
IEEE/ EG Symposium on Volume and Point-Based Graphics (2008)
H.- C. Hege, D. Laidlaw, R. Pajarola, O. Staadt (Editors)

Pre-Integrated Volume Rendering for

Multi-Dimensional Transfer Functions

M. Kraus

Computer Graphics & Visualization Group, Technische Universität München

Abstract

This work presents an efficient extension of pre-integrated volume rendering for multi-dimensional transfer func-

tions. Since even two-dimensional transfer functions can result in strong rendering artifacts that cannot be resolved

by standard ray casting, we propose a space-covering volume sampling scheme that does not require additional

samples of the volume data. Based on this sampling scheme, our approach computes box integrals of the transfer

functions, which are evaluated with the help of a small number of texture lookups in tabulated integral functions.

We demonstrate the achieved performance and improvements in image quality with a prototypical GPU (graphics

processing unit) implementation.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism

1. Introduction

While pre-integrated volume rendering [EKE01] has been
successfully combined with many direct volume render-
ing algorithms [KE04], its application to multi-dimensional
transfer functions has remained difficult. Previously pub-
lished approaches [KPI∗03] are restricted to particular trans-
fer functions and rendering algorithms; thus, they lack the
general applicability of pre-integrated volume rendering.

On the other hand, multi-dimensional transfer functions
have been employed in some of the earliest works on vol-
ume visualization [Lev88] and continue to attract research
interest [KD98, KKH02]. Thus, the application for pre-
integration to multi-dimensional transfer functions was con-
sidered one of the main open questions in pre-integrated vol-
ume rendering [KE04].

The main technical challenge of a naive application of
pre-integrated volume rendering to multi-dimensional trans-
fer functions is the dimensionality of the required pre-
integrated lookup tables since a one-dimensional transfer
function already requries at least a two-dimensional lookup
table (for constant sampling distance) [EKE01], and a two-
dimensional transfer function would require at least a four-
dimensional lookup table, which is usually of prohibitive
size.

We address this problem by the use of integral functions
of the same dimension as the transfer functions. In the case
of two-dimensional transfer functions, this allows for an ef-
ficient implementation on modern GPUs based on floating-
point textures [HSC∗05]. A similar approach was applied
to accelerate the computation of pre-integrated lookup ta-
bles [EKE01]; however, the previously employed approxi-
mations for opacities and colors were only applicable under
certain restrictions and resulted in severe approximation er-
rors for general transfer functions and large sampling dis-
tances.

To overcome this problem, we propose a new formula for
the approximation of colors in Section 3. Furthermore, we
present a variant that is more suitable for the rendering of
isosurfaces [Lev88, Kra05] and generalize this approach to
multi-dimensional transfer functions.

The second major problem posed by general multi-
dimensional transfer functions are strong aliasing artifacts.
For example, opacity and color can be assigned to the inter-
section of two isosurfaces by specifying a sharp point-like
peak in a two-dimensional transfer function. This intersec-
tion can correspond to an arbitrarily fine line in the volume
data, which cannot be rendered by standard volume ray cast-
ing algorithms. On the other hand, previously published vol-

c© The Eurographics Association 2008.

97

http://www.eg.org
http://diglib.eg.org

M. Kraus / Pre-Integrated Volume Rendering for Multi-Dimensional Transfer Functions

ume antialiasing techniques [YMC06] are likely to result in
excessive blurring in these particular cases.

In order to allow for the possibility of rendering un-
blurred lines (and points for three-dimensional transfer func-
tions), we propose a space-covering sampling scheme in
Section 4. Thus, the possibility of rendering arbitrarily thin
isosurfaces with the help of one-dimensional pre-integrated
volume rendering [EKE01] is successfully generalized to
lower-dimensional point sets for higher-dimensional transfer
functions. Furthermore, we present a GPU-based technique
for buffering volume samples to avoid the need for additional
samples of the volume data, which are particularly costly for
compressed data sets [FAM∗05].

Results obtained with a prototypical GPU implementation
of the proposed techniques are presented in Section 5. Be-
fore we present our research, however, related work is dis-
cussed in the next section.

