
Copyright © 2009 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail permissions@acm.org.
Sketch-Based Interfaces and Modeling 2009, New Orleans, LA, August 1–2, 2009.
© 2009 ACM 978-1-60558-602-1/09/0008 $10.00

EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2009)
C. Grimm and J. J. LaViola Jr. (Editors)

Tools for the Efficient Generation of Hand-Drawn Corpora
Based on Context-Free Grammars

Scott MacLean, David Tausky, George Labahn, Edward Lank, and Mirette Marzouk

University of Waterloo

Abstract

In sketch recognition systems, ground-truth data sets serve to both train and test recognition algorithms. Un-
fortunately, generating data sets that are sufficiently large and varied is frequently a costly and time-consuming
endeavour. In this paper, we present a novel technique for creating a large and varied ground-truthed corpus for
hand drawn math recognition. Candidate math expressions for the corpus are generated via random walks through
a context-free grammar, the expressions are transcribed by human writers, and an algorithm automatically gener-
ates ground-truth data for individual symbols and inter-symbol relationships within the math expressions. While
the techniques we develop in this paper are illustrated through the creation of a ground-truthed corpus of mathe-
matical expressions, they are applicable to any sketching domain that can be described by a formal grammar.

Categories and Subject Descriptors (according to ACM CCS): I.5.5 [Computing Methodologies]: Pattern
Recognition—Implementation

1. Introduction

One challenge faced in the implementation and evaluation
of sketch recognition systems is access to realistic corpora
of ground-truthed input. Corpora are valuable in two ways.
First, they allow researchers creating recognition systems to
train their recognizers, thus improving recognition accuracy.
Second, they provide an independent data set against which
to test recognizer accuracy. To be useful in training and test-
ing, any corpus must have two attributes. It must be accu-
rately ground-truthed, both at the semantic level and at the
level of individual symbols and relations between symbols.
It must also be sufficiently large and varied to allow training
and testing on realistic input from varied drawers.

One simple approach to creating a sufficiently large cor-
pus is to manually select a set of representative sketches
from a domain of interest, have several participants tran-
scribe these sketches, and then manually ground-truth each
sketch individually. This process suffers from several draw-
backs. These drawbacks include the possibility of biased or
narrow coverage and tedium resulting from creating unique
sketches or from ground-truthing a large set of sketches. We
expand on these drawbacks here.

The process of selecting sketches is prone to bias and nar-

row coverage. Problems of biased or narrow coverage have
been noted in the database and software performance com-
munity when designing benchmarks [LC82] – arguably an
analogous task to designing corpora for recognition systems.
When creating a test corpus, designers may unintentionally
select the sketches on which to test the system based on their
understanding of the strengths and weaknesses of their al-
gorithm, essentially an instance of the Observer-Expectancy
Effect. As well, designers are typically researchers in sketch
recognition, not mathematicians, engineers, animators, etc.
As a result, designers may select sketches to be recognized
based on their experience within the target domain, which is
narrower than domain experts. For example, having only ex-
perienced introductory calculus, a designer of a math recog-
nition system might not consider multi-variable integrals as
an essential component in a math recognition system.

Whether participants transcribe the same set of sketches
or unique sketches for any corpus has an effect on training
and testing with that corpus. If some form of user-omission
is used to test, i.e. train on n-1 users and test on the remain-
ing user, then using the same sketches means that the system
has been tested on sketches (from one user), but it has expe-
rienced each of these sketches before as training data from

http://www.eg.org
http://diglib.eg.org

S. MacLean, et al. / Tools for the Efficient Generation of Hand-Drawn Corpora Based on Context-Free Grammars

the other n-1 users. Leaving out sketches means the system
has been trained on that specific user’s handwriting, which
may also provide a higher than realistic performance mea-
sure. On the other hand, providing unique sketches for each
user can become tedious, particularly when a large number
of participants are desired to ensure good coverage of drawer
variability.

Finally, the process of manually ground-truthing a set of
sketches can prove tedious and error prone. While what con-
stitutes “sufficiently large” in the context of any corpus may
be subject to interpretation, it seems obvious that, to be of
any use in training and testing, a corpus would need to con-
tain at least several hundred or thousand sketches.

Our motivation for creating a large public corpus is our
math recognition system MathBrush. MathBrush is an ex-
perimental system for working with mathematics using pen-
based devices. The system [LLM∗08a] allows users to write
mathematical expressions as they would using a pen and
paper, and to edit and manipulate the mathematical expres-
sions.

