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ABSTRACT Driven by the prospect of three-dimensional rasters as a primary vehicle
for future 3D graphics and volumetric imaging, this paper introduces an architecture
for real-time rendering of high-resolution volumetric images. The Flipping Cube Ar-
chitecture utilizes parallel memory organization and a unique data orientation scheme
in order to support contention free access to viewing rays.

7.1 Introduction

The swift advances in performance, availability and price of computing power, memory,
and disk-space are transforming long thought techniques into reality. One typical example
to this trend is the revolution taking place in the field of volume graphics. Grasping the
feeling of this revolution requires no more than three decades of perspective. The display
of computer graphics in the sixties was based on vector drawing devices and an ’object
based’ approach to scene representation and rendering. A symbolic representation of the
scene objects was stored in a display-list and managed by the computer. Refreshing the
screen was accomplished by rendering the vectors comprising the objects in the display-
list. An alternative approach, termed raster graphics utilizes a 2D frame-buffer of pixels
for scene representation and a ’'raster based’ renderer. This renderer colors the pixels in
the frame-buffer that correspond to the discrete representation of the symbolic objects.
Screen-refresh is performed by re-displaying the frame-buffer on the screen, thus there is
no need to save the symbolic object representation.

The main disadvantage of the raster-based approach is the memory and processing
power it requires, which delayed its appearance until the early seventies when the tech-
nology was able to provide cheap and fast hardware to support it. The major advantages
of vector-graphics are its ability to perform object related operations on the display-list
and the fact that the lines it draws are continuous (i.e., without aliasing). On the other
hand, the main appeal of raster-graphics is that it decouples rendering from screen-refresh
which makes it insensitive to the scene complexity. It is also able to perform block opera-
tions, and it is suitable for the display of sampled images, that is, graphics and digitized
images can be intermixed. Moreover, the 'object based’ approach can still be imitated by
maintaining a display-list which is redrawn to the frame-buffer as a result of each change
in the scene.

The above discussion describes the state-of-the-art in 2D graphics. In 3D graphics,
however, the ruling majority of rendering methods still employ an 'object based’ approach
called surface graphics rather than employing a three dimensional 'raster based’ approach.
Traditional 3D surface graphics (pay attention to the striking resemblance to 2D vector
graphics) represent the scene as a set of surface primitives kept in a display-list. Any
change to the scene, viewing parameters, or rendering parameters requires re-rendering
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this list of surfaces. The 3D equivalent to 2D raster graphics is volumetric graphics which
utilizes a 3D raster for 3D scene representation by coloring the voxels that correspond to
the discrete representation of the scene objects [5].

The same appeal that drove the transfer of the graphics world from vector graphics
to raster graphics, once the hardware and processing power became available, is already
driving the migration of a variety of applications from 3D surface graphics to volume
graphics. Examples of this trend started to appear in the beginning of the seventies in
applications involving 3D rasters (volumes) such as in medical and scientific visualization
[11]. These fields still provide most of the applications for volume visualization [22, 24].
The obvious advantages are recently attracting also traditional surface-graphics-based ap-
plications such as rendering fractals [12, 21], rendering gaseous phenomena (7], modeling
and rendering of growth processes [10], rendering complex objects containing surface tes-
sellation [23, 3], constructive solid geometry and CAD (28, 5, 27], and applications that
benefit from the intermixing of the two approaches in medicine [16, 19], cell biology [28],
and molecular biology [9].

The major drawback of the volumetric approach to computer graphics is the memory
and processing power it requires. Viewing of a moderate size volume requires the solution
of the hidden voxel removal problem for millions of voxels. While we are certain memory
will become available in several years, volume rendering requires the realization of special
purpose hardware, a volume engine, that will serve as the volumetric counterpart of poly-
gon engines available today for surface graphics. The design of a system with a real-time
interactive capabilities must employ high performance hardware based on multiprocessing
and parallel memory organization.

In the late 1980’s, we witnessed the appearance of several special-purpose voxel based
architectures for volume visualization. The Cube architecture [14] is based on simultane-
ous processing an axial beam of voxels. The octree based Insight system [20] performs
recursive back-to-front (BTF) projection. The PARCUM system [13] is based on inter-
leaved memory that allows parallel fetch of a macro voxel. Hidden voxel removal is per-
formed by fetching macro voxels in a "ray-casting” fashion combined with Z-buffer based
hidden-voxel inside each macro voxel. The Vozel Processor architecture [8] is based on
the partition of voxel space into equal sub-cubes. Each sub-cube is projected by applying
recursive BTF and the multiple 2D mini-pictures are merged into a final image.