2. Related Work

Volume rendering with particular multi-dimensional trans-
fer functions was proposed by Levoy [Lev88] to improve
the rendering of surfaces in volume data sets. More gen-
eral multi-dimensional transfer functions were suggested
later, for example by Kindlmann and Durkin [KD98] and
Kniss et al. [KKH02]. Kniss et al. [KPI∗03] also proposed
an extension of pre-integrated volume rendering for multi-
dimensional transfer functions, which however was limited
to transfer functions specified by Gaussian primitives.

Pre-integrated volume rendering itself is related to a tech-
nique that was first proposed by Max et al. [MHC90] and
later extended and applied to hardware-accelerated tetrahe-
dra projection by Roettger et al. [RKE00]. The application
to volume rendering of three-dimensional textures was first
suggested by Engel et al. [EKE01]. The common feature
of these techniques is a tabulation of the volume render-
ing integral such that a potentially expensive integration is
replaced by a table lookup. A more detailed survey is pro-
vided by Kraus and Ertl [KE04]. Pre-integrated volume ren-
dering is still an active research topic; for example, Lum
et al. [LWM04] have shown how to pre-integrated Phong-
lighting and Kye et al. [KHS05] have presented an alterna-
tive approximation of opacities based on integral functions.

There are also recent research results on the volume
rendering integral and its evaluation. For example, Kraus
[Kra05] derived Levoy’s gradient factor for surface render-
ing [Lev88] from a scale-invariant volume integral with ad-
ditional silhouette enhancement, and an efficient method for
antialiased rendering of multi-resolution volume hierarchies
was suggested by Younesy et al. [YMC06].

The increasing flexibility and programmability of graph-
ics hardware in the form of GPUs has led to numerous new
methods in real-time rendering and hardware-accelerated

volume rendering. For example, on-the-fly decompression
of volume data has been proposed by Fout et al. [FAM∗05].
Thus, data transfer between main memory and graphics
memory can be avoided by storing compressed data in the
graphics memory. However, the required volume decom-
pression tends to result in more costly volume sampling op-
erations.

Texture mapping with summed-area tables, which was in-
troduced by Crow [Cro84], is another example of a tech-
nique that was recently enabled by GPUs as demonstrated
by Hensley et al. [HSC∗05].

3. Volume Pre-Integration Based on Integral Functions

This section discusses the mathematical foundation of our
approach. In particular, we derive new approximations for
opacities and colors—first in one dimension and then for
multi-dimensional transfer functions. In Section 4, we will
describe our algorithm for an efficient evaluation of the pro-
posed integrals.

3.1. Standard Volume Rendering Integral

For the derivation of our new formulas for pre-integrated
opacities and colors, we will adhere quite closely to the no-
tation of Engel et al. [EKE01] and Kraus and Ertl [KE04]. In
particular, we will consider a transfer function τ(s) ∈ [0,∞[
for the extinction coefficient and a color transfer function
c(s) that has to be multiplied with τ(s) to yield an actual
color intensity τ(s)c(s) for a given scalar value s.

Pre-integrated volume rendering is based on precomput-
ing a lookup table of opacities and colors for a set of pa-
rameter tuples (sf,sb,d) where sf and sb denote the scalar
value at the front and back of a short segment of a view ray
and d specifies the spatial length of this segment. The main
assumption of pre-integrated volume rendering is that the
scalar data along the segment is well approximated by a lin-
ear interpolation between sf and sb. In this case, the volume
rendering integral for a segment characterized by (sf,sb,d)
can be approximated by a lookup in the precomputed table.
The opacities α(sf,sb,d) and colors C̃ (sf,sb,d) in this table
are computed as:

α(sf,sb,d)
def
=

1− exp
(

−
∫ 1

0 τ((1−ω)sf +ωsb)ddω
)

, (1)

C̃ (sf,sb,d)
def
=

∫ 1
0 τ((1−ω)sf +ωsb)c((1−ω)sf +ωsb)

× exp
(

−
∫ ω

0 τ
((

1−ω′)sf +ω′sb
)

ddω′)ddω. (2)

To accelerate the computation of these integrals, Engel et
al. [EKE01] suggested the following equations, which ne-
glect self-attenuation of colors:

α(sf,sb,d) = 1− exp
(

−d
sb−sf

∫ sb
sf

τ(s)ds
)

(3)

c© The Eurographics Association 2008.