As one part of our development of MathBrush, we would
like to sompare our current recognition engines to past sys-
tems. However, hand-drawn math recognition systems re-
search spans four decades (eg. [BA69], [BCZ02], [JZ04]),
and, in the absence of established corpora, it is challenging
to assess the strengths and weaknesses of the wide variety
of approaches to this problem explored in the past 40 years.
Despite extensive research in hand-drawn math recognition,
we are aware of no large, publicly available, ground-truthed
math corpus for use in training and evaluation. This signifi-
cant lack has motivated our creation of such a corpus. While
our work focuses on mathematics recognition, tools for gen-
erating large, accurately ground-truthed corpora, with broad
coverage of notation, are of value to all researchers studying
sketch recognition.

In this paper, we describe our work on the generation of
a publicly available ground-truthed corpus of mathematical
expressions. The drawbacks of manual corpus creation are
addressed in several ways:

1. To avoid bias, random walks of a grammar-based math
recognizer are used to ensure coverage and variability in
our expressions.

2. To generate a large corpus, 20 participants were asked
to transcribe expressions generated by this random gram-
mar. Participants received $10 for one hour of transcrip-
tion and produced more than 4500 expressions in all.

3. To avoid the tedium of manual ground-truthing, we de-
signed a novel greedy algorithm that generates ground-
truth for symbols and relationships between subexpres-
sions with more than 90% precision.

Together, it is our hope that these contributions stimulate fur-
ther work on the creation of large, transparent, public cor-
pora for various sketch recognition domains.

This paper is structured as follows. Section 2 describes
the process of generating our ground-truthed mathematical
corpus and presents accuracy measures of our automatic
ground-truthing technique. Next, strengths and weaknesses
of our approach are discussed, and we highlight some open
areas for future research. Finally, we contrast our approach
with related work in corpus generation.

2. Creating the Mathematical Corpus

Creating a ground-truthed mathematical corpus required
three tasks. First, we created an algorithm that generates
random mathematical expressions using a relational context-
free grammar. Next, study participants transcribed generated
math expressions, producing a large collection of handwrit-
ten expressions. Finally, the handwritten expressions were
automatically ground-truthed and the effectiveness of this
process was evaluated. This section describes each of these
tasks.

2.1. Mathematical Formula Generation

To create an unbiased set of equations, we use an auto-
mated technique that performs a constrained walk through
a context-free grammar describing mathematical equations.
This approach has many advantages. First, expressions are
created based on random sampling of symbols and relation-
ships, ensuring that rare symbol combinations are reflected
in the collected data. Secondly, this approach limits biases
that a researcher may have in selecting testing data. Finally,
this technique provides a limitless source of equations for
participants to transcribe.

Our approach to math recognition uses a fuzzy relational
context-free grammar to model the spatial structure of hand-
written math. In this section, we first describe fuzzy rela-
tional context-free grammars, and then highlight how a rela-
tional grammar can be used in the generation of expressions.

2.1.1. Fuzzy relational context-free grammars

To capture the structure of handwritten math for recognition,
we use a fuzzy relational context-free grammar formalism.
Our work is described in detail in MacLean (2009) [Mac09].
The details are summarized below.

Recall that a fuzzy relational context-free grammar (fuzzy
r-CFG) is a tuple G = (Σ,N,S,T,R, r̃Σ,P), where

• Σ,N are sets of terminal, nonterminal symbols respec-
tively,

• S ∈ N is the start symbol,
• T is the set of observables,
• R is a set of fuzzy relations on (T,T),
• r̃Σ is a fuzzy relation on (T,Σ),
• P is a set of productions, each of the form A0 →

A1r̃A2r̃ · · · r̃An, where A0 ∈ N;n > 0;Ai ∈ Σ∪N,1 ≤ i ≤
n; r̃ ∈ R.

126

During recognition in our system, we take T to be the set
of all possible ink inputs, R to be the set of relations between
symbols, and r̃Σ to be the output of a symbol recognizer. Fur-
thermore, each grammar production p is associated with a
tree generator and a string generator. The tree generator pro-
duces an expression tree that describes how terminal sym-
bols (leaves) are combined using mathematical operations to
represent the syntax of the math expression. The string gen-
erator produces a string representation (e.g. LATEX, MathML)
of the expression tree. Fuzzy values are used to measure the
most likely spatial relationships between groups of symbols
in the hand-drawn input. They are combined with symbol
recognition results to obtain confidence scores for expres-
sion trees produced when mapping a mathematical expres-
sion onto possible derivations in the grammar.

