~ 1000 
IS.­

E-­

:: 
~ 

.­
"" ~ 500 
:: 
~ 

o 

c:::::::J View Ray Trace 
I!':!DiII Energy Interpo. 
-- Light Ray Trace 
- Preprocessing 
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Figure 5: Rendering time (cache: 40 blocks). 

hit ratio is nearly 100% in each case (see Figure 8). In 
other words, the rendering time and the performance 
described below must be mainly affected by the trans­
fer time for subspace data. Whenever a ray enters a 
new subspace, in our algorithm, the data for the new 
subspace should be required. 

5.3 Parallel Processing Performance 

The relationships between the parallel processing per­
formance and the number of NPs are shown in Figure 
9-11. This performa.nce is defined by T(5)jT(n), here 
T(n) is the rendering time of a whole image with n NPs. 
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Figure 7: Rendering time (cache: 80 blocks). 

It can be seen from the results that the total perfor­
mance is not so good though the performance of VRT is 
linearly increasing when the cache size is larger than 40 
blocks. This is because that the preprocessing time for 
generating subspaces and elements is relatively long. So 
that it should be improved. Now only 1 FP dose this, 
but 5 FPs should be used. 

The performance for LRT is also saturated. This is 
because that each FP is sa.turated due to frequent re­
quests from NPs and due to 'problems on bus control. 
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Figure 10: Parallel processing performance (light ray 
tracing only). 
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6 Conclusion 

We have modified the bidirectional ray tracing and im­
plemented on the transputer-based parallel CG system 
MAGG. We have some valuable results from the exper­
iments described here: 

• 	 Preprocessing should be executed in parallel. 

• 	 Processing time for VRT should be improved. 

• 	 Transfer time or number of transfer for subspace 
data should be reduced. 

• 	 Problems on bus control should be fixed. 

And based on these results, now we are making exten­
sions and more experiments to improve the efficiency of 
the parallel processing. 

Another problem is removing the restrictions of 
our method, such as accounting diffuse-to-diffuse light 
transport or various light sources. We are adding an­
other path for diffuse-to-diffuse component, and mak­
ing extensions on the emission of sampling rays from 
the lights. 
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