98

M. Kraus / Pre-Integrated Volume Rendering for Multi-Dimensional Transfer Functions

= 1− exp
(

−d
sb−sf

(T (sb)−T (sf))
)

, (4)

C̃ (sf,sb,d) ≈ d
sb−sf

∫ sb
sf

τ(s)c(s)ds (5)

= d
sb−sf

(K (sb)−K (sf)) . (6)

with the integral functions T (s)
def
=

∫ s
0 τ

(

s′
)

ds′ and K (s)
def
=

∫ s
0 τ

(

s′
)

c
(

s′
)

ds′.

While these equations were originally proposed to ac-
celerate the precomputation of lookup tables in software,
they can also be implemented on modern GPUs as the ex-
ponential function can be evaluated efficiently in fragment
programs and the integral functions may be implemented
with the help of floating-point textures, which provide suf-
ficient precision. The advantage of using lookup tables for
the one-dimensional integral functions T (s) and K (s) com-
pared to the three-dimensional lookup tables for α(sf,sb,d)
and C̃ (sf,sb,d) (or two-dimensional tables for constant d)
is the strongly reduced memory requirement. This is even
more important in the case of multi-dimensional transfer
functions, as we will see in Section 3.3.

On the other hand, the approximation for C̃ (sf,sb,d) is
difficult to evaluate accurately for sf ≈ sb and diverges for
d →∞ while it should converge to an (opaque) color. Thus,
the approximation is only valid for dτ(s) � 1. Therefore,
we propose a new approximation for C̃ (sf,sb,d), which con-
verges to a constant color for large d (as α converges to 1)
and can be evaluated as efficiently as the previously pro-
posed approximation. Moreover, the new formula allows for
a numerically robust implementation.

We derive our new approximation by splitting the integral
for C̃ (sf,sb,d) in Equation 2 into the product of a weighted
average of the colors between sf and sb and the volume ren-
dering integral for a constant color:

C̃ (sf,sb,d) ≈
∫ 1

0 τ((1−ω)sf+ωsb)c((1−ω)sf+ωsb)ddω
∫ 1

0 τ((1−ω)sf+ωsb)ddω

×
∫ 1

0 τ((1−ω)sf +ωsb)

× exp
(

−
∫ ω

0 τ
((

1−ω′)sf +ω′sb
)

ddω′)ddω (7)

=
|K(sb)−K(sf)|
|T (sb)−T (sf)|

α(sf,sb,d) . (8)

For a robust evaluation, we increase the denominator by a
small constant 0 <

∼ ε� 1; e.g., 10−10. This hardly affects the
result for |T (sb)−T (sf)|� ε while it decreases the ratio for
|T (sb)−T (sf)| ≈ ε. However, this decrease results only in a
small absolute error of C̃ (sf,sb,d) since α is approximately
zero in this case.

Thus, we achieve a numerically robust approximation of
C̃ (sf,sb,d), which converges to an averaged color for large
d, i.e., for α≈ 1. Moreover, we can replace the three- or two-
dimensional lookup tables by one-dimensional tabulated in-
tegral functions, which require significantly less memory.
Before generalizing this technique for multi-dimensional

transfer functions, an important variant for isosurface ren-
dering is discussed in the next section.

3.2. Gradient-Dependency for Surface Rendering

Using direct volume rendering for (iso)surface rendering
was investigated, for example, by Levoy [Lev88], Kindl-
mann and Durkin [KD98], and Kraus [Kra05]. Various de-
pendencies of the local opacity on the gradient of the scalar
data have been suggested to render surfaces since they can
become transparent at positions of high gradient magnitude
if this dependency is missing.

Here we follow the work by Kraus [Kra05], which sug-
gests that a scaling of the extinction coefficient by the gra-
dient magnitude of the scalar data is a good approximation
to render isosurfaces with gradient-independent opacity and
silhouette enhancement. To include this modification in our
approach, we only have to replace the computation of α by:

α(sf,sb,d, |∇s|) =

1− exp
(

−d
sb−sf

(T (sb)−T (sf)) |∇s|
)

. (9)

This value of α is also used to multiply colors in Equation 8;
thus, no additional modifications of the computation of col-
ors is necessary.

In order to combine standard volume rendering and sur-
face rendering in a single visualization, we propose an ad-
ditional, user-specified transfer function χ(s) ∈ [0,1] for the
“surfaceness” at the scalar value s. A surfaceness of 0 speci-
fies the absence of any surface, i.e., standard volume render-
ing, while a surfaceness of 1 specifies a surface at s, i.e., full
gradient-dependent scaling. Thus, α is computed by:

α(sf,sb,d, |∇s|) = 1− exp

(

−d
sb−sf

(T (sb)−T (sf))

×
(

1−χ
(

sf+sb
2

)

(1−|∇s|)
)

)

.(10)

Scalings of the opacity by other functions of the gradient
f (∇s) (instead of |∇s|) should be integrated analogously
since this guarantees that the transparency α stays within the
interval [0,1] and that colors are changed consistently.

3.3. Multi-Dimensional Transfer Functions

In this section, the proposed approximations are general-
ized for two-dimensional transfer functions. The case of
higher-dimensional transfer functions is straightforward but
the equations become rather cumbersome.

Given two scalar fields s1 and s2 as well as two-
dimensional transfer functions τ(s1,s2) and c(s1,s2), we
want to compute an opacity and color for any tuple
(

s1,f,s2,f,s1,b,s2,b,d
)

were s1,f and s2,f are the samples at
the front of the segment of the view ray, s1,b and s2,b are the
samples at its back, and d is its length.

c© The Eurographics Association 2008.

99

M. Kraus / Pre-Integrated Volume Rendering for Multi-Dimensional Transfer Functions

+

(

s1,max,s2,max

)

–

(

s1,min,s2,max

)

–

(

s1,max,s2,min

)

+

(

s1,min,s2,min

)

s2

s1

Figure 1: Integration of a rectangular region specified by

s1,min, s1,max, s2,min, and s2,max. The four values of the inte-

gral function at the specified points are added or subtracted

according to each point’s sign.

Integrating along a line from
(

s1,f,s2,f
)

to
(

s1,b,s2,b
)

can result in severe aliasing as explained in more de-
tail in Section 4.2. Therefore, we will integrate over a
rectangle defined by the minima

(

s1,min,s2,min
)

and max-

ima
(

s1,max,s2,max
)

with s1,min
def
= min

(

s1,f,s1,b
)

, s2,min
def
=

min
(

s2,f,s2,b
)

, s1,max
def
= max

(

s1,f,s1,b
)

, and s2,max
def
=

max
(

s2,f,s2,b
)

. The integral can be computed by adding and
subtracting values of the integral function at the corners of
the rectangle as illustrated in Figure 1. Thus, the opacities
and colors are given by:

α
(

s1,min,s2,min,s1,max,s2,max,d
)

= 1− exp

(

−d
(s1,max−s1,min)

× 1
(s2,max−s2,min)

(

T
(

s1,max,s2,max
)

−T
(

s1,max,s2,min
)

−T
(

s1,min,s2,max
)

+T
(

s1,min,s2,min
)

)

)

, (11)

C̃
(

s1,min,s2,min,s1,max,s2,max,d
)

=

α
(

s1,min,s2,min,s1,max,s2,max,d
)

×
(

K
(

s1,max,s2,max
)

−K
(

s1,max,s2,min
)

−K
(

s1,min,s2,max
)

+K
(

s1,min,s2,min
)

)

/
(

T
(

s1,max,s2,max
)

−T
(

s1,max,s2,min
)

−T
(

s1,min,s2,max
)

+T
(

s1,min,s2,min
)

)

. (12)

with the two-dimensional integral functions

T (s1,s2)
def
=

∫ s1
0

∫ s2
0 τ

(

s′1,s
′
2
)

ds′2ds′1, (13)

K (s1,s2)
def
=

∫ s1
0

∫ s2
0 τ

(

s′1,s
′
2
)

c
(

s′1,s
′
2
)

ds′2ds′1. (14)

computation of summed-
area tables (Section 4.1)

sampling of volume data
(Sections 4.2 and 4.3)

sampling of summed-area
tables (Section 4.1)

computation of colors and
opacities (Section 3)

Figure 2: Basic data flow of our volume rendering technique

and the “back-to-front” organization of Sections 3 and 4.

It is straightforward to apply the surface rendering dis-
cussed in the previous section to two-dimensional transfer
functions using two surfaceness transfer functions for the
two scalar values.

4. Sampling of Multi-Dimensional Volume Data and

Multi-Dimensional Transfer Functions

While the previous Section 3 covered the mathematics of
our approach, this section discusses the implementation of
the proposed equations, in particular issues of sampling and
texture-based representations of integral functions.