For extensibility, the grammar and associated generators
are encoded in an external text file. For example, the follow-
ing defines the grammar production for addition:

ADD :: [AT0] <R> plus <R> [RT]
{ADD(%1 ’EXPR_LHS’, %3 ’EXPR_RHS’)}
‘%1 + %3‘ ;

In this example, on the first line, ADD is the name of the
production’s LHS nonterminal, AT0 and RT are two other
nonterminals, plus is a terminal name, and R is the re-
lation code for the RIGHT relation. The second and third
lines represent the tree and string generators, respectively.
The second line of the production, between the braces, de-
scribes a tree with root label “ADD” with two children. The
first child is labeled “EXPR_LHS” (the left hand operand
of the addition operation) and is linked to the tree output
by the tree generator for AT0. The second child is labeled
“EXPR_RHS” (the right hand operand) and is linked to the
tree output by the generator for RT. The string generator is
described on line 3 (between the back ticks). As with tree
generation, the %n notation indicates where to insert the out-
put of string generators associated with the left hand operand
AT0 and the right hand operand RT.

In our grammar, semantic content is described by the
root labels produced by tree generators. The ADD production
above therefore has semantic type ADD. Not all productions
include tree generators, however. For example, consider the
following three productions: (Pipe symbols are used on the
RHS to separate distinct productions.)

RT :: [ADD] | [SUB] | [AT0] ;

The nonterminal symbol RT simply represents a collec-
tion of expression types with the same level of precedence,
in this case, addition, subtraction, and an isolated addition
term.

In this example, each of the three nonterminals that the
symbol RT can produce have distinct semantic types. RT it-
self does not have a fixed semantic type. Rather, it inher-
its the expression tree (and hence the semantic type) given
by the tree generator for the single nonterminal it produces

in a particular derivation step. Unlabelled nonterminals like
RT can therefore represent different semantic types in differ-
ent contexts. Unlabelled nonterminals can derive other unla-
belled nonterminals, so the semantic types they can assume
are not always immediately apparent from their productions.

2.1.2. Random derivations

A random expression generator must balance two properties
to be useful. It must generate samples typical of math ex-
pressions written on tablet computers (so that machine learn-
ing algorithms have a representative training set). It must
also generate as many combinations as possible of bounding
box shapes and relative positions (so that algorithms can be
trained on low-probability spatial relationships). However,
only a relatively small number of examples can be collected
from any subject. In our experience, approximately 225
equations can be written by a subject in a one hour session.
As a result, there exists a tradeoff between accurately repre-
senting the frequency of various mathematical relationships
and providing a broad enough coverage of various mathe-
matical relationships to fully train and test a recognizer. As
discussed in section 1, our approach opts for broader cov-
erage at the expense of reflecting the true frequency with
which particular mathematical relationships occur in real-
world expressions. This means, for example, that in our gen-
erated expressions, exponents, subscripts, and fractions are
more common than one would normally encounter.

Random expressions are generated using the r-CFG for
mathematical expressions described above. Fuzzy relation-
ship values are not relevant when using a grammar to gen-
erate expressions. The essential idea of generating a ran-
dom equation is quite basic: given a current symbol, choose
a grammar production arbitrarily and recurse on each non-
terminal in the RHS. However, care must be taken to avoid
three problems:

1. Recursing blindly may generate extremely large expres-
sions. Expression length must be constrained since the
expressions are to be transcribed by human users.

2. Our recognition grammar is designed to reflect normal
operator precedence; however, lower-precedence opera-
tions (e.g. addition) have shorter derivation distance from
the start symbol than higher-precedence operations (e.g.
multiplication). In other words, choosing productions at
random would give a biased set of expressions with
lower-precedence operations over-represented.

3. Ascender (e.g. upper-case symbols, some lower-case
symbols such as ‘b’), descender (e.g. ‘p’), and base-
line (e.g. ‘a’, ‘o’) symbols provide different bounding
box profiles for relationships. We must ensure that no
type of symbol (ascender, descender, baseline) is over-
represented in spatial relationships.

To limit expression length, we introduce a parameter 0 <
pinc ≤ 1. The algorithm begins with p = 0. Instead of simply
choosing a production, it draws x from a uniform distribution

127S. MacLean, et al. / Tools for the Efficient Generation of Hand-Drawn Corpora Based on Context-Free Grammars

on [0,1]. If x < p, a derivation leading to a single terminal
symbol is selected if possible; otherwise p is incremented
by pinc, a random production is selected, and the algorithm
recurses. This process does not guarantee a maximum ex-
pression size, but, by varying the value of pinc, we can con-
trol the expected output size while still allowing a degree of
variability in expression length.