The spreading recognition of the importance of volume visualization drove numerous
manufactures to add volume rendering capabilities to their general purpose graphics en-
gines. The reader is referred to [15] for a broader comparative survey of both special and
general purpose architectures for volume rendering. This paper describes a memory orga-
nization for volumetric graphics that can support real-time rendering of high-resolution
volumes. The next section provides definition of terms that are used in this paper while
the following sections describe the principles of the Flipping Cube architecture.
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FIGURE 7.1. Block diagram of the Flipping Cube Architecture.

its voxels has exactly two {-adjacent voxels in P. If the curve is open then it has two
exceptions called the endpoints, each of which has only one £-adjacent voxel in P. A ¢-
line is an open §-curve such that all its voxels are pierced by the straight line that passes
through the center of its two endpoints. A {-ray is a {-line such that its two endpoints
belong to the volume faces.

We define the X-distance (denoted by S,) between the coordinates (zo,yo,zo) and
(21,41, 1) to be |21 — zo| (in a similar way we define the Y -distance and the Z-distance,
denoted by S, S, respectively). It can be shown that a 6-line from (zo, yo, 20) to (z1,91, 21)
has exactly S, + S, + S voxels. This size is also called the 6-distance, tazi-driver distance,
or Manhattan distance between the two points. It can be shown that the 26-distance
between the two points, that is, the minimal number of voxels traversed by a 26-line
between these points, is maz(S;, Sy, S:). The step between (zq,yo,20) and (@1,y1,21) is
is the tuple z; — &g, ¥1 — Yo, 21 — zo- The form of a path is the sequence of steps between
consecutive voxels in the path.

If L is a £-line such that, without loss of generality, S, > S, > S, we say that X is
the major azis of L, Y is the median azis of L, and Z is the minor azis of L. It is easy
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to see that a 26-line in which, without loss of generality, X is the major axis, does not
contain two voxels having the same X coordinate.

7.3 The Flipping Cube Architecture

The Flipping Cube Architecture is composed of four major components (see Figure 7.1):
memory modules, bus for host/memory communication, shift mechanism for moving in-
formation between the memory modules, and a ray-projection mechanism. The main
operation performed by the system is a parallel fetch of all voxels comprising a projection
ray and their rapid processing by the projection mechanism in order to determine the
final color of the pixel from which the ray was cast.

Memory. The memory is regarded by the user as a three dimensional storage of N x
N x N voxels. We also assume that N = 2" for some n which simplifies the hardware
implementation, and we use the letter M to stand for the value of N — 1. The axes of the
cubic memory are denoted by U, V, and W. In the following discussion we use left-hand
coordinates where positive rotation along an axis is defined to be a clockwise rotation
when looking from the positive direction to the origin (see Figure 7.2). The data can
be read into the memory in 48 different ways' but we will be interested only in three of
the six orientations in which the origin of the data coincide with the memory origin (see
Figure 7.3). When data is read in such a way that the Z dimension (of the data) extends
along the W axis (of the memory) we say that the data is Z-parallel (and the same for X
and Y) (see Figure 7.2).

The cubic memory is partitioned into N modules each of which is capable of storing
N? voxels. Modules are named Wy, Wy,..., Wy where module W, stores the W-slice at
k (see Figures 7.1, 7.3). The addressing of a voxel is straightforward, that is, (i, 7,k) is
at address (i,7) in module Wj.

Bus. The memory sub-system is accessed by the host via a bus which can hold a 3D
memory address and few data items. The bus is also the channel transferring commands
from the host computer to the Flipping Cube system. Commonly, the host performs global
computations and initializations, and broadcasts the results on the bus.

Shift Mechanism. The only way memory modules communicate with each other is
via a shift mechanism (see Figure 7.1). Each memory module can place a voxel data in
its own register which is part of the shift mechanism. The shifter, comprised of this set
of registers, is capable of rotating the set of N voxels (one from each memory modules)
arbitrary number of steps. Then, each memory module can read from its shift-register the
(new) voxel data found there after the rotation. Although the shift-mechanism seems as
a primitive and restrictive communication paradigm, the fact is that the system does not
require a more sophisticated mechanism. Moreover, the restrictiveness of this communica-
tion paradigm makes it suitable for our synchronous SIMD approach and allows a simple
yet efficient hardware implementation, such as the conveyor [2, 4].