This section is organized “back-to-front,” i.e., from the
computation of colors and opacities to the sampling of vol-
ume data while the data flow of the algorithm is directed the
other way around as illustrated in Figure 2. This organization
was chosen since the reasons for the differences to standard
volume rendering propagated from the computations with
integral functions via the sampling of summed-area tables to
the sampling of volume data. While this order might appear
counter-intuitive, it should help to comprehend the motiva-
tion of each step.

4.1. Computation and Sampling of Summed-Area

Tables

Tabulated two-dimensional integral functions are often re-
ferred to as summed-area tables in computer graphics. Crow
[Cro84] proposed to employ texture-based representations of
summed-area tables for the efficient filtering of texture im-
ages. Historically, however, mip-map representations were
preferred for this purpose. Recently, Crow’s suggestion was
revived by Hensley et al. [HSC∗05] since modern GPUs are
flexible enough to efficiently support it.

c© The Eurographics Association 2008.

100

M. Kraus / Pre-Integrated Volume Rendering for Multi-Dimensional Transfer Functions

In particular, modern GPUs provide support for 32-bit
floating-point texture formats, which provide sufficient accu-
racy for summed-area tables of most images of dimensions
28 × 28 × 8 bit. Since large areas of many two-dimensional
transfer functions contain transparent black pixels, the pre-
cision is in fact sufficient to support considerably larger im-
ages, e.g., 210 ×210 ×8 bit.

In our current implementation, the two-dimensional trans-
fer functions are first sampled in an RGBA floating-point
image of dimensions 1024× 1024 with τ(s1,s2) in the al-
pha channel and τ(s1,s2) c(s1,s2) in the red, green, and
blue channels. The summed-area tables (corresponding to
T (s1,s2) and K (s1,s2)) are computed in software by itera-
tively summing left and lower pixel neighbors to each pixel.
This is extremely efficient as only one pass over the im-
age is required on a CPU. A slight performance improve-
ment could be achieved by performing the computation of
the summed-area table on the GPU [HSC∗05]; however,
this would not avoid the bottleneck of transferring the tex-
ture data to the graphics memory. More accurate integration
schemes also offer only limited improvements since the sam-
pling error cannot be undone.

On many current GPUs, 32-bit floating-point textures do
not support linear interpolation but only nearest-neighbor
access. Thus, two samples of the texture at positions that
are closer than the size of one texel can access the same
texel and therefore the difference of their values is zero—
independently of the texels’ values. Our method is numer-
ically robust in this case; thus, the resulting color will be
transparent black. In pre-integrated volume rendering, how-
ever, it is often preferable to overestimate opacities in order
not to skip fine details. Thus, we ensure that the texture co-
ordinates corresponding to s1,max and s2,max are at least one
texel greater than s1,min and s2,min by adding the missing dis-
tance if necessary.

4.2. Space-Covering Sampling Scheme

While pre-integrated volume rendering of one-dimensional
transfer functions reliably renders arbitrarily thin isosur-
faces, the situation is more complicated for two-dimensional
transfer functions. A single peak δ(s − siso) in a one-
dimensional opacity transfer function corresponds to an iso-
surface; however, a peak in a two-dimensional opacity trans-
fer function corresponds to the separable product δ(s1 −
s1,iso)δ(s2 − s2,iso) of two one-dimensional peaks and there-
fore to the intersection of two isosurfaces. In general, this
intersection is a set of curves; thus, two-dimensional trans-
fer functions can specify almost arbitrary curves in space. In
fact, pre-integration even allows for arbitrarily thin curves.

Unfortunately, ray casting of thin curves results in severe
aliasing artifacts as infinitesimal thin rays are unlikely to in-
tersect these curves. In order to generalize pre-integration
for multi-dimensional transfer functions, it is therefore nec-
essary to substantially extend the ray casting approach.

front slice back slice

eye point

Figure 3: Illustration of the eight sampling points of one

pixel frustum between two slices.

In this work we propose a space-covering sampling
scheme to reliably render infinitesimal thin curves by means
of volume rendering. Specifically, we suggest “pyramid cast-
ing” in analogy to “beam tracing” [HH84]. Figure 3 illus-
trates one “pixel frustum” of a traced pyramid, which is de-
fined by eight sampling points. In our slicing approach, the
frontmost four sampling points correspond to four adjacent
pixels on the front slice while the backmost four sampling
points correspond to pixels on a second slice. Thus, one pixel
frustum can be defined for each pixel on the front slice and
the set of all pixel frusta covers the space between the two
slices. Therefore, even infinitesimal thin curves can be ren-
dered provided that an intersection between a curve and a
pixel frustum is reliably detected.