To ensure that low-precedence operations are not over-
represented, note that each precedence level is represented
by a single unlabelled nonterminal such as RT from the sec-
ond example in section 2.1.1. If the algorithm reaches a non-
terminal which can derive multiple semantic meanings, it se-
lects a meaning at random, derives the nonterminal having
that meaning, and recurses. Otherwise, it selects a random
production and proceeds as above. This modification gives
a uniform distribution over the various mathematical opera-
tions supported by the grammar.

Finally, to obtain broader coverage of relative bounding
box positions, the Latin and Greek letter symbols in the
grammar were grouped into classes based on their charac-
teristic shape with respect to a baseline (ascender, descen-
der, baseline). The grammar was modified so that each class
is produced by a single non-terminal. In this way, we ob-
tained a uniform distribution over symbol shapes rather than
symbols.

Below are two examples of expressions generated by the
above process.

[
B
7

]N+6

β+
z−L (v)√

s

Z
24dXh

Figure 1: Generated expressions

2.1.3. Output formats

The algorithm sketched above generates random derivations
from a grammar. Using the tree generator, one can produce
and serialize parse trees for use in recognizer testing. Using
the string generator, one can generate LATEX strings, which
can be converted to images and displayed to subjects for
transcription. Strings representing generated expressions for
use in a computer algebra system such as Maple or Mathe-
matica can also be generated. The latter is particularly useful
for automatically evaluating recognizer accuracy via simple,
built-in arithmetic. These structures are generated for each
randomly-derived expression.

The algorithm also creates a derivation string de-
scribing the spatial layout generated by the deriva-
tion. For example, suppose the expression 2 + ma +
b
3 is generated. The corresponding derivation string
is 2 _R_ plus _R_ (m _AR_ a) _R_ plus _R_

(b _B_ horzline _B_ 3). Here, the parentheses in-
dicate nested subexpressions and the underscores de-
limit relation codes (_R_=RIGHT, _AR_=ABOVE-RIGHT,
B=BELOW). The derivation strings are used to guide the
automatic ground-truthing process which we will describe in
section 2.3.

2.1.4. Supplementary expressions

In order to obtain training data for more common expres-
sions and to accomodate subjects’ expectations for tran-
scribing math equations, 53 common expressions were pre-
pared for transcription. For these expressions, the parse
trees, LATEX strings, and derivation strings were written by
hand. An example of a prepared expression appears in Fig-
ure 2. Common expressions were interspersed with random
derivations during transcription. Including a set of common
expressions adds value to the corpus. The corpus comprises
unique expressions as well as multiple samples of a single
expression.

−b+
√

b2−4ac
2a

Figure 2: A prepared expression

2.2. Data Collection

Twenty undergraduate students from the University of Wa-
terloo participated in our study. Nineteen participants had
high mathematical literacy (were in the Faculty of Math or
Engineering) and one, from the Faculty of Arts, had mod-
est mathematical literacy. Participants were recruited using
posters and were given a $10 gift certificate in exchange for
transcribing mathematical expressions for a one-hour ses-
sion.

Data was collected using various models of Tablet PC’s
running custom collection software using the Microsoft Ink
SDK under Windows XP. A screen shot of our data col-
lection software is shown in Figure 3. The equations that
participants were asked to transcribe consisted of automati-
cally generated expressions. As well, 53 prespecified expres-
sions, as described in section 2.1, were included in the first
150 expressions drawn by each participant. The software
collected position, time and pressure information for each
stroke drawn. Examples of typical transcribed equations are
shown in Figures 4 and 5.

Each session was organized as follows. Participants were
seated at a table in an ergonomic office chair in a private
room. A Tablet PC was placed in front of them displaying the
transcription interface shown in Figure 3. The functionality
of the interface was described to participants and demon-
strated by the researcher conducting data collection. Partic-
ipants were asked to draw expressions presented at the top
of the screen and then click ‘Next’ to generate a new expres-
sion. They could also click ‘Clear’ to clear the display and

128 S. MacLean, et al. / Tools for the Efficient Generation of Hand-Drawn Corpora Based on Context-Free Grammars

Figure 3: Our collection software in action.