!The origin of the data can be placed in one of eight corners of the memory cube. For each such placement we
can choose one of the three axes to hold X, then there are two axes left choose from for the Y axis.
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FIGURE 7.2. Memory modulation and axes notation.

Projection Mechanism. The system is equipped with a mechanism to perform fast
projection of a ray of voxels. This projection mechanism accepts N voxels, one from each
module, and performs hidden voxel removal. The exact method of hidden voxel removal
may vary from traditional first/last opaque projection [14], through maximum/minimum
projection [25], weighted additive projection [18], and semitransparent composition [6].
An example of a first/last opaque projection mechanism is the voxel multiple-write bus
(VMWB) used in the Cube architecture [14].

Each module at each memory cycle can either read a voxel data from its shift register or
the bus into the memory, write a voxel from the memory onto the bus or the shift register,
or send a voxel from the memory to the projection mechanism. Except for writing to the
bus, which is performed by a single module at a time, all other operations are performed
by all modules simultaneously. Therefore, multiple access to the bus is undesired since
the bus constitutes a major communication bottleneck in the system.
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FIGURE 7.3. The three data parallelism schemes.

7.4 Parallel Projection in Flipping Cube

The slice-oriented memory modularization allows conflict free parallel access to N voxels -
one from each module. This means that we can extract a ray of voxels in parallel as long as
we do not require more than one voxel from each W-slice. Thus, providing an orthographic
projection parallel to the W axis is trivial; to project a W-beam at (u,v), each module
places on the projection mechanism the voxel at (u,v). Moreover, as mentioned in Section
7.2, 26-rays have a unique metric in which the length of a line extending form (z,y, z) to
(z + Az,y+ Ay, z + Az) is equal to maz(|Az|,|Ay|,|Az|) voxels. We also recall that the
line’s longest dimension is said to be its major dimension. In Section 7.2 we concluded
from the 26-line metric that along its major dimension a line has at most one voxel in each
coordinate. Therefore, we realize that in the slice-wise memory modularization along W,
as in the Flipping Cube, we can access a 26-ray in parallel as long as W is its major axis.
A parallel projection in which rays are W-major is called W-major projection (and the
same for U and V). In contrast to parallel projection, in perspective viewing or recursive
ray tracing we may traverse rays of all three majority types.
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Assuming that data is now in X-parallel form, and we need to perform Y-major projec-
tion, we need to re-orient the data in the memory so that it will become Y-parallel. This
operation is called major-switching and it can be implemented by a mechanism that is
based on the Flipping operation which is actually a +90° rotation around an axis.

Denote the +90° and —90° flipping along the W axis by +W flip and —W flip respec-
tively (and similarly for U and V). Observing all k = 48 possible data orientations inside
the volumetric memory, it seems that the system has to provide k(k — 1)/2 = 1128
procedures to perform the switching between each two possible orientations. However, we
observe that we may be able to restrict our system and allow only a small subset of all the
48 possibilities in such a way that will provide the basic three parallelism schemes as well
as a set of procedures for convenient and efficient switching between them. Carefully con-
sidering several options for this restricted subset of orientations (e.g., the six orientations
where the origin is fixed, one orientation from each of the basic eight origin placements,
all orientations in which a specific data axis is restricted to two specific memory axes)
we chose to explore the option consisting of the six orientations in which the origin is
fixed and coincides with the memory origin. Another series of experiments with these six
orientations made it clear that we can build an efficient system even when restricting the
set of allowed orientations (and therefore, number of switching procedures) to three as in
Figure 7.3.

A careful examination of these three possible data orientations (see Figure 7.3) shows
that in order to switch from any orientation to another, two steps of flipping are sufficient
(see Figure 7.4). The first is either a —V flip or a +U flip while the second is a +W flip
or a —W flip. It seems that although the flipping mechanism needs to be implemented
only in four variations (—V, +U, £W), the fact that we restricted ourselves to only three
legal orientations implies that major-switching must go through two flipping operations
rather than one. However, we observe that a £W does not have to be actually performed
because of two reasons. First, we observe that in the case £W rotation no voxel changes
its W coordinate or in other words, it stays in the same memory module. Furthermore, if
we examine the position of the voxel at (u, v) after a sequence of £W flipping operations
we observe that the voxel’s new position (denoted by (u/, v/)) is a simple function of its
previous position and the desired flipping, as follows:

(u, v) o°
B (v, M —u) 90° B
(vt} o= M-u, M—v g0 > M=N-1
(
M—-v, u 270°
( )

Since we assume that N is a power of two, M — k is equivalent to the bitwise negation
of k and therefore:

(u, v) 0°

. (v, ~u) 90°
(), o1} = (—u, —w) 180°
(v, u) 270°

Thus, by adding a mechanism to compute (uf, v/) as a function of the accumulated
W -rotation we can still access any W-ray without contention.
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FIGURE 17.5. (a) 2D Skewed memory organization of the values in (b).

column_write(u, v, i) the operation of reading the W-beam at (u, v) and writing it as
j** column in the Flip-Buffer (see Section 7.2 for the definition of beam). The flipping
algorithms can be described as follows (for the +U case on the left, —V on the right) :

foru:=0to M do for v:=0to M do
forv:=0to M do foru:=0to M do
column_write(u, v, v); column_write(u, v, v);
end_for; end_for;
forv:=0to M do foru:=0to M do
row_read(u, M — v,v); row_read(M — u, v,u);
end_for; end_for;
end_for;

end_for;

The actual implementation of the Flip-Buffer can be achieved by a special purpose mem-
ory such as the Prism [17], however, this requires high linkage complexity — all memory
module have to be connected to this auxiliary device. We propose here a solution based on
a skewed memory organization that better adapts to the Flipping Cube architecture and
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requires merely an additional mechanism for a trivial address mapping. The 2D skewed
memory is composed of N modules of N voxels each. If each such module holds one col-
umn of the 2D Flip-Buffer we can support parallel access to rows (see Figure 7.5(b)).
If we rotationaly shift the j** row j steps to the right, we create a skewed organization
that supports parallel access to both rows and columns ((see Figure 7.5(a)). The proof
of this claim is simple; since only rows where shifted, no voxel changes its row-position
which means that we can still access rows in parallel. Since the voxel at (i, j) is shifted to
((i+j) mod N, j) we observe that the items in the j** column (i.e., (5,0), (4,1),. .-, (j, M))
where mapped to memory modules (j + 0) mod N, (j + 1) mod N,...,(j + M) mod N,
that is, to N different modules. In conclusion, we can achieve parallel access to both rows
and columns by placing voxel (i,j) of the Flip-Buffer in address ((i + j) mod N, j).

If we regard W (the k** memory module of the Flipping Cube) as a 2D array of N?
voxels (see Figures 7.1, 7.3) we can implement the Flip-Buffer by simply adding to W,
another column that holds the k** module of the Flip-Buffer. That is, the item (i, j) of
the Flip-Buffer can be found in (N, (i + j) mod N, j). The fact that the Flip Buffer
is part of the memory module is advantageous since there is no need to have N lines
running from the N memory module to an auxiliary device. Instead, communication is
achieved by means of the shift mechanism as we describe shortly. The implementation
of the column_write(u, v, i) operation is achieved in three steps. First, the W-beam at
(u, v) is placed in the shift mechanism by having W; copy the voxel (u, v) to its shift
register. Next, the beam is shifted 7 steps to the right (assuming W, on the left, Wj; on the
right) and then copied into the memory by having W), copy the content of its shift register
into address (N, (k —i) mod N). Similarly, the implementation of the row_read(u, v, j)
operation is achieved in three steps. First, the value at (N, j) is placed by W in its shift
register. Next, the shift mechanism rotates the its values j steps to the left. Finally, W,
copies the content of its shift register into (u, v).

In summary, each of the memory modules contains (N + 1)N voxels and supports
four memory operations: vozel read, vozel write, row_read, and column_write. Voxel_read
and voxel_write are performed on the first N memory columns while and row_read and
column_write are performed on the (N + 1)** column. This set of operations can be
implemented by a simple mapping of the incoming address (u, v) into an internal address
(uf, ) computed by:

(u, v) vozel read
_ (u, v) row_read
(it al); = (N, v) vozel write
(N, (k—1) moed N) column_write

If we denote by ¢, the time required for an arbitrary shift and by t,, the time it takes
the memory to fetch one voxel, we say that both row_read and column_write require two
read/write operations and one shift operation. Since the algorithm performs one row_read
and one column_write operation for each beam, we conclude that flipping of the whole
volume requires N%(2t, + 4t,,) time units and N? additional memory. If we denote by
t, the time it takes for the projection mechanism to project the ray, we can compare
the flipping time with the projection time: N*(t,, + t,). This comparison leads us to
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believe that the flipping operation will not require more than few frame times because
t, = t, and both have complexity of logN. We must also keep in mind that this hardly
noticeable delay is required only when the viewing direction changes its major axis which
itself happens very rarely, for example, when spinning the volume 360° we will need only
four flipping operations.
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