It should be noted that one pixel frustum corresponds to
the ray segment between two sampling points in standard
pre-integrated volume rendering. Moreover, the front and
back slices are well-known from pre-integrated volume ren-
dering [EKE01]. Also note that the total number of different
sampling points is not increased in comparison to standard
(pre-integrated) volume rendering since each sampling point
is reused for eight pixel frusta (apart from pixel frusta at the
boundary of the view frustum). This feature is exploited in
Section 4.3 to avoid additional accesses to the volume data.

In the case of two-dimensional transfer functions, each
of the eight sampling points p(i) (i = 1, . . . ,8) of one pixel

frustum specifies a pair
(

s
(i)
1 ,s

(i)
2

)

of sample values. From

these 16 values, the minima and maxima for s1 and s2 are

computed, i.e., the four values s1,min
def
= mini=1,...,8

{

s
(i)
1

}

,

s2,min
def
= mini=1,...,8

{

s
(i)
2

}

, s1,max
def
= maxi=1,...,8

{

s
(i)
1

}

, and

s2,max
def
= maxi=1,...,8

{

s
(i)
2

}

. In combination with the dis-

tance between the back and front slice, these four values are
sufficient to approximate the opacity and color of the pixel
frustum by four table lookups in the precomputed summed-
area tables as discussed in Section 3.3.

c© The Eurographics Association 2008.

101

M. Kraus / Pre-Integrated Volume Rendering for Multi-Dimensional Transfer Functions

clear all buffers

i = 0; sample i-th slice to 1st slice buffer

i = i+1; sample i-th slice to 2nd slice buffer

rasterize and blend i-th slice to 3rd buffer

i = i+1; sample i-th slice to 1st slice buffer

rasterize and blend i-th slice to 3rd buffer

no more slices: terminate

Figure 4: Buffering of volume samples using three buffers.

The eye space gradients ∇es1 and ∇es2 can also be ap-

proximated from the 16 values s
(i)
1 and s

(i)
2 . To this end, we

assume that the effect of perspective projection is negligible
and compute the six components of ∇es1 and ∇es2 by av-
eraging the appropriately scaled differences between sample
values along parallel edges of the pixel frustum. The aver-
aging results in some smoothing, which is welcome for the
computation of gradients in most kinds of volume data.

For orthogonal model-view transformations, the gradient
magnitudes |∇s1| and |∇s2| can be approximated by |∇es1|
and |∇es2|, otherwise the gradient vectors have to be trans-
formed to object space first. Moreover, the eye space gradi-
ents can be employed directly for volume shading provided
that light sources are also transformed into eye space.

4.3. Buffering of Volume Samples

The color and opacity for each pixel frustum is computed
in a fragment program based on eight samples as discussed
in the previous section. However, it is rather inefficient to
sample all eight points directly from the volume data since
each sample is used for up to eight pixel frusta. Sampling
each point eight times is particular costly for compressed
volume data that has to be decoded in the fragment program,
as proposed, for example, by Fout et al. [FAM∗05].

Therefore, we propose a simple buffering scheme involv-
ing three buffers: two slice buffers are used alternately to
sample the volume data by rasterizing slices of the volume
and performing any decoding of the volume data if neces-
sary. No further processing of the samples is performed by
this rasterization. All but the first slice are then also raster-
ized to a third buffer. In this step, four (already decoded)
samples are read from each of the two slice buffers. Thus,
the fragment program of this step accesses all eight samples
of a pixel frustum to compute its opacity and color. The re-

sult is then accumulated in the third buffer by blending with
its content.

This process is illustrated in Figure 4 and can be employed
for back-to-front and front-to-back blending. Note, however,
that one of the slice buffers will not provide valid data for all
pixels since different slices cover different regions in screen
space. For these pixels the result of the fragment program
should be transparent black unless subpixel-accurate meth-
ods for boundary clipping are employed. Also note that the
buffering of volume samples as well as the frequent changes
of the render target results in a considerable overhead. Thus,
the technique is most beneficial for costly accesses to the
volume data, e.g., for complex decoding operations.