Figure 4: A hand-drawn, randomly generated expression.

redo an expression. Participants were asked to write as legi-
bly as they would on an assignment they would hand in for
grading. Finally, participants were told that if they did not
recognize a symbol, or were unsure how to draw a symbol,
they could either ask for help or skip the expression.

As can be expected in such a study, a number of samples
were discarded. Our basic discard policy was that if an equa-
tion was incomplete or illegible to a human expert, it was
discarded. An example of a discarded equation is shown in
figure 6. We felt it was unreasonable to expect an automated
system to correctly infer the expected equation if a human
expert was unable to do the same.

In all, 5119 hand-drawn expressions were collected from
20 users. Of these, 109 were blank and 355 were illegi-
ble, resulting in 4655 valid hand-drawn expressions. Within
these equations there were 25963 symbols drawn and 21264
relationships between subexpressions. The next section de-
scribes the process by which ground-truth was established
for these expressions.

2.3. Automatic Ground-Truth Generation

When generating a corpus of ground-truthed data to train
and/or validate recognition systems, it is convenient to use
a program to automatically ground-truth at least part of the
collected data. An obvious argument against this approach is

Figure 5: A hand-drawn, predetermined expression.

Figure 6: A discarded, illegible equation.

that one needs a recognition system to generate the ground-
truth data. The ground-truth annotations produced by the
first recognizer are then used to train a second, new recogni-
tion system. With this approach, any new recognition system
is constrained by the recognition system used to generate the
initial ground-truth data. If the initial recognition system is
less accurate than the new recognition system, there is no
way to measure recognizer improvement without manually
annotating the testing corpus with ground-truth.

One way to overcome the disadvantages associated with
manual ground-truthing is to have available additional data
associated with a hand-drawn candidate expression. In our
experiment, we have this data available: we computationally
generated a candidate expression, including data represent-
ing its expression tree and its string representation, and then
asked our participants to transcribe these expressions. How-
ever, we do not know which strokes the participants drew
correspond to which symbols in the string representations.
Ground-truthing is, therefore, a tightly-constrained recog-
nition task consisting of matching the symbol labels in the
derivation string to groups of strokes in a handwriting sam-
ple. Because of the additional constraints on possible rec-
ognizer output, a weak recognition engine should generate
useful ground-truth.

2.3.1. Algorithm

We devised a naive greedy algorithm for matching strokes
to derivation strings. The algorithm uses a symbol rec-
ognizer and spatial relation classifiers trained on a small
bootstrap data set which was manually annotated with
ground-truth. This bootstrap data is independent of our
main corpus and was obtained by having several re-
searchers in our group draw a small set of expressions.
The ground-truthing algorithm is based on an inaccu-
rate but somewhat useful heuristic: given a derivation
string, remove all the parentheses and match the deriva-
tion string to sketched equation symbol by symbol. For ex-
ample, the derivation string in section 2.1.3 is interpreted
as 2 _R_ plus _R_ m _AR_ a _R_ plus _R_ b
B horzline _B_ 3.

The algorithm considers a derivation string of the form
S0r1S2r2 . . .rnSn where the Si are names of terminal symbols
and the ri are any of the spatial relations. Given such a string,
suppose that symbols S0, . . . ,Sm−1 have been matched to ink
with confidence z that the match is correct. The ink used

129S. MacLean, et al. / Tools for the Efficient Generation of Hand-Drawn Corpora Based on Context-Free Grammars

by symbols S0, . . . ,Sm+1 is marked “used”. All other ink is
currently “unused”. To match symbol Sm, the algorithm pro-
ceeds as follows:

Order all possible occurrences of Sm in the input ink in
decreasing order of confidence
for each possible occurrence of Sm do

Let c be the local confidence of Sm
Mark ink strokes comprising this occurence “used”
Recurse at Sm+1 with score zc
if a match was found then

return the match
end if
Mark ink strokes comprising this occurence “unused”

end for
return failure

The local confidence c computed by the algorithm is the
product of relational and symbol recognition confidences.

This algorithm may take exponential time to report failure
in the worst case. During testing the algorithm was stopped
if it had not reported a match after two minutes. Details on
the character recognizer are given in [Mac09].

2.3.2. Results

To test the accuracy of our algorithm, the entire corpus of
4655 expressions was annotated manually. Automatically-
annotated data was then compared to the manually-
annotated data using two scenarios.

1. The algorithm described in Section 2.3.1.
2. Pre-training the symbol recognizer for each user on ap-

proximately 20% of their input data, selected randomly,
and then running the algorithm from Section 2.3.1.

Scenario 2 was introduced because the algorithm fre-
quently failed when it could not match a hand-drawn symbol
to a symbol in the specified input string. The second scenario
ensures that the symbol recognizer has the greatest possible
chance to match user-drawn symbols against symbols in the
generated expression tree.

For each scenario, three accuracy measurements are re-
ported, normalized to give percentages:

1. Full expression: In this measurement, an annotated sam-
ple is considered correct if all symbols and relations
are correctly annotated and all subexpression bounding
boxes exactly match their counterparts in the manually-
annotated ground-truth.

2. Exact bounding-box: This measurement concerns in-
dividual relations arising from the randomly-generated
derivation. A relation between any two subexpressions
is considered correct if its constituent symbols are cor-
rect and the automatically-annotated bounding boxes of
both subexpressions exactly match their counterparts in
the manually-annotated ground-truth.

3. Bounding-box overlap: This measurement also concerns
individual relations. In it, each relation is assigned a
score between 0 and 1. The score is computed by averag-
ing bounding-box similarity measurements from each of
the automatically-annotated relation’s constituent subex-
pressions to their counterparts in the manually-annotated
ground-truth. We define bounding-box similarity as the
ratio of the area of intersection of the two boxes to the
area of the larger box. Two boxes thus have similarity 0
if they are disjoint and similarity 1 if they are identical,
with a range of possible values in between.

These three measurements are defined in increasing or-
der of permissiveness of match. Full expression accuracy re-
quires every symbol, relation, and bounding box in an entire
sample to be annotated precisely the same as in the man-
ual ground-truth, while bounding-box similarity accuracy al-
lows symbol bounding boxes to disagree slightly but still
count as a close match.

The ground-truthing algorithm produces highly accurate
ground-truth for hand-drawn input when compared to man-
ual ground-truth, as shown in Figure 7. For scenario 1,
the algorithm achieved 90% full expression accuracy. Ex-
act bounding-box accuracy was 93.6% and overlap accuracy
was 97.7%. The accuracy rates for scenario 2 are about the
same. The error bars in the graph indicate the algorithm’s
accuracy on the data of the most- and least- accurately anno-
tated subjects.

Scenarios 1 and 2 differ significantly in their reject rates.
The algorithm either produces highly-accurate ground-truth
or rejects the entire expression. For scenario 1, the reject rate
was 55.1%, while for scenario 2, it dropped to 46.5%. This
reject rate will be discussed in more detail in section 3.

The most appropriate measure of annotation accuracy de-
pends on one’s application. If annotated data is used to train
spatial relation classifiers on bounding box information, it
is appropriate to count similar, but not identical, bounding-
box annotations as partially correct because they may still
provide useful training data. On the other hand, if one uses
automatically-generated ground-truth to test the accuracy of
an isolated symbol recognition system, then full expression
or exact bounding-box accuracy may be a more appropriate
measurement.

3. Discussion

Our automatic ground-truthing method has a high accuracy
rate but also suffers from a high reject rate. It is important to
note that the accuracy of this annotation technique remained
high through all experiments. While it would be preferable
to maintain accuracy with a lower reject rate, the present al-
gorithm is far more useful than it would be if both accuracy
and reject rates were lower. Accurately ground-truthing even
half of a large corpus automatically would obviate a signifi-
cant amount of manual annotation.

130 S. MacLean, et al. / Tools for the Efficient Generation of Hand-Drawn Corpora Based on Context-Free Grammars

Figure 7: Automatic annotation accuracy

It is not clear how to further reduce the rejection rate
of the ground-truthing algorithm. In scenario 1, described
in section 2.3.2, a number of samples were rejected due to
symbol classification errors. The errors arose because the
generic models in the symbol classifier differed from par-
ticular users’ handwriting styles. By pre-training on 20%
of samples, the rejection rate was reduced from 55.1% to
46.5%, as is shown in the results of scenario 2. However,
experiments pre-training the symbol recognizer on a larger
proportion of samples did not demonstrate significant im-
provement.

One approach to lowering the reject rate is to incorpo-
rate manual intervention directly into the ground-truthing
application. In cases currently rejected due to low recogni-
tion scores, an operator could manually annotate the problem
symbols and let the automatic procedure handle the rest. We
expect such an approach would handle the majority of the
cases rejected by the current system while requiring only
a fraction of the time required for full manual annotation.
Other approaches to reducing the reject rate may also be pos-
sible. Our corpus includes the entire set of expressions, and
other researchers are free to experiment with algorithms to
perform symbol identification and subexpression relation as-
signment.