5. Results

Figure 5 employs a two-dimensional transfer function to
render isolines of constant gradient magnitude (in blue) on
a semitransparent isosurface (in light red), which approxi-
mates the skin of an ear in a medical CT scan of 64×64×93
voxels. The three figures compare single-sample volume
rendering with a two-dimensional lookup table for the two-
dimensional transfer function (Figure 5a), pre-integrated
volume rendering for two-dimensional transfer functions as
discussed in Section 3.3 (Figure 5b), and pre-integrated vol-
ume rendering with pixel-frustum sampling (Figure 5c) as
discussed in Section 4.2. In all cases, the same image reso-
lution and slice distance was employed.

While standard volume rendering fails to render most
parts of the thin isosurface and misses the isolines apart from
a few scattered pixels in Figure 5a, pre-integrated volume
rendering can render the isosurface and most of the isolines
in Figure 5b; however, closed isolines are only achieved with
the pixel-frustum sampling employed in Figure 5c.

Figure 6 uses a synthetic second scalar field to apply a
one-dimensional “texture” to an isosurface of a medical CT
scan by embedding the one-dimensional texture into a two-
dimensional transfer function. The resulting volume render-
ing is shown for the same three techniques as employed in
Figure 5 and for two different, rather low image resolutions.
Obviously, the pixel-frustum sampling technique strongly
reduces aliasing artifacts in Figures 6c and 6f.

Our prototypical implementation is based on OpenGL and
the VTK framework by Kitware, Inc. Table 1 compares the
performance of the three mentioned volume rendering tech-
niques on a Microsoft Vista-PC with an NVIDIA Quadro
FX 5600 graphics board. The single-sample volume render-
ing is based on a standard slicing approach with a dependent
texture lookup to apply the two-dimensional transfer func-
tion. On the other hand, the pre-integrated volume rendering
approaches were implemented as discussed in Section 4.3,
where the “front and back” technique accesses only one sam-
ple of each slice, while the “pixel frustum” technique reads

c© The Eurographics Association 2008.

102

M. Kraus / Pre-Integrated Volume Rendering for Multi-Dimensional Transfer Functions

(a) (b) (c)

Figure 5: Comparison of three volume rendering techniques supporting two-dimensional transfer functions: (a) standard post-

classified volume rendering (1 sample per fragment), (b) pre-integrated volume rendering (2 samples per fragment), (c) pre-

integrated volume rendering with pixel-frustum sampling (8 samples per fragment). The image resolution is 512×512.

Table 1: Rendering performance for 300 slices on a 512×
512 view port in seconds per frame and frames per second.

pre-integrated

single sample front and back pixel frustum

0.019 sec 0.066 sec 0.092 sec

53 fps 15 fps 11 fps

four samples of each slice, i.e., eight samples for each pixel
frustum as explained in Section 4.2.

The buffering of volume samples is rather costly; how-
ever, it should be noted that the overhead is independent
of the costs of sampling the volume data, which could be
considerably higher for compressed volume data. Moreover,
some techniques (e.g., [FAM∗05]) also require a slice buffer
for volume samples; thus, the additional costs for the pro-
posed buffering would be significantly lower.

6. Conclusions & Future Work

This work demonstrates that efficient pre-integrated vol-
ume rendering with two-dimensional transfer functions is
possible on modern GPUs. However, our current GPU-
implementation suffers from the restriction to nearest-
neighbor interpolation for 32 bit floating-point textures and
the limited communication between fragment programs,
which resulted in the considerable overhead of the pro-
posed technique for buffering volume samples. While fu-
ture GPU generations are likely to overcome these limita-
tions, it might be possible to alleviate the problem of nearest-
neighbor interpolation by employing 16 bit floating-point
textures in combination with techniques to improve the ac-

curacy of summed-area tables as suggested by Crow [Cro84]
and Hensley et al. [HSC∗05].

The most important implication of this work is the possi-
bility to exploit the full potential of two-dimensional transfer
functions in direct volume rendering. As we have demon-
strated, this includes the anti-aliased rendering of three-
dimensional curves and “textured” isosurfaces as well as
many more applications, e.g., interactive segmentation and
modelling of complex implicit shapes.