The template expressions transcribed by study partici-
pants were generated by uniform random sampling of gram-
mar derivations. We intended for this approach to prevent
researcher bias from affecting our sample selection. If one
believes that any selection of samples for a corpus is bi-
ased, our approach, at the very least, makes the selection
of ground-truth expressions transparent. We did not control

the selection of expressions to ensure coverage of structures
well-recognized by our system. We also had no control over
the frequency with which different spatial relationships ap-
peared in our corpus. Our method of generating expressions
ensured that we did not unintentionally bias our samples to-
ward (or away from) symbols or relations which are recog-
nized more accurately than others.

Using a context-free grammar to generate expressions al-
lows for future expansion and enhancement of the corpus.
Creating additional samples for more subjects to transcribe
is completely automated. Expanding the corpus to cover new
classes of expressions or symbols, such as those used in set
theory for example, is equally trivial. Rather then manually
creating hundreds or thousands of new templates, a few addi-
tions to the grammar allow for a virtually unlimited number
of new templates drawn from the newly added class.

It is interesting to note that in order to verify our accu-
racy claims, we manually ground-truthed the entire corpus.
Unfortunately, with any new technique, some measure of
its effectiveness is necessary. In this case, to test how well
we could ground-truth data, we needed ground-truthed data
against which to compare our algorithm’s output. However,
we now have the confidence that, should we expand our cor-
pus, we can automate the ground-truthing and still expect
high accuracy in the data we generate.

Upon review of our data collection techniques, we have
some observations that may be relevant to other researchers.
Some participants had data entry errors which could have
been prevented if they had asked for guidance. The hand-
writing in users’ first few transcriptions was often shaky due
to lack of experience using Tablet PCs. Users sometimes left
expressions blank or incomplete. Some users were unfamil-
iar with the shapes of certain Greek letters and copied the
typeset representation. In future studies we will likely in-
spect each participant’s data after a few samples and offer
suggestions.

We believe the techniques and results presented in this pa-
per have implications beyond mathematical expression gen-
eration and are applicable to any sketch recognition domain
where the domain can be expressed by a formal grammar. In
domains such as chemistry modeling, UML diagramming,
military course of action diagrams, or electric circuits, it
is possible to generate large collections of examples and
ground-truth using random walk and ground-truthing tech-
niques similar to those we have used.

4. Related Work

We are not aware of any work on tools and algorithms to
aid in the generation and automatic ground-truthing of large,
varied on-line sketch corpora. However, OCR researchers
have developed several techniques for automatically gener-
ating ground-truthed training and testing data. These tech-
niques generally either generate perfectly ground-truthed

131S. MacLean, et al. / Tools for the Efficient Generation of Hand-Drawn Corpora Based on Context-Free Grammars

synthetic data (eg. [HBAT07], [OP00]), or match real in-
puts to separate ground-truth created by hand, potentially
with mistakes in both matching and ground-truthing (eg.
[BSB08]). Occasionally aspects of both approaches are com-
bined as in [KBNJ06].

Our techniques for generating and ground-truthing data
have much in common with both approaches, but also have
some important differences. Synthetic data is generated as in
the first approach, but this data is intended to be transcribed
by human users. Real input is matched to ground-truth, but
this ground-truth is automatically generated and free from
errors. By decoupling expression generation from ground-
truth generation, we are free to experiment with algorithms
for each task separately.

As noted in the introduction, research in handwritten
mathematics recognition has been ongoing for decades and
the field is still an active area of research. It is becoming
standard practice to study accuracy and usability by ask-
ing participants to transcribe a collection of expressions, as
in [LaV06], [SNA99], and [LLM∗08b]. However, we are not
aware of any large corpora of handwritten mathematical ex-
pressions. Most studies have collected a modest set of prede-
termined expressions, making it difficult to predict the rec-
ognizer’s capacity to generalize to more varied expression
sets.

Among the papers cited above there is substantial vari-
ation in the size of the testing suite, the number of partic-
ipants, the types of expressions, and the number of recog-
nized symbols. Furthermore, there are differences in the cri-
teria used to determine correctness. Is an expression correct
if all the symbols are recognized correctly? If the system in-
fers the correct expression despite misclassified symbols? If
a recognizer produces multiple interpretations, must the first
result be correct? If not, how many incorrect interpretations
are tolerable?

5. Conclusions

In this paper, we described a technique for generating
unique mathematical expressions by randomly constructing
a context-free grammar derivation. Our procedures for col-
lecting hand-drawn expressions were discussed, and a novel
technique for automatically generating ground-truth was
presented. Although these techniques were demonstrated by
building a large corpus of hand-drawn mathematical expres-
sions, the methods can be applied to any sketch recognition
domain that can be described by a formal grammar.

The mathematical corpus described in this paper is avail-
able at

http://www.cs.uwaterloo.ca/scg/MathBrush/mathdata/

We hope that other researchers will find the data useful not
only to aid in the development of their own character or math

recognition systems, but also to facilitate comparison be-
tween systems. For a comparison to be meaningful, there
should exist a common, transparent, and unbiased set of
equations, consistent separation of the training data from the
testing data, and similar criteria for determining accuracy.

References
[BA69] BLACKWELL F. W., ANDERSON R. H.: An on-line sym-

bolic mathematics system using hand-printed two-dimensional
notation. In Proceedings of the 1969 24th national conference
(New York, NY, USA, 1969), ACM, pp. 551–557.

[BCZ02] BLOSTEIN D., CORDY J. R., ZANIBBI R.: Applying
compiler techniques to diagram recognition. In ICPR ’02: Pro-
ceedings of the 16 th International Conference on Pattern Recog-
nition (ICPR’02) Volume 3 (Washington, DC, USA, 2002), IEEE
Computer Society, pp. 127–130.

[BSB08] BEUSEKOM J. V., SHAFAIT F., BREUEL T. M.: Auto-
mated ocr ground truth generation. In Document Analysis Sys-
tems, 2008. DAS ’08. The Eighth IAPR International Workshop
on (Sept. 2008), pp. 111–117.

[HBAT07] HEROUX P., BARBU E., ADAM S., TRUPIN E.: Auto-
matic ground-truth generation for document image analysis and
understanding. In Document Analysis and Recognition, 2007.
ICDAR 2007. Ninth International Conference on (Sept. 2007),
vol. 1, pp. 476–480.

[JZ04] JR. J. J. L., ZELEZNIK R. C.: Mathpad2: a system for the
creation and exploration of mathematical sketches. ACM Trans-
actions on Graphics (Proceedings of SIGGRAPH 2004) 23, 3
(2004), 432–440.

[KBNJ06] KUMAR A., BALASUBRAMANIAN A., NAMBOODIRI
A., JAWAHAR C.: Model-Based Annotation of Online Handwrit-
ten Datasets. In Tenth International Workshop on Frontiers in
Handwriting Recognition (Oct. 2006), Guy Lorette, (Ed.), Uni-
versité de Rennes 1, Suvisoft.

[LaV06] LAVIOLA JR. J. J.: An initial evaluation of a pen-based
tool for creating dynamic mathematical illustrations. In Third Eu-
rographics Workshop on Sketch-Based Interfaces and Modeling
(SBIM) (New York, NY, USA, 2006), ACM, pp. 157–164.

[LC82] LEVY H. M., CLARK D. W.: On the use of benchmarks
for measuring system performance. SIGARCH Comput. Archit.
News 10, 6 (1982), 5–8.

[LLM∗08a] LABAHN G., LANK E., MACLEAN S., MARZOUK
M., TAUSKY D.: Mathbrush: A system for doing math on pen-
based devices. The Eighth IAPR Workshop on Document Analy-
sis Systems (DAS) (Sep 16-19 2008).

[LLM∗08b] LABAHN G., LANK E., MARZOUK M., BUNT A.,
MACLEAN S., TAUSKY D.: Mathbrush: A case study for in-
teractive pen-based mathematics. Fifth Eurographics Workshop
on Sketch-Based Interfaces and Modeling (SBIM) (June 11-13
2008).

[Mac09] MACLEAN S.: Parsing handwritten mathematics. Mas-
ter’s thesis, David R. Cheriton School of Computer Science, Uni-
versity of Waterloo, 2009.

[OP00] OKUN O., PIETIKAINEN M.: Automatic ground-truth
generation for skew-tolerance evaluation of document layout
analysis methods. In Pattern Recognition, 2000. Proceedings.
15th International Conference on (2000), vol. 4, pp. 376–379
vol.4.

[SNA99] SMITHIES S., NOVINS K., ARVO J.: A handwriting-
based equation editor. In Graphics Interface (1999), pp. 84–91.

132 S. MacLean, et al. / Tools for the Efficient Generation of Hand-Drawn Corpora Based on Context-Free Grammars