References

[Cro84] CROW F. C.: Summed-area tables for texture
mapping. ACM Computer Graphics (Proceedings of SIG-

GRAPH ’84) 18, 3 (1984), 207–212.

[EKE01] ENGEL K., KRAUS M., ERTL T.: High-
quality pre-integrated volume rendering using hardware-
accelerated pixel shading. In Proceedings Graphics Hard-

ware 2001 (2001), Mark W., Schilling A., (Eds.), ACM
Press, pp. 9–16.

[FAM∗05] FOUT N., AKIBA H., MA K.-L., LEFOHN

A. E., KNISS J.: High-quality rendering of compressed
volume data formats. In Eurographics/VGTC Symposium

on Visualization (2005), pp. 77–84.

[HH84] HECKBERT P. S., HANRAHAN P.: Beam tracing
polygonal objects. ACM Computer Graphics (Proceed-

ings of SIGGRAPH ’84) 18, 3 (1984), 119–127.

[HSC∗05] HENSLEY J., SCHEUERMANN T., COOMBE

G., SINGH M., LASTRA A.: Fast summed-area table gen-
eration and its applications. Computer Graphics Forum

(Proceedings Eurographics 2005) 24, 3 (2005), 547–555.

[KD98] KINDLMANN G., DURKIN J. W.: Semi-
automatic generation of transfer functions for direct vol-

c© The Eurographics Association 2008.

103

M. Kraus / Pre-Integrated Volume Rendering for Multi-Dimensional Transfer Functions

(a) (b) (c)

(d) (e) (f)

Figure 6: Comparison of three volume rendering techniques supporting two-dimensional transfer functions at low image res-

olutions. (a) and (d): standard post-classified volume rendering (1 sample per fragment), (b) and (e): pre-integrated volume

rendering (2 samples per fragment), (c) and (f): pre-integrated volume rendering with pixel-frustum sampling (8 samples per

fragment). The image resolution is 256×256 in the first row (a)-(c), and 128×128 in the second row (d)-(f).

ume rendering. In Proceedings 1998 IEEE Symposium on

Volume Visualization (1998), pp. 79–86.

[KE04] KRAUS M., ERTL T.: Pre-integrated volume ren-
dering. In The Visualization Handbook (2004), Hansen
C. D., Johnson C. R., (Eds.), Academic Press, pp. 211–
228.

[KHS05] KYE H., HONG H., SHIN Y. G.: Efficient inter-
active pre-integrated volume rendering. In Computational

Science – ICCS 2005 (2005), Springer Berlin / Heidel-
berg, pp. 834–837.

[KKH02] KNISS J., KINDLMANN G., HANSEN C.: Mul-
tidimensional transfer functions for interactive volume
rendering. IEEE Transactions on Visualization and Com-

puter Graphics 8, 3 (2002), 270–285.

[KPI∗03] KNISS J., PREMOŽE S., IKITIS M., LEFOHN

A., HANSEN C., PRAUN E.: Gaussian transfer functions
for multi-field volume visualizations. Proceedings Visu-

alization 2003 (2003), 497–504.

[Kra05] KRAUS M.: Scale-invariant volume rendering. In
Proceedings IEEE Visualization 2005 (2005), pp. 295–
302.

[Lev88] LEVOY M.: Display of surfaces from volume
data. IEEE Computer Graphics and Applications 8, 3
(1988), 29–37.

[LWM04] LUM E. B., WILSON B., MA K.-L.: High-
quality lighting and efficient pre-integration for volume
rendering. In Proceedings Joint Eurographics-IEEE

TVCG Symposium on Visualization 2004 (VisSym ’04)

(2004), pp. 25–34.

[MHC90] MAX N., HANRAHAN P., CRAWFIS R.: Area
and volume coherence for efficient visualization of 3d
scalar functions. ACM Computer Graphics (Proceedings

San Diego Workshop on Volume Visualization 1990) 24, 5
(1990), 27–33.

[RKE00] RÖTTGER S., KRAUS M., ERTL T.: Hardware-
accelerated volume and isosurface rendering based on
cell-projection. In Proceedings IEEE Visualization 2000

(2000), pp. 109–116.

[YMC06] YOUNESY H., MÖLLER T., CARR H.: Im-
proving the quality of multi-resolution volume render-
ing. In Eurographics/IEEE-VGTC Symposium on Visu-

alization (2006), pp. 251–258.

c© The Eurographics Association 2008.

